首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Many small streams in coastal watersheds in the southeastern United States are modified for agricultural, residential, and commercial development. In the South Carolina Lower Coastal Plain, low‐relief topography and a shallow water table make stream channelization ubiquitous. To quantify the impacts of urbanization and stream channelization, we measured flow and sediment from an urbanizing watershed and a small forested watershed. Flow and sediment export rates were used to infer specific yields from forested and nonforested regions of the urbanizing watershed. Study objectives were to: (1) quantify the range of runoff‐to‐rainfall ratios; (2) quantify the range of specific sediment yields; (3) characterize the quantity and quality of particulate matter exported; and (4) estimate sediment yield attributable to agriculture, development, and channelization activities in the urbanizing watershed. Our results showed that the urban watershed exported over five times more sediment per unit area compared with the forested watershed. Sediment concentration was related to flow flashiness in the urban watershed and to flow magnitude in the forested watershed. Sediments from the forested watershed were dominated by organic matter, whereas mineral matter dominated sediment from the urban stream. Our results indicated that a significant shift in sediment quality and quantity are likely to occur as forested watersheds are transformed by urbanization in coastal South Carolina.  相似文献   

2.
Watershed-wide land-cover proportions can be used to predict the in-stream non–point source pollutant loadings through regression modeling. However, the model performance can vary greatly across different study sites and among various watersheds. Existing literature has shown that this type of regression modeling tends to perform better for large watersheds than for small ones, and that such a performance variation has been largely linked with different interwatershed landscape heterogeneity levels. The purpose of this study is to further examine the previously mentioned empirical observation based on a set of watersheds in the northern part of Georgia (USA) to explore the underlying causes of the variation in model performance. Through the combined use of the neutral landscape modeling approach and a spatially explicit nutrient loading model, we tested whether the regression model performance variation over the watershed groups ranging in size is due to the different watershed landscape heterogeneity levels. We adopted three neutral landscape modeling criteria that were tied with different similarity levels in watershed landscape properties and used the nutrient loading model to estimate the nitrogen loads for these neutral watersheds. Then we compared the regression model performance for the real and neutral landscape scenarios, respectively. We found that watershed size can affect the regression model performance both directly and indirectly. Along with the indirect effect through interwatershed heterogeneity, watershed size can directly affect the model performance over the watersheds varying in size. We also found that the regression model performance can be more significantly affected by other physiographic properties shaping nitrogen delivery effectiveness than the watershed land-cover heterogeneity. This study contrasts with many existing studies because it goes beyond hypothesis formulation based on empirical observations and into hypothesis testing to explore the fundamental mechanism.  相似文献   

3.
Nitrogen and phosphorus exports from channelizedstream watersheds were elevated over those from nearby natural swamp-stream watersheds. Nitrate exports were significantly greater from channelized-stream watersheds, and higher exports were attributed to faster groundwater drawdown, continual streamflow, and transformation of former floodplain to croplands following channelization. Exports of total organic nitrogen and total nitrogen were also significantly greater from channelized-stream watersheds. Differences in the exports of ammonium, filterable reactive phosphorus, and filterable unreactive phosphorus between the two watershed types were not detectable. Particulate phosphorus exports were significantly higher from channelized-stream watersheds, presumably because of greater erosion potential of nearby croplands and steep channel banks in the altered watersheds. The presence of nonpoint sources of pollution increased watershed exports of nutrients regardless of stream morphology. Examination of nutrient budgets for a portion of swamp floodplain at the base of one natural-stream watershed revealed that changes in local groundwater hydrology and stream morphology associated with channelization appeared to have greater effect on nutrient exports than simply the loss of bordering forested floodplain.  相似文献   

4.
ABSTRACT: Vegetation management aimed at increasing the amount of usable water yield from precipitation falling on upstream watersheds may be one alternative for supplementing water supplies. Indications are that water yields can be increased within a multiple-use framework, which can benefit or at least be compatible with other natural resource objectives. Through changes in vegetation on a watershed, it is possible to reduce evaporation losses only slightly but significantly increase streamflow runoff. In an assessment of potentials for water yield improvement in Arizona, experimental studies on various vegetation zones are reviewed. Because of either limited acreage or limited rainfall, the alpine, grassland, aspen, and desert shrub vegetation zones are not realistic management areas for Arizona. Furthermore, manipulation of pinyon-juniper woodlands does not appear promising at this time. Conversion of chaparral to grasses and forbs does appear to be a possible treatment for water yield improvement, as well as various silvicultural treatments of mixed conifer and ponderosa pine forests. Streamflow increases are given for experiments in chaparral, mixed conifer, and ponderosa pine vegetation zones. However, complete information on possible constraints for these zones is not currently available. Specific assessment of water yield management options for riparian vegetation is difficult to make, due to incomplete knowledge of water yield changes and other constraints for this vegetation zone. Prior to the final adoption of management practices, results of experimental work must be coupled with economic and social considerations.  相似文献   

5.
A thorough understanding of past and present hydrologic responses to changes in precipitation patterns is crucial for predicting future conditions. The main objectives of this study were to determine temporal changes in rainfall‐runoff relationship and to identify significant trends and abrupt shifts in rainfall and runoff time series. Ninety‐year rainfall and runoff time series datasets from the Gasconade and Meramec watersheds in east‐central Missouri were used to develop data screening procedure to assess changes in the rainfall and runoff temporal patterns. A statistically significant change in mean and variance was detected in 1980 in the rainfall and runoff time series within both watersheds. In addition, both the rainfall and runoff time series indicated the presence of nonstationary attributes such as statistically significant monotonic trends and/or change in mean and variance, which should be taken into consideration when using the time series to predict future scenarios. The annual peak runoff and the annual low flow in the Meramec watershed showed significant temporal changes compared to that in the Gasconade watershed. Water loss in both watersheds was found to be significantly increasing which is potentially due to the increase in groundwater pumping for water supply purposes.  相似文献   

6.
Abstract: Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient‐reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight‐digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from watersheds in the Central Mississippi, Ohio, and Lower Mississippi River basins. With 90% confidence, only a few watersheds can be reliably placed into the highest 150 category; however, many more watersheds can be removed from consideration as not belonging to the highest 150 category. Results from this ranking procedure provide robust information on watershed nutrient yields that can benefit management efforts to reduce nutrient loadings to downstream coastal waters, such as the Gulf of Mexico, or to local receiving streams and reservoirs.  相似文献   

7.
This study focuses on the relationships of watershed runoff with historical land use/land cover (LULC) and climate trends. Over the 20th Century, LULC in the Southeast United States, particularly the North Carolina Piedmont, has evolved from an agriculture dominated to an extensively forested landscape with more recent localized urbanization. The regrowth of forest has an important influence on the hydrology of the region as it enhances ecosystem interaction with recent climate change. During 1920‐2009, the amount of precipitation in some parts of the North Carolina Piedmont forest regrowth area showed increasing trends without corresponding increments in runoff. We employed the Soil and Water Assessment Tool (SWAT) to backcast long‐term hydrologic behavior of watersheds in North Carolina with different LULC conditions: (1) LULC conversion from agricultural to forested area and (2) long‐term stable forested area. Comparing U.S. Geological Survey‐measured stream discharge with SWAT‐simulated stream discharge under the assumption of constant 2006 LULC, we found significant stream discharge underprediction by SWAT in two LULC conversion watersheds during the early simulation period (1920s) with differences gradually decreasing by the mid‐1970s. This model bias suggests that forest regrowth on abandoned agricultural land was a key factor contributing to mitigate the impact of increased precipitation on runoff due to increasing water consumption driven by changes in vegetation.  相似文献   

8.
Distributed parameter watershed models are often used for evaluating the effectiveness of various best management practices (BMPs). Streamflow, sediment, and nutrient yield predictions of a watershed model can be affected by spatial resolution as dictated by watershed subdivision. The objectives of this paper are to show that evaluation of BMPs using a model is strongly linked to the level of watershed subdivision; to suggest a methodology for identifying an appropriate subdivision level; and to examine the efficacy of different BMPs at field and watershed scales. In this study, the Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, sediment, and nutrient yields at the outlet of the Dreisbach (623 ha) and Smith Fry (730 ha) watersheds in Maumee River Basin, Indiana. Grassed waterways, grade stabilization structures, field borders, and parallel terraces are the BMPs that were installed in the study area in the 1970s. Sediment and nutrient outputs from the calibrated model were compared at various watershed subdivision levels, both with and without implementation of these BMPs. Results for the study watersheds indicated that evaluation of the impacts of these BMPs on sediment and nutrient yields was very sensitive to the level of subdivision that was implemented in SWAT. An optimal watershed subdivision level for representation of the BMPs was identified through numerical simulations. For the study watersheds, it would appear that the average subwatershed area corresponding to approximately 4 percent of total watershed area is needed to represent the influence of these BMPs when using the SWAT model.  相似文献   

9.
ABSTRACT: Three forest watersheds were isolated by roads in poorly drained flatwoods of Florida. After 12 months of baseline calibration the forest in one watershed was harvested and regenerated with minimum disturbance, in the second watershed with maximum disturbance from common practices, and in the third watershed left intact as a control. Water yields from the maximum treatments increased a significant 250 percent while that from the minimum treatments increased 117 percent as compared to the control. Weed vegetation remaining after the minimum treatment continued significant water use. The water yield increases lasted only for one year. Water quality was reduced by both treatments with the most effect immediately after the maximum disturbance. Absolute levels of suspended sediments, potassium, and calcium remained relatively low. The maximum treatment caused significant changes in net cation balances only for one year. The information shows relative little effect of silvicultural practices in flatwoods on water quality as compared to data from upland forests. Water yield increases may be manipulated by the degree of harvest and weed control practices.  相似文献   

10.
ABSTRACT: This study assesses the potential impact of climate change on stream flow and nutrient loading in six watersheds of the Susquehanna River Basin using the Generalized Watershed Loading Function (GWLF). The model was used to simulate changes in stream flow and nutrient loads under a transient climate change scenario for each watershed. Under an assumption of no change in land cover and land management, the model was used to predict monthly changes in stream flow and nutrient loads for future climate conditions. Mean annual stream flow and nutrient loads increased for most watersheds, but decreased in one watershed that was intensively cultivated. Nutrient loading slightly decreased in April and late summer for several watersheds as a result of early snowmelt and increasing evapotranspiration. Spatial and temporal variability of stream flow and nutrient loads under the transient climate scenario indicates that different approaches for future water resource management may be useful.  相似文献   

11.
ABSTRACT: A survey of numerous field studies shows that nitrogen and phosphorous export coefficients are significantly different across forest, agriculture, and urban land‐cover types. We used simulations to estimate the land‐cover composition at which there was a significant risk of nutrient loads representative of watersheds without forest cover. The results suggest that at between 20 percent and 30 percent nonforest cover, there is a 10 percent or greater chance of N or P nutrient loads being equivalent to the median values of predominantly agricultural or urban watersheds. The methods apply to environmental management for assessing the risk to increased nonpoint nutrient pollution. Interpretation of the risk measures are discussed relative to their application for a single watershed and across a region comprised of several watersheds.  相似文献   

12.
An observational study was conducted at the watershed scale using land cover (vegetation) data to assess the absence or presence of riparian buffers in three northeastern Missouri watersheds. Forests and grasslands lying within a 61 m (200 ft) parallel band directly adjacent to streams were considered “buffers” for improving or protecting water quality and were characterized according to their length, width, and vegetation type. Results indicated that riparian buffers were abundant throughout the watersheds but were typically narrow along first‐order and second‐order streams; in many cases they may not have been wide enough to provide adequate stream protection. At least 90 percent of all streams had buffer vegetation immediately adjacent to the streambanks, but as few as 31 percent of first‐order streams had buffers extending to 61 m from the stream on at least one side. On‐site evaluations are needed to determine the condition of these forests and grasslands and their ability to process nonpoint source pollutants. The results will be useful for providing natural resource managers with knowledge of current watershed conditions as well as in identifying specific locations for future conservation efforts within each watershed.  相似文献   

13.
Cruise, James F., Charles A. Laymon, and Osama Z. Al-Hamdan, 2010. Impact of 20 Years of Land-Cover Change on the Hydrology of Streams in the Southeastern United States. Journal of the American Water Resources Association (JAWRA) 46(6):1159–1170. DOI: 10.1111/j.1752-1688.2010.00483.x Abstract: Land-cover changes for portions of Alabama, Georgia, and Tennessee were estimated for the years 1980, 1990, and 2000 using classified Landsat images, and associated with hydrologic indices for 12 watersheds in the region. Rainfall-adjusted mean annual streamflow, an ET proxy (precipitation minus runoff), frequency of inundation above thresholds, and duration of inundation were used to characterize the hydrologic response of the test basins over the two-decade study period. Results indicate that several of the watersheds had undergone significant (>20%) reductions in agricultural land cover with a coincident increase in forested land. Attempts to correlate the hydrologic results with the land-cover changes were only partially successful. Watersheds with the largest land conversion from agriculture to forest (20% or more) did show significant trends in hydrologic indices indicating decreasing streamflow; however, other basins evidenced ambiguous results. The net conclusions of the study are that land-cover effects on hydrologic variables may be nuanced and can sometimes be only indirectly evident, and that a rigorous and detailed land-cover classification effort along with a battery of statistical tests with the same objective may be necessary to uncover these effects.  相似文献   

14.
The BOSAWAS Natural Resource Reserve of Nicaragua was established in 1991, to protect a portion of the remaining tropical rain forest and to promote the sustainable use of the region's resources. Information required to effectively manage the reserve includes the extents and locations of present land-cover types and recent land-cover changes in the management use zones that were delineated by local indigenous communities. These zones include areas designated for conservation, limited resource extraction, agriculture, and watershed protection. Land-cover for 1986 and 1995 was identified for three of the communities from remotely sensed images and then input into a geographic information system database to identify land-cover types within these management use zones. For both dates of the analysis, advanced forest was the dominant land cover, with the conservation zones entirely forested. The amount of both agricultural land and scrub/early secondary forest increased between the two dates, with much of these land-cover classes occurring in the agriculture zones. Conflicts between the land-cover present and designated use were identified in some of the limited-use buffer and watershed protection zones. Changes between 1986 and 1995 were identified by overlaying the two land-cover data sets. Three change processes were identified as occurring: deforestation, reforestation, and reconversion. Changes were concentrated in the agriculture zones but were found to occur in every type of zone, except for conservation. The results of this study will establish baseline information for the future management of the BOSAWAS Reserve, an important component in uniting conservation areas along the Central American isthmus.  相似文献   

15.
ABSTRACT

Community-based watershed development (CBWD) has been implemented in Ethiopia since the last three decades. However, the benefits of these watershed development interventions for climate change adaptation are not well documented. This study, therefore, assesses the contributions of CBWD in reducing farmers’ vulnerability to the impacts of climate change and variability in the northwestern highlands of Ethiopia. Data were collected from systematically selected 157 households using questionnaire. The questionnaire consists of questions on climate, ecosystem and households’ livelihood capital. Livelihood Vulnerability Index (LVI) and Inter-governmental Panel on Climate Change Livelihood Vulnerability Index (IPCC-LVI) methods were used to generate vulnerability indices. Vulnerability indices computed for three conserved watersheds were compared with one non-conserved watershed using one-way ANOVA test. LVI score for ecosystem related indicators was significantly low for Adef Wuha compared to the non-conserved watershed. Similarly, LVI scores generated from agriculture, wealth and social indicators were low for Tija Baji and Guansa watersheds. On the other hand, the IPCC-LVI result did not show significant differences in exposure; however, sensitivity scores of conserved watersheds were significantly lower compared to the non-conserved. The adaptive capacities of two conserved watersheds (Guansa and Tija Baji) were also significantly lower as compared to the non-conserved. The overall (composite) vulnerability of watersheds generated from both methods (LVI and IPCC-LVI) showed that the conserved watersheds were less vulnerable to climate change compared to the non-conserved. The findings suggest that CBWD is an important strategy to reduce vulnerability of smallholder farmers to the ongoing and future climate change.  相似文献   

16.
The watershed of the Neuse River, a major tributary of the largest lagoonal estuary on the U.S. mainland, has sustained rapid growth of human and swine populations. This study integrated a decade of available land cover and water quality data to examine relationships between land use changes and surface water quality. Geographic Information Systems (GIS) analysis was used to characterize 26 subbasins throughout the watershed for changes in land use during 1992–2001, considering urban, agricultural (cropland, animal as pasture, and densities of confined animal feed operations [CAFOs]), forested, grassland, and wetland categories and numbers of wastewater treatment plants (WWTPs). GIS was also used together with longitudinal regression analysis to identify specific land use characteristics that influenced surface water quality. Total phosphorus concentrations were significantly higher during summer in subbasins with high densities of WWTPs and CAFOs. Nitrate was significantly higher during winter in subbasins with high numbers of WWTPs, and organic nitrogen was higher in subbasins with higher agricultural coverage, especially with high coverage of pastures fertilized with animal manure. Ammonium concentrations were elevated after high precipitation. Overall, wastewater discharges in the upper, increasingly urbanized Neuse basin and intensive swine agriculture in the lower basin have been the highest contributors of nitrogen and phosphorus to receiving surface waters. Although nonpoint sources have been emphasized in the eutrophication of rivers and estuaries such as the Neuse, point sources continue to be major nutrient contributors in watersheds sustaining increasing human population growth. The described correlation and regression analyses represent a rapid, reliable method to relate land use patterns to water quality, and they can be adapted to watersheds in any region.  相似文献   

17.
Best management practices (BMPs) are widely promoted in agricultural watersheds as a means of improving water quality and ameliorating altered hydrology. We used a paired watershed approach to evaluate whether focused outreach could increase BMP implementation rates and whether BMPs could induce watershed-scale (4000 ha) changes in nutrients, suspended sediment concentrations, or hydrology in an agricultural watershed in central Illinois. Land use was >90% row crop agriculture with extensive subsurface tile drainage. Outreach successfully increased BMP implementation rates for grassed waterways, stream buffers, and strip-tillage within the treatment watershed, which are designed to reduce surface runoff and soil erosion. No significant changes in nitrate-nitrogen (NO-N), total phosphorus (TP), dissolved reactive phosphorus, total suspended sediment (TSS), or hydrology were observed after implementation of these BMPs over 7 yr of monitoring. Annual NO-N export (39-299 Mg) in the two watersheds was equally exported during baseflow and stormflow. Mean annual TP export was similar between the watersheds (3.8 Mg) and was greater for TSS in the treatment (1626 ± 497 Mg) than in the reference (940 ± 327 Mg) watershed. Export of TP and TSS was primarily due to stormflow (>85%). Results suggest that the BMPs established during this study were not adequate to override nutrient export from subsurface drainage tiles. Conservation planning in tile-drained agricultural watersheds will require a combination of surface-water BMPs and conservation practices that intercept and retain subsurface agricultural runoff. Our study emphasizes the need to measure conservation outcomes and not just implementation rates of conservation practices.  相似文献   

18.
Best management practices (BMPs) play an important role in improving impaired water quality from conventional row crop agriculture. In addition to reducing nutrient and sediment loads, BMPs such as fertilizer management, reduced tillage, and cover crops could alter the hydrology of agricultural systems and reduce surface water runoff. While attention is devoted to the water quality benefits of BMPs, the potential co‐benefits of flood loss reduction are often overlooked. This study quantifies the effects of selected commonly applied BMPs on expected flood loss to agricultural and urban areas in four Iowa watersheds. The analysis combines a watershed hydrologic model, hydraulic model outputs, and a loss estimation model to determine relationships between hydrologic changes from BMP implementations and annual economic flood loss. The results indicate a modest reduction in peak discharge and economic loss, although loss reduction is substantial when urban centers or other high‐value assets are located downstream in the watershed. Among the BMPs, wetlands, and cover crops reduce losses the most. The research demonstrates that watershed‐scale implementation of agricultural BMPs could provide benefits of flood loss reduction in addition to water quality improvements.  相似文献   

19.
ABSTRACT: Streamflow data for water years 1978–84 were evaluated to identify streamflow characteristics for 13 small watersheds (0.46–7.00 mi2) in the Blue Mountains of eastern Oregon and to determine differences among grazing intensities and vegetation types. The ranges for mean annual water yields, peak flows, and 7-day low flows for the 13 watersheds were 5.5–28.1 inches, 2.0–34.7 cfsm, and 0.006–0.165 cfsm, respectively. Two classes of vegetation were evaluated: (1) western larch-Douglas-fir (nine watersheds) and (2) other (four watersheds representing fir-spruce, lodgepole pine, ponderosa pine, and mountain meadow). The means for annual peak flows and the slopes of the flow.duration curve were significantly different (p=0.05) for the two vegetation classes; differences in mean annual water yield were marginallysignificant(0.05< p <0.10). After they were adjusted for precipitation, the means for annual water yield, peak flows, and slopes of the flow-duration curve were significantly different for the two vegetation classes; differences in the means for annual 7-day low flows were marginally significant. The western larch-Douglas-fir group had somewhat lower water yields but, overall, tended to have more favorable streamfiow characteristics including lower peak flows, higher low flows, and more evenly distributed flow regimes (flatter flow-duration curves) than the “other” class. Four levels of grazing intensity had no effect on streamilow characteristics.  相似文献   

20.
Abstract: The transport of water, sediment, dissolved and particulate chemicals, and bacteria from coastal watersheds affects the nearshore marine and estuarine waters. In southern California, coastal watersheds deliver water and associated constituents to the nearshore system in discrete pulses. To better understand the pulsed nature of these watersheds, frequency distributions of simulated runoff events are presented for: (1) three land use conditions (1929, 1998, 2050); (2) three time periods (all water years 1989‐2002), only El Nino years (1992, 1993, 1995, 1998); and only non‐El Nino years; and (3) three regions (watershed, uplands, and lowlands). At the watershed scale, there was a significant increase (>200%) in mean event runoff from 1929 to 2050 (0.4‐1.3 cm) due to localized urbanization, which shifted the dominant sources of runoff from the mountains in 1929 (78% of watershed runoff) to the coastal plane for 2050 conditions (51% of watershed runoff). Inter‐annual climate variability was strong in the rainfall and runoff frequency distributions, with mean event rainfall and runoff 66 and 60% larger in El Nino relative to non‐El Nino years. Combining urbanization and climate variability, 2050 land conditions resulted in El Nino years being five times more likely to produce large (>3.0 cm) runoff events relative to non‐El Nino years. Combining frequency distributions of event runoff with regional nutrient export relationships, we show that in El Nino years, one in five events produced runoff ≥2.5 cm and temporary nearshore nitrate and phosphate concentrations of 12 and 1.4 μM, respectively, or approximately 5‐10 times above ambient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号