首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 901 毫秒
1.
Fresh beef cattle (Bos taurus) manure has traditionally been applied to cropland in southern Alberta, but there has been an increase in application of composted manure to cropland in this region. However, the quality of runoff under fresh manure (FM) versus composted manure (CM) has not been investigated. Our objective was to compare runoff quality under increasing rates (0, 13, 42, 83 Mg ha(-1) dry wt.) of FM and CM applied for two consecutive years to a clay loam soil cropped to irrigated barley (Hordeum vulgare L.). We determined total phosphorus (TP), particulate phosphorus (PP), dissolved reactive phosphorus (DRP), total nitrogen (TN), NH4-N, and NO3-N concentrations and loads in runoff after one (1999) and two (2000) applications of FM and CM. We found significantly (P < or = 0.05) higher TP, DRP, and NH4-N concentrations, and higher DRP and TN loads under FM than CM after 2 yr of manure application. The TP loads were also higher under FM than CM at the 83 Mg ha(-1) rate in 2000, and DRP loads were higher for FM than CM at this high rate when averaged over both years. Application rate had a significant effect on TP and DRP concentrations in runoff. In addition, the slope values of the regressions between TP and DRP in runoff versus application rate were considerably higher for FM in 2000 than for FM in 1999, and CM in both 1999 and 2000. Significant positive relationships were found for TP and DRP in runoff versus soil Kelowna-extractable P and soil water-extractable P for FM and CM in 2000, indicating that interaction of runoff with the soil controlled the release of P. Total P and DRP were the variables most affected by the treatments. Overall, our study found that application of CM rather than FM to cropland may lower certain forms of P and N in surface runoff, but this is dependent on the interaction with year, application rate, or both.  相似文献   

2.
Many states have passed legislation that regulates agricultural P applications based on soil P levels and crop P uptake in an attempt to protect surface waters from nonpoint P inputs. Phytase enzyme and high available phosphorus (HAP) corn supplements to poultry feed are considered potential remedies to this problem because they can reduce total P concentrations in manure. However, less is known about their water solubility of P and potential nonpoint-source P losses when land-applied. This study was conducted to determine the effects of phytase enzyme and HAP corn supplemented diets on runoff P concentrations from pasture soils receiving surface applications of turkey manure. Manure from five poultry diets consisting of various combinations of phytase enzyme, HAP corn, and normal phytic acid (NPA) corn were surface-applied at 60 kg P ha(-1) to runoff boxes containing tall fescue (Festuca arundinacea Schreb.) and placed under a rainfall simulator for runoff collection. The alternative diets caused a decrease in manure total P and water soluble phosphorus (WSP) compared with the standard diet. Runoff dissolved reactive phosphorus (DRP) concentrations were significantly higher from HAP manure-amended soils while DRP losses from other manure treatments were not significantly different from each other. The DRP concentrations in runoff were not directly related to manure WSP. Instead, because the mass of manure applied varied for each treatment causing different amounts of manure particles lost in runoff, the runoff DRP concentrations were influenced by a combination of runoff sediment concentrations and manure WSP.  相似文献   

3.
Concern over eutrophication has directed attention to manure management effects on phosphorus (P) loss in runoff. This study evaluates the effects of manure application rate and type on runoff P concentrations from two, acidic agricultural soils over successive runoff events. Soils were packed into 100- x 20- x 5-cm runoff boxes and broadcast with three manures (dairy, Bos taurus, layer poultry, Gallus gallus; swine, Sus scrofa) at six rates, from 0 to 150 kg total phosphorus (TP) ha(-1). Simulated rainfall (70 mm h(-1)) was applied until 30 min of runoff was collected 3, 10, and 24 d after manure application. Application rate was related to runoff P (r2 = 0.50-0.98), due to increased concentrations of dissolved reactive phosphorus (DRP) in runoff; as application rate increased, so did the contribution of DRP to runoff TP. Varied concentrations of water-extractable phosphorus (WEP) in manures (2-8 g WEP kg(-1)) resulted in significantly lower DRP concentrations in runoff from dairy manure treatments (0.4-2.2 mg DRP L(-1)) than from poultry (0.3-32.5 mg DRP L(-1)) and swine manure treatments (0.3-22.7 mg DRP L(-1)). Differences in runoff DRP concentrations related to manure type and application rate were diminished by repeated rainfall events, probably as a result of manure P translocation into the soil and removal of applied P by runoff. Differential erosion of broadcast manure caused significant differences in runoff TP concentrations between soils. Results highlight the important, but transient, role of soluble P in manure on runoff P, and point to the interactive effects of management and soils on runoff P losses.  相似文献   

4.
Environmental impacts of composting poultry litter with chemical amendments at the field scale have not been well quantified. The objectives of this study were to measure (i) P runoff and (ii) forage yield and N uptake from small plots fertilized with composted and fresh poultry litter. Two composting studies, aerated using mechanical turning, were conducted in consecutive years. Composted litter was collected at the completion of each study for use in runoff studies. Treatments in runoff studies included an unfertilized control, fresh (uncomposted) poultry litter, and litter composted with no amendment, H3PO4, alum, or a microbial mixture. An additional treatment, litter composted with alum plus the microbial mixture, was evaluated during the first year. Fertilizer treatments were applied at rates equivalent to 8.96 Mg ha(-1) and rainfall simulators were used to produce a 5 cm h(-1) storm event. Composted poultry litter, regardless of treatment, had higher total P concentrations than fresh poultry litter. Composting poultry litter resulted in reductions of N/P ratios by as much as 51%. Soluble reactive P concentrations were lowest in alum-treated compost, which reduced soluble P concentrations in runoff water by as much as 84%. Forage yields and N uptake were greatest from plots fertilized with fresh poultry litter. Composting poultry litter without the addition of C sources can increase P concentrations in the end product and surface runoff. This study also indicated that increased rates of composted poultry litter would be required to meet equivalent N rates supplied by fresh poultry litter.  相似文献   

5.
Concerns about regional surpluses of manure phosphorus (P) leading to increased P losses in runoff have led to interest in diet modification to reduce P concentrations in diets. The objectives of this study were to investigate how dietary P amendment affected P concentrations in litters and P losses in runoff following land application. We grew two flocks of turkeys on the same bed of litter using diets with two levels of non-phytate phosphorus (NPP), with and without phytase. The litters were incorporated into three soils in runoff boxes at a plant-available nitrogen (PAN) rate of 168 kg PAN/ha, with runoff generated on Days 1 and 7 under simulated rainfall and analyzed for dissolved reactive phosphorus (DRP) and total P. Litters were analyzed for water-soluble phosphorus (WSP) and total P, while soils in the runoff boxes were analyzed for WSP and Mehlich-3 phosphorus (M3-P). Formulating diets with lower NPP and phytase both decreased litter total P. Phytase had no significant effect on litter WSP at a 1:200 litter to water extraction ratio, but decreased WSP at a 1:10 extraction ratio. Using a combination of reducing NPP fed and phytase decreased the total P application rate by up to 38% and the P in surplus of crop removal by approximately 48%. Reducing the NPP fed reduced DRP in runoff from litter-amended soils at Day 1, while phytase had no effect on DRP concentrations. Increase in soil M3-P was dependent on total P applied, irrespective of diet. Reducing overfeeding of NPP and utilizing phytase in diets for turkeys should decrease the buildup of P in soils in areas of intensive poultry production, without increasing short-term concerns about dissolved P losses.  相似文献   

6.
Manure application can lead to excessive soil test P levels in surface soil, which can contribute to increased P concentration in runoff. However, manure application often results in reduced runoff and sediment loss. Research was conducted to determine the residual effects of previously applied compost, plowing of soil with excessive soil test P, and application of additional compost after plowing on volume of runoff and loss of sediment and P in runoff. The research was conducted in 2004 and 2005 under natural rainfall events with plots of 11-m length where low-P and high-P compost had been applied during April 1998 to January 2001. During this initial application period, Bray-P1 in the surface 5-cm of depth was increased from 14 to 553 mg kg(-1) for the high-P compost. Inversion plowing in the spring of 2004 greatly decreased P levels in the surface soil and over the following year reduced runoff by 35% and total P losses by 51% compared with the unplowed compost treatments. Sediment loss was increased with plowing compared with the unplowed compost applied treatments but less than with the no-compost treatment. The application of additional compost after plowing increased surface soil P and dissolved reactive P (DRP) in runoff but did not increase particulate P in runoff. Unplowed compost-amended soil continued to reduce sediment loss but exhibited increased DRP loss even 5 yr after the last application. Plowing to invert excessively high-P surface soil was effective in reducing runoff and DRP loss.  相似文献   

7.
Permanent grass vegetation on sloping soils is an option to protect fields from erosion, but decaying grass may liberate considerable amounts of dissolved reactive P (DRP) in springtime runoff. We studied the effects of freezing and thawing of grassed soil on surface runoff P concentrations by indoor rainfall simulations and tested whether the peak P concentrations could be reduced by amending the soil with P-binding materials containing Ca or Fe. Forty grass-vegetated soil blocks (surface area 0.045 m, depth 0.07 m) were retrieved from two permanent buffer zones on a clay and loam soil in southwest Finland. Four replicates were amended with either: (i) gypsum from phosphoric acid processing (CaSO × 2HO, 6 t ha), (ii) chalk powder (CaCO, 3.3 t ha), (iii) Fe-gypsum (6 t ha) from TiO processing, or (iv) granulated ferric sulfate (Fe[SO], 0.7 t ha), with four replicates serving as untreated controls. Rainfall (3.3 h × 5 mm h) was applied on presaturated samples set at a slope of 5% and the surface runoff was analyzed for DRP, total dissolved P (TDP), total P (TP), and suspended solids. Rainfall simulation was repeated twice after the samples were frozen. Freezing and thawing of the samples increased the surface runoff DRP concentration of the control treatment from 0.19 to 0.46 mg L, up to 2.6-3.7 mg L, with DRP being the main P form in surface runoff. Compared with the controls, surface runoff from soils amended with Fe compounds had 57 to 80% and 47 to 72% lower concentrations of DRP and TP, respectively, but the gypsum and chalk powder did not affect the P concentrations. Thus, amendments containing Fe might be an option to improve DRP retention in, e.g., buffer zones.  相似文献   

8.
Phosphorus (P) loss from agricultural land in surface runoff can contribute to eutrophication of surface water. This study was conducted to evaluate a range of environmental and agronomic soil P tests as indicators of potential soil surface runoff dissolved reactive P (DRP) losses from Ontario soils. The soil samples (0- to 20-cm depth) were collected from six soil series in Ontario, with 10 sites each to provide a wide range of soil test P (STP) values. Rainfall simulation studies were conducted following the USEPA National P Research Project protocol. The average DRP concentration (DRP30) in runoff water collected over 30 min after the start of runoff increased (p < 0.001) in either a linear or curvilinear manner with increases in levels of various STPs and estimates of degree of soil P saturation (DPS). Among the 16 measurements of STPs and DPSs assessed, DPS(M3) 2 (Mehlich-3 P/[Mehlich-3 Al + Fe]) (r2 = 0.90), DPS(M3)-3 (Mehlich-3 P/Mehlich-3 Al) (r2 = 0.89), and water-extractable P (WEP) (r2 = 0.89) had the strongest overall relationship with runoff DRP30 across all six soil series. The DPS(M3)-2 and DPS(M3)-3 were equally accurate in predicting runoff DRP30 loss. However, DPS(M3)-3 was preferred as its prediction of DRP30 was soil pH insensitive and simpler in analytical procedure, ifa DPS approach is adopted.  相似文献   

9.
Continual application of mineral fertilizer and manures to meet crop production goals has resulted in the buildup of soil P concentrations in many areas. A rainfall simulation study was conducted to evaluate the effect of the application of P sources differing in water-soluble P (WSP) concentration on P transport in runoff from two grassed and one no-till soil (2 m(2) plots). Triple superphosphate (TSP)-79% WSP, low-grade single superphosphate (LGSSP)-50% WSP, North Carolina rock phosphate (NCRP)-0.5% WSP, and swine manure (SM)-30% WSP, were broadcast (100 kg total P ha(-1)) and simulated rainfall (50 mm h(-1) for 30 min of runoff) applied 1, 7, 21, and 42 d after P source application. In the first rainfall event one d after fertilizer application, dissolved reactive P (DRP) and total P (TP) concentrations of runoff increased (P < 0.05) for all soils with an increase of source WSP; with DRP averaging 0.27, 0.50, 14.66, 41.69, and 90.47 mg L(-1); and total P averaging 0.34, 0.61, 19.05, 43.10, and 98.06 mg L(-1) for the control, NCRP, SM, LGSSP, and TSP, respectively. The loss of P in runoff decreased with time for TSP and SM, such that after 42 d, losses from TSP, SM, and LGSSP did not differ. These results support that P water solubility in P sources may be considered as an indicator of P loss potential.  相似文献   

10.
Continuous addition of municipal biosolids to soils based on plant nitrogen (N) requirements can cause buildup of soil phosphorus (P) in excess of crop requirements; runoff from these soils can potentially contribute to nonpoint P pollution of surface waters. However, because biosolids are often produced using lime and/or metal salts, the potential for biosolids P to cause runoff P losses can vary with wastewater treatment plant (WWTP) process. This study was conducted to determine the effect of wastewater treatment process on the forms and amounts of P in biosolids, biosolids-amended soils, and in runoff from biosolids-amended soils. We amended two soil types with eight biosolids and a poultry litter (PL) at equal rates of total P (200 kg ha(-1); unamended soils were used as controls. All biosolids and amended soils were analyzed for various types of extractable P, inorganic P fractions, and the degree of P saturation (acid ammonium oxalate method). Amended soils were placed under a simulated rainfall and all runoff was collected and analyzed for dissolved reactive phosphorus (DRP), iron-oxide-coated filter paper strip-extractable phosphorus (FeO-P), and total phosphorus (EPA3050 P). Results showed that biosolids produced with a biological nutrient removal (BNR) process caused the highest increases in extractable soil P and runoff DRP. Alternatively, biosolids produced with iron only consistently had the lowest extractable P and caused the lowest increases in extractable soil P and runoff DRP when added to soils. Differences in soil and biosolids extractable P levels as well as P runoff losses were related to the inorganic P forms of the biosolids.  相似文献   

11.
Field-scale relationships between soil test phosphorus (STP) and flow-weighted mean concentrations (FWMCs) of dissolved reactive phosphorus (DRP) and total phosphorus (TP) in runoff are essential for modeling phosphorus losses, but are lacking. The objectives of this study were (i) to determine the relationships between soil phosphorus (STP and degree of phosphorus saturation (DPS)) and runoff phosphorus (TP and DRP) from field-sized catchments under spring snowmelt and summer rainfall conditions, and (ii) to determine whether a variety of depths and spatial representations of STP improved the prediction of phosphorus losses. Runoff was monitored from eight field-scale microwatersheds (2 to 248 ha) for 3 yr. Soil test phosphorus was determined for three layers (0 to 2.5 cm, 0 to 5 cm, and 0 to 15 cm) in spring and fall and the DPS was determined for the surface layer. Average STP (0 to 15 cm) ranged from 3 to 512 mg kg(-1), and DPS (0 to 2.5 cm) ranged from 5 to 91%. Seasonal FWMCs ranged from 0.01 to 7.4 mg L(-1) DRP and from 0.1 to 8.0 mg L(-1) TP. Strong linear relationships (r2=0.87 to 0.89) were found between the site mean STP and the FWMCs of DRP and TP. The relationships had similar extraction coefficients, intercepts, and predictive power among all three soil layers. Extraction coefficients (0.013 to 0.014) were similar to those reported for other Alberta studies, but were greater than those reported for rainfall simulation studies. The curvilinear DPS relationship showed similar predictive ability to STP. The field-scale STP relationships derived from natural conditions in this study should provide the basis for modeling phosphorus in Alberta.  相似文献   

12.
The loss of phosphorus (P) in runoff from agricultural soils may accelerate eutrophication in lakes and streams as well as degrade surface water quality. Limited soil specific data exist on the relationship between runoff P and soil P. This study investigated the relationship between runoff dissolved reactive phosphorus (DRP) and soil P for three Oklahoma benchmark soils: Richfield (fine, smectitic, mesic Aridic Argiustoll), Dennis (fine, mixed, active, thermic Aquic Argiudoll), and Kirkland (fine, mixed, superactive, thermic Udertic Paleustoll) series. These soils were selected to represent the most important agricultural soils in Oklahoma across three major land resource areas. Surface soil (0-15 cm) was collected from three designated locations, treated with diammonium phosphate (18-46-0) to establish a wide range of water-soluble phosphorus (WSP) (3.15-230 mg kg(-1)) and Mehlich-3 phosphorus (M3P) (27.8-925 mg kg(-1)). Amended soils were allowed to reach a steady state 210 d before simulated rainfall (75 mm h(-1)). Runoff was collected for 30 min from bare soil boxes (1.0 x 0.42 m and 5% slope) and analyzed for DRP and total P. Soil samples collected immediately before rainfall simulation were analyzed for the following: M3P, WSP, ammonium oxalate P saturation index (PSI(ox)), water-soluble phosphorus saturation index (PSI(WSP)), and phosphorus saturation index calculated from M3P and phosphorus sorption maxima (P(sat)). The DRP in runoff was highly related (p < 0.001) to M3P for individual soil series (r2 > 0.92). Highly significant relationships (p < 0.001) were found between runoff DRP and soil WSP for the individual soil series (r2 > 0.88). Highly significant relationships (p < 0.001) existed between DRP and different P saturation indexes. Significant differences (p < 0.05) among the slopes of the regressions for the DRP-M3P, DRP-WSP, DRP-PSI(ox), DRP-PSI(WSP), and DRP-P(sat) relationships indicate that the relationships are soil specific and phosphorus management decisions should consider soil characteristics.  相似文献   

13.
Nutrient loading on impaired watersheds can be reduced through export of sod grown with manure and export of composted manure for turf production on other watersheds. Effects of the sod and manure exports on receiving watersheds were evaluated through monitoring of total dissolved phosphorus (TDP) and N concentrations and losses in runoff from establishing turf. Three replications of seven treatments were established on an 8.5% slope of a Booneville soil (loamy-skeletal, mixed, superactive Pachic Argicryolls). Three treatments comprised imported 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy) sod grown with composted dairy manure (382 or 191 kg P ha(-1)) or fertilizer (50 kg P ha(-1)). Three treatments were sprigged with Tifway and top-dressed with either composted manure (92 or 184 kg P ha(-1)) or fertilizer (100 kg P ha(-1)). The control was established bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon]. During eight fall rain events, mean TDP concentration in runoff (7.8 mg L(-1)) from sprigged Tifway top-dressed with manure (84 kg P ha(-1)) was 1.6 times greater than sod imported with 129 kg manure P ha(-1). During the first fall event, mass losses of TDP (232 mg m(-2)) and total Kjeldahl nitrogen (TKN) (317 mg m(-2)) from sprigged treatments top-dressed with manure or fertilizer were nearly three times greater than manure-grown sod. Percentages of manure P lost as TDP in runoff from imported sod were 33% of percentages lost from sprigged treatments top-dressed with manure. Sod grown with manure P rates of 190 kg P ha(-1) can be imported without increasing runoff losses of TDP compared with conventional fertilization of establishing turfgrass.  相似文献   

14.
Phosphorus losses in runoff from cropland can contribute to nonpoint-source pollution of surface waters. Management practices in corn (Zea mays L.) production systems may influence P losses. Field experiments with treatments including differing soil test P levels, tillage and manure application combinations, and manure and biosolids application histories were used to assess these management practice effects on P losses. Runoff from simulated rainfall (76 mm h(-1)) was collected from 0.83-m2 areas for 1 h after rainfall initiation and analyzed for dissolved reactive P (DRP), bioavailable P, total P (TP), and sediment. In no-till corn, both DRP concentration and load increased as Bray P1 soil test (STP) increased from 8 to 62 mg kg(-1). A 5-yr history of manure or biosolids application greatly increased STP and DRP concentrations in runoff. The 5-yr manure treatment had higher DRP concentration but lower DRP load than the 5-yr biosolids treatment, probably due to residue accumulation and lower runoff in the manure treatment. Studies of tillage and manure application effects on P losses showed that tillage to incorporate manure generally lowered runoff DRP concentration but increased TP concentration and loads due to increased sediment loss. Management practices have a major influence on P losses in runoff in corn production systems that may overshadow the effects of STP alone. Results from this work, showing that some practices may have opposite effects on DRP vs. TP losses, emphasize the need to design management recommendations to minimize losses of those P forms with the greatest pollution potential.  相似文献   

15.
Proper pasture management is important in promoting optimal forage growth and reducing runoff and nutrient loss. Pasture renovation is a management tool that improves aeration by mechanically creating holes or pockets within the soil. Pasture renovation was performed before manure application (poultry litter or swine slurry) on different pasture soils and rainfall simulations were conducted to identify the effects of pasture renovation on nutrient runoff and forage growth. Renovation of small plots resulted in significant and beneficial hydrological changes. During the first rainfall simulation, runoff volumes were 45 to 74% lower for seven out of eight renovated treatments, and infiltration rates increased by 3 to 87% for all renovated treatments as compared with nonrenovated treatments. Renovation of pasture soils fertilized with poultry litter led to significant reductions in dissolved reactive P (DRP) (74-87%), total P (TP) (76-85%), and total nitrogen (TN) (72-80%) loads in two of the three soils studied during the first rainfall simulation. Renovation did not result in any significant differences in forage yields. Overall, beneficial impacts of renovation lasted up to 3 mo, the most critical period for nutrient runoff following manure application. Therefore, renovation could be an important best management practice in these areas.  相似文献   

16.
Because surface-applied manures can contribute to phosphorus (P) in runoff, we examined mechanical aeration of grasslands for reducing P transport by increasing infiltration of rainfall and binding of P with soil minerals. The effects of three aeration treatments and a control (aeration with cores, continuous-furrow "no-till" disk aeration perpendicular to the slope, slit aeration with tines, and no aeration treatment) on the export of total suspended solids, total Kjeldahl P (TKP), total dissolved P (TDP), dissolved reactive P (DRP), and bioavailable P (BAP) in runoff from grasslands with three manure treatments (broiler litter, dairy slurry, and no manure) were examined before and after simulated compaction by cattle. Plots (0.75 x 2 m) were established on a Cecil soil series with mixed tall fescue (Festuca arundinacea Schreb.)-bermudagrass [Cynodon dactylon (L.) Pers.] vegetation on 8 to 12% slopes. Manures were applied at a target rate of 30 kg P ha(-1), and simulated rainfall was applied at a rate of 85 mm h(-1). Although the impact of aeration type on P export varied before and after simulated compaction, overall results indicated that core aeration has the greatest potential for reducing P losses. Export of TKP was reduced by 55%, TDP by 62%, DRP by 61%, total BAP by 54%, and dissolved BAP by 57% on core-aerated plots with applied broiler litter as compared with the control (p < 0.05). Core and no-till disk aeration also showed potential for reducing P export from applied dairy slurry (p < 0.10). Given that Cecil soil is common in pastures receiving broiler litter in the Southern Piedmont, our results indicate that pairing core aeration of these pastures with litter application could have a widespread impact on surface water quality.  相似文献   

17.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   

18.
Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils.  相似文献   

19.
Phosphorus runoff: effect of tillage and soil phosphorus levels   总被引:2,自引:0,他引:2  
Continued inputs of fertilizer and manure in excess of crop requirements have led to a build-up of soil phosphorus (P) levels and increased P runoff from agricultural soils. The objectives of this study were to determine the effects of two tillage practices (no-till and chisel plow) and a range of soil P levels on the concentration and loads of dissolved reactive phosphorus (DRP), algal-available phosphorus (AAP), and total phosphorus (TP) losses in runoff, and to evaluate the P loss immediately following tillage in the fall, and after six months, in the spring. Rain simulations were conducted on a Typic Argiudoll under a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Elapsed time after tillage (fall vs. spring) was not related to any form of P in runoff. No-till runoff averaged 0.40 mg L(-1) and 0.05 kg ha(-1) DRP and chisel-plow plots averaged 0.24 mg L(-1) and 0.02 kg ha(-1) DRP concentration and loads, respectively. The relationship between DRP and Bray P1 extraction values was approximated by a logistic function (S-shaped curve) for no-till plots and by a linear function for tilled plots. No significant differences were observed between tillage systems for TP and AAP in runoff. Bray P1 soil extraction values and sediment concentration in runoff were significantly related to the concentrations and amounts of AAP and TP in runoff. These results suggest that soil Bray P1 extraction values and runoff sediment concentration are two easily measured variables for adequate prediction of P runoff from agricultural fields.  相似文献   

20.
Effect of mineral and manure phosphorus sources on runoff phosphorus   总被引:3,自引:0,他引:3  
Concern over nonpoint-source phosphorus (P) losses from agricultural lands to surface waters has resulted in scrutiny of factors affecting P loss potential. A rainfall simulation study was conducted to quantify the effects of alternative P sources (dairy manure, poultry manure, swine slurry, and diammonium phosphate), application methods, and initial soil P concentrations on runoff P losses from three acidic soils (Buchanan-Hartleton, Hagerstown, and Lewbeach). Low P (12 to 26 mg kg(-1) Mehlich-3 P) and high P (396 to 415 mg kg(-1) Mehlich-3 P) members of each soil were amended with 100 kg total P ha(-1) from each of the four P sources either by surface application or mixing, and subjected to simulated rainfall (70 mm h(-1) to produce 30 min runoff). Phosphorus losses from fertilizer and manure applied to the soil surface differed significantly by source, with dissolved reactive phosphorus (DRP) accounting for 64% of total phosphorus (TP) (versus 9% for the unamended soils). For manure amended soils, these losses were linearly related to water-soluble P concentration of manure (r2 = 0.86 for DRP, r2 = 0.78 for TP). Mixing the P sources into the soil significantly decreased P losses relative to surface P application, such that DRP losses from amended, mixed soils were not significantly different from the unamended soil. Results of this study can be applied to site assessment indices to quantify the potential for P loss from recently manured soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号