首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kumar RN  Nagendran R 《Chemosphere》2007,66(9):1775-1781
Bioleaching of heavy metals from contaminated soil was carried out employing indigenous sulfur oxidizing bacterium Acidithiobacillus thiooxidans. Experiments were carried out to assess the influence of initial pH of the system on bioleaching of chromium, zinc, copper, lead and cadmium from metal contaminated soil. pH at the end of four weeks of bioleaching at different initial pH of 3-7 was between 0.9 and 1.3, ORP between 567 and 617mV and sulfate production was in the range of 6090-8418mgl(-1). Chromium, zinc, copper, lead and cadmium solubilization ranged from "59% to 98%" at different initial pH. A. thiooxidans was not affected by the increasing pH of the bioleaching system towards neutral and it was able to utilize elemental sulfur. The results of the present study are encouraging to develop the bioleaching process for decontamination of heavy metal contaminated soil.  相似文献   

2.
Chen SY  Lin JG 《Chemosphere》2004,54(3):283-289
A technologically and economically feasible process called bioleaching was used for the removal of heavy metals from livestock sludge with indigenous sulfur-oxidizing bacteria in this study. The effects of sludge solids concentration on the bioleaching process were examined in a batch bioreactor. Due to the buffering capacity of sludge solids, the rates of pH reduction, ORP rise and metal solubilization were reduced with the increase of the solids concentration. No apparent influence of solids concentration on sulfate produced by sulfur-oxidizing bacteria was observed when the solids concentration was less than 4% (w/v). A Michaelis-Menten type of equation was able to well describe the relationship between solids concentration and rate of metal solubilization. Besides, high efficiencies of metal solubilization were achieved after 16 d of bioleaching. Therefore, the bioleaching process used in this study could be applied to remove heavy metals effectively from the livestock sludge.  相似文献   

3.
采用生物淋滤法处理电子垃圾焚烧迹地重金属严重污染的土壤。所用氧化亚铁硫杆菌是从矿坑废水中通过一系列培养、分离和纯化得到。实验结果表明,生物淋滤法可以有效地去除土壤中重金属Cu、Pb和Zn,去除率的大小顺序为Zn>Cu>Pb;采用五步连续提取法分析处理前后土壤中重金属的存在形态,结果表明,通过氧化亚铁硫杆菌处理受重金属污染的土壤,可以促使易移动的重金属结合态的溶解(可交换态、碳酸盐结合态和Fe-Mn氧化物结合态),并使难移动的重金属结合态向易移动的重金属结合态转变。  相似文献   

4.
采用生物淋滤法处理电子垃圾焚烧迹地重金属严重污染的土壤。所用氧化亚铁硫杆菌是从矿坑废水中通过一系列培养、分离和纯化得到。实验结果表明,生物淋滤法可以有效地去除土壤中重金属Cu、Ph和Zn,去除率的大小顺序为Zn〉Cu〉Pb;采用五步连续提取法分析处理前后土壤中重金属的存在形态,结果表明,通过氧化亚铁硫杆菌处理受重金属污染的土壤,可以促使易移动的重金属结合态的溶解(可交换态、碳酸盐结合态和Fe—Mn氧化物结合态),并使难移动的重金属结合态向易移动的重金属结合态转变。  相似文献   

5.
The application of two different types of elemental sulfur (S0) was studied to evaluate the efficiency on bioleaching of heavy metals from contaminated sediments. Bioleaching tests were performed in suspension and in the solid-bed with a heavy metal contaminated sediment using commercial sulfur powder (technical sulfur) or a microbially produced sulfur waste (biological sulfur) as substrate for the indigenous sulfur-oxidizing bacteria and thus as acid source. Generally, using biological sulfur during suspension leaching yielded in considerably better results than technical sulfur. The equilibrium in acidification, sulfur oxidation and metal solubilization was reached already after 10-14 d of leaching depending upon the amount of sulfur added. The metal removal after 28 d of leaching was higher when biological sulfur was used. The biological sulfur added was oxidized with high rate, and no residual S0 was detectable in the sediment samples after leaching. The observed effects are attributable to the hydrophilic properties of the biologically produced sulfur particles resulting in an increased bioavailability for the Acidithiobacilli. In column experiments only poor effects on the kinetics of the leaching parameters were observed replacing technical sulfur by biological sulfur, and the overall metal removal was almost the same for both types of S0. Therefore, under the conditions of solid-bed leaching the rate of sulfur oxidation and metal solubilization is more strongly affected by transport phenomena than by microbial conversion processes attributed to different physicochemical properties of the sulfur sources. The results indicate that the application of biological sulfur provides a suitable means for improving the efficiency of suspension leaching treatments by shortening the leaching time. Solid-bed leaching treatments may benefit from the reuse of biological sulfur by reducing the costs for material and operating.  相似文献   

6.
Basic research on remediation of polluted sediment by leaching has, to date, been carried out exclusively with suspended material. For economic reasons, only solid-bed leaching is applicable to large-scale processes. Abiotic and microbial solid-bed leaching were comparatively studied in a percolator system using ripened and therefore permeable heavy metal polluted river sediment. In the case of abiotic leaching, sulfuric acid was supplied to the sediment by circulating water; the lower the pH of the percolating water, the higher the percolation flow, and the lower the solid-bed height was, the faster the heavy metals were solubilized. However, the pH and percolation flow are subjected to restrictions: strongly acidic conditions result in dissolution of mineral components, and the percolation flow must not exceed the bed permeability. And a high solid bed is an economic requirement. In the case of bioleaching, elemental sulfur added to the sediment was oxidized to sulfuric acid within the package which, in turn, solubilized the heavy metals. Here, the percolation flow and the solid-bed height did not affect the rate of metal solubilization. Solid-bed leaching on a larger scale will thus be much more efficient applying bioleaching with sulfur as the leaching agent than abiotic leaching with sulfuric acid.  相似文献   

7.
以硫酸亚铁盐为底物,培养以氧化亚铁硫杆菌为主要菌种的土著沥滤微生物,采用批式方法对湘江长沙段底泥进行微生物沥浸实验。实验结果表明,底物投加量与底泥固体浓度比(Sd/Sc)为1.5时已能满足底泥的微生物沥浸要求,进一步研究发现底泥固体浓度为13%、底物投加量为19.5 g/L、沥浸时间为6 d时,底泥中超标重金属Cd、Zn和Cu的去除率可分别达到83.1%、75.3%和61.2%;沥浸后底泥中大部分重金属以残渣态存在,且含量低于农用污泥中污染物控制标准,其中硫化物有机结合态Cu浸出较Zn、Cd需更低的pH,且Cu以间接机理浸出为主;以Fe2+为底物的沥浸体系中,黄铁矾的重吸附或共沉淀是沥浸实验后期重金属浸出率下降的原因之一。  相似文献   

8.
Cantwell MG  Burgess RM  King JW 《Chemosphere》2008,73(11):1824-1831
In aquatic systems where metal contaminated sediments are present, the potential exists for metals to be released to the water column when sediment resuspension occurs. The release and partitioning behavior of sediment-bound heavy metals is not well understood during resuspension events. In this study, the release of Cd, Cu, Hg, Ni, Pb and Zn from sediments during resuspension was evaluated using reference sediments with known physical and chemical properties. Sediment treatments with varying quantities of acid volatile sulfide (AVS), total organic carbon (TOC), and different grain size distributions were resuspended under controlled conditions to evaluate their respective effects on dissolved metal concentrations. AVS had the greatest effect on limiting release of dissolved metals, followed by grain size and TOC. Predictions of dissolved concentrations of Cd, Ni, Pb and Zn were developed based on the formulated sediment Σmetal/AVS ratios with Σmetal being the total sediment metal concentration. Predicted values were compared to measured dissolved metal concentrations in contaminated field sediments resuspended under identical operating conditions. Metal concentrations released from the field sediments were low overall, in most cases lower than predicted values, reflecting the importance of other binding phases. Overall, results indicate that for sulfidic sediments, low levels of the study metals are released to the dissolved phase during short-term resuspension.  相似文献   

9.

Heavy metal-contaminated sediments posed a serious threat to both human beings and environment. A biosurfactant, rhamnolipid, was employed as the washing agent to remove heavy metals in river sediment. Batch experiments were conducted to test the removal capability. The effects of rhamnolipid concentration, washing time, solution pH, and liquid/solid ratio were investigated. The speciation of heavy metals before and after washing in sediment was also analyzed. Heavy metal washing was favored at high concentration, long washing time, and high pH. In addition, the efficiency of washing was closely related to the original speciation of heavy metals in sediment. Rhamnolipid mainly targeted metals in exchangeable, carbonate-bound or Fe-Mn oxide-bound fractions. Overall, rhamnolipid biosurfactant as a washing agent could effectively remove heavy metals from sediment.

  相似文献   

10.
The concentration partitioning between the sediment particle and the interstitial water phase plays an important role in controlling the toxicity of heavy metals in aquatic systems. The aim of this study was to assess the sediment quality in a polluted area of the Ziya River, Northern China. The contamination potential and bioavailability of six metals were determined from the concentrations of total metals and the bioavailable fractions. The results showed that the concentrations of Cr, Cu, Ni, Zn, and Pb exceeded the probable effect concentration at several sites. The high geoaccumulation indices showed that the sediments were seriously contaminated by Cd. The ratio of acid-volatile sulfide (AVS) to simultaneously extracted metal (SEM) was higher than 1, which indicated that the availability of metals in sediments was low. The risk assessment of interstitial waters confirmed that there was little chance of release of metals associated with acid-volatile sulfide into the water column. Values of the interstitial water criteria toxicity unit indicated that none of the concentrations of the studied metals exceeded the corresponding water quality thresholds of the US Environmental Protection Agency. Positive matrix factorization showed that the major sources of metals were related to anthropogenic activities. Further, if assessments are based on total heavy metal concentrations, the toxicity of heavy metals in sediment may be overestimated.  相似文献   

11.
Liang Y  Wong MH 《Chemosphere》2003,52(9):1647-1658
An intensive monthly sampling of water and sediments from 12 sites over 8 months covering wet and dry seasons at Mai Po Marshes Nature Reserve was conducted during June 1997-February 1998. Major organic (C, N and P) and heavy metal pollutants (Cd, Cr, Cu, Ni, Pb, Zn) water and sediment samples were examined. The results showed that Mai Po Marshes were severely polluted by organic matter and heavy metals, and the water from Deep Bay appeared to be the source of pollution. Up to 13-55% chance that the sediments of Mai Po Marshes were classified as moderately to seriously metal contaminated materials, according to the guideline set by Hong Kong Government. Empirical models describing organic matter and heavy metal spatial and seasonal dynamics in the water and sediments were formulated, based on data analysis. During wet season (June-October), more than 58% variations of total P can be explained by ortho-P in water, while ammonia-N explained up to 90% variations of total Kjeldahl nitrogen in water. Throughout the whole sampling period (June-February), there were significant correlations (p<0.01) between total organic C in water. pH in the sediments and salinity in water appeared to be important factors determining heavy metal mobility in sediments, while potential metal release from the sediments is a concern when any oxidizing processes such as flooding or dredging are imposed on sediments.  相似文献   

12.
Huang KM  Lin S 《Chemosphere》2003,53(9):1113-1121
A great deal of effort was enforced to reduce the pollution of the Keelung River in the past 20 years. A set of sediments covering most of the Keelung River drainage basin was analyzed for bulk sediment heavy metal concentrations, grain size content and Pb-210 dating in order to understand the spatial variations of sediment heavy metal contents as well as to evaluate the effectiveness of pollution control. The results showed that anthropogenic pollution and grain size are two of the most important factors in controlling spatial variations of metals in the Keelung River sediments. In addition, little reduction of sediment heavy metal concentrations was observed in the Keelung River drainage basin. Large spatial variations of metals and grain size were observed. High concentrations of zinc, copper, lead and cadmium were found in sediments near the main outlets of the adjacent Da-Wu-Lun Industrial Park and municipal waste drainage systems. Anthropogenic sources of heavy metal have altered the natural sediment heavy metal distributions. Positive linear relationships between aluminum, iron and fine-grained sediments showed that spatial grain size variations controlled the natural aluminum and iron concentrations in sediments. Zinc, copper, lead and cadmium contents were much higher than those measured 15 years ago. The unusually high concentrations of heavy metals, high enrichment factors and their rapid increases with time in Pb-210 dated core showed that the efforts in heavy metal reduction were futile. A proper regulation to prevent further heavy metals from entering into the river is urgently needed.  相似文献   

13.
The effects of oxygen limitation on solid-bed bioleaching of heavy metals (Me) were studied in a laboratory percolator system using contaminated sediment supplemented with 2% elemental sulfur (So). Oxygen limitation was realized by controlling the gas flow and oxygen concentration in the aeration gas. The oxygen supply varied between 150 and 0.5 mol So (-1) over 28 d of leaching. Moderate oxygen limitation led to temporarily suppression of acidification, rate of sulfate generation and Me solubilization. Lowering the oxygen supply to 0.5 mol O2 mol So (-1) resulted in retarding acidification over a period of three weeks and in poor Me solubilization. Oxidation of So occurred even under strong oxygen limitation at a low rate. High surplus of oxygen was necessary for almost complete oxidation of the added So. The maximum Me solubilization was reached at an oxygen supply of 7.5 mol O2 mol So (-1). Thus, the oxygen input during solid-bed bioleaching can be reduced considerably by controlling the gas flow without loss of metal removal efficiency. Oxygen consumption rates, ranging from 0.4 x 10(-8) to 0.8 x 10(-8) Kg O2 Kg dm (-1) S(-1), are primarily attributed to high reactivity of the sulfur flower and high tolerance of indigenous autotrophic bacteria to low oxygen concentrations. The So related oxygen consumption was calculated assuming a molar yield coefficient Y O2/S of 1.21. The oxygen conversion degree, defined as part of oxygen feed consumed by So oxidation, increased from 0.7% to 68% when the oxygen supply was reduced from 150 to 0.5 mol O2 mol So (-1).  相似文献   

14.
Xiang L  Chan LC  Wong JW 《Chemosphere》2000,41(1-2):283-287
The removal of heavy metals (Cr, Cu, Zn, Ni and Pb) from anaerobically digested sludge from the Yuen Long wastewater treatment plant, Hong Kong, has been studied in a batch system using isolated indigenous iron-oxidizing bacteria. The inoculation of indigenous iron-oxidizing bacteria and the addition of FeSO4 accelerated the solubilization of Cr, Cu, Zn, Ni and Pb from the sludge. pH of the sludge decreased with an increase in Fe2+ concentrations and reached a low pH of 2-2.5 for treatments receiving both bacterial inoculation and FeSO4. After 16 days of bioleaching, the following heavy metal removal efficiencies were obtained: Cr 55.3%, Cu 91.5%, Zn 83.3%, Ni 54.4%, and Pb 16.2%. In contrast, only 2.6% of Cr, 42.9% of Cu, 72.1% of Zn, 22.8% of Ni and 0.56% of Pb were extracted from the control without the bacterial inoculation and addition of FeSO4. The residual heavy metal content in the leached sludge was acceptable for unrestricted use for agriculture. The experimental results confirmed the effectiveness of using the isolated iron-oxidizing bacteria for the removal of heavy metals from sewage sludge.  相似文献   

15.
Experiments were undertaken to examine the key variables affecting metal release and sequestration processes in marine sediments with metal concentrations in sediments reaching up to 86, 240, 700, and 3000 mg kg(-1) (dry weight) for Cd, Cu, Pb and Zn, respectively. The metal release and sequestration rates were affected to a much greater extent by changes in overlying water pH (5.5-8.0) and sediment disturbance (by physical mixing) than by changes in dissolved oxygen concentration (3-8 mg l(-1)) or salinity (15-45 practical salinity units). The physical disturbance of sediments was also found to release metals more rapidly than biological disturbance (bioturbation). The rate of oxidative precipitation of released iron and manganese increased as pH decreased and appeared to greatly influence the sequestration rate of released lead and zinc. Released metals were sequestered less rapidly in waters with lower dissolved oxygen concentrations. Sediments bioturbated by the benthic bivalve Tellina deltoidalis caused metal release from the pore waters and higher concentrations of iron and manganese in overlying waters than non-bioturbated sediments. During 21-day sediment exposures, T. deltoidalis accumulated significantly higher tissue concentrations of cadmium, lead and zinc from the metal contaminated sediments compared to controls. This study suggests that despite the fact that lead and zinc were most likely bound as sulfide phases in deeper sediments, the metals maintain their bioavailability because of the continued cycling between pore waters and surface sediments due to physical mixing and bioturbation.  相似文献   

16.
Anaerobically digested sewage sludges were treated for heavy metal removal through a biological solubilization process called bacterial leaching (bioleaching). The solubilization of copper and zinc from these sludges is described in this study: using continuously stirred tank reactors with and without sludge recycling at different mean hydraulic residence times (1, 2, 3 and 4 days). Significant linear equations were established for the solubilization of zinc and copper according to relevant parameters: oxygen reduction potential (ORP), pH and residence time (t). Zinc solubilization was related to the residence time with a r2 (explained variance) of 0.82. Considering only t=2 and 3 days explained variance of 0.31 and 0.24 were found between zinc solubilization as a function of ORP and pH indicating a minor importance of those two factors for this metal in the range of pH and ORP experimented. Cu solubilization was weakly correlated to mean hydraulic residence time (r2=0.48), while it was highly correlated to ORP (r2=0.80) and pH (r2=0.62) considering only t of 2 and 3 days in the case of pH and ORP. The ORP dependence of Cu solubilization has been clearly demonstrated in this study. In addition to this, the importance of the substrate concentration for Cu solubilization has been confirmed. The hypothesis of a biological solubilization of Cu by the indirect mechanism has been supported. The results permit, under optimum conditions, the drawing of linear equations which will allow prediction of metal solubilization efficiencies from the parameters pH (Cu), ORP (Cu) and residence time (Cu and Zn), during the treatment. The linear regressions will be a useful tool for routine operation of the process.  相似文献   

17.
The degree of heavy metal contamination in the fine-grained (<63 microm) and sand-sized (2 mm-63 microm) fractions of surface sediments in 18 different mangrove swamps (144 random samples) in Hong Kong was examined. Higher concentrations of heavy metals were found in the fine-grained than the sand-sized fractions of the sediment; however, the differences between these two fractions became less significant when the swamp was more contaminated. The principal component analyses show that the 18 mangrove swamps, according to the median concentrations of total heavy metals, were clustered into four groups. The first group included three mangrove swamps in Deep Bay region which are seriously contaminated, with heavy metal concentrations in sediments around 80 microg g(-1) Cu, 240 microg g(-1) Zn, 40 microg g(-1) Cr, 30 microg g(-1) Ni, 3 microg g(-1) Cd and 80 microg g(-1) Pb. The second cluster, made up of another four swamps distributed in different geographical locations (two in Sai Kung district and two in Tolo region), also had elevated levels of Cu, Pb, Ni and Cr in the sediments. Field observation reveals that these seven stands received industrial, livestock and domestic sewage as well as pollution from mariculture activities, suggesting that anthropogenic input is the main source of heavy metal contamination in Hong Kong mangroves. The sediments from other mangrove swamps were relatively uncontaminated.  相似文献   

18.
A washing process was studied to evaluate the efficiency of saponin on remediating heavy metal contaminated soils. Three different types of soils (Andosol: soil A, Cambisol: soil B, Regosol: soil C) were washed with saponin in batch experiments. Utilization of saponin was effective for removal of heavy metals from soils, attaining 90-100% of Cd and 85-98% of Zn extractions. The fractionations of heavy metals removed by saponin were identified using the sequential extraction. Saponin was effective in removing the exchangeable and carbonated fractions of heavy metals from soils. In recovery procedures, the pH of soil leachates was increased to about 10.7, leading to separate heavy metals as hydroxide precipitates and saponin solute. In addition recycle of used saponin is considered to be effective for the subsequent utilization. The limits of Japanese leaching test were met for all of the soil residues after saponin treatment. As a whole, this study shows that saponin can be used as a cleaning agent for remediation of heavy metal contaminated soils.  相似文献   

19.
Remediation of heavy metal polluted sediment by extracting the metals with sulfuric acid can be performed as follows: abiotic suspension leaching, microbial suspension leaching, abiotic solid-bed leaching, and microbial solid-bed leaching. Abiotic leaching means that the acid is directly added, while microbial leaching means that the acid is generated from sulfur by microbes (bioleaching). These four principles were compared to each other with special emphasis on the effectiveness of metal solubilization and metal removal by subsequent washing. Abiotic suspension leaching was fastest, but suspending the solids exhibits some disadvantages (low solid content, costly reactors, permanent input of energy, high water consumption, special equipment required for solid separation, large amounts of waste water, sediment properties hinder reuse), which prevent suspension leaching in practice. Abiotic solid-bed leaching implies the supply of acid by percolating water which proceeds slowly due to a limited bed permeability. Microbial solid-bed leaching means the generation of acid within the bed and has been proven to be the only principle applicable to practice. Metal removal from leached sediment requires washing with water. Washing of solid beds was much more effective than washing of suspended sediment. The kinetics of metal removal from solid beds 0.3, 0.6 or 1.2m in height were similar; when using a percolation flow of 20lm(-2)h(-1), the removal of 98% of the mobile metals lasted 57-61h and required 8.5, 4.2 or 2.3lkg(-1) water. This means, the higher the solid bed, the lower the sediment-mass-specific demand for time and water.  相似文献   

20.
The distribution of heavy metal contaminated sediments in Foundry Cove, a freshwater embayment of the Hudson River, was examined twelve years after the discharging of wastes from a battery factory had ceased. Concentrations of Cd, Ni and Co were measured in surficial sediments (top 5 cm) and seven detailed depth profiles. Comparison with earlier surveys showed that metal levels of surficial sediments have been considerably reduced throughout the cove. Evidence suggests that this reduction may be largely due to burial rather than transport of metals out of the cove or a redistribution (via sediment resuspension and redeposition) within the cove. This is suggested by the presence of a peak in metal concentrations at a depth of several centimetres in depositional environments, a calculation showing the loss of waterborne cadmium to be much less than the amount of cadmium lost from the surficial sediment, and the absence of increased pollution in the cleaner parts of the cove. Despite improvement, metal levels remain extremely high, including a persistent 'hot-spot' with levels higher than 10 000 ppm Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号