首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This unique study evaluates the cumulative 16‐year lifetime performance of a wetland retention basin designed to treat stormwater runoff. Sediment cores were extracted prior to basin excavation and restoration to evaluate accretion rates and the origin of materials, retention characteristics of fine particulate matter, and overall pollutant removal efficiency. The sediment and organic layers together accreted 3.2 cm of depth per year, and 7.0 kg/m2/yr of inorganic material. Average annual accretion rates in g/m2/yr were as follows: C, 280; N, 17.7; P, 3.74; S, 3.80; Fe, 194; Mn, 2.68; Ca, 30.8; Mg, 30.7; K, 12.2; Na, 2.54; Zn, 0.858; Cu, 0.203; and B, 0.03. The accretion of C, N, P and sediment was comparable to nonwastewater treatment wetlands, overall, and relatively efficient for stormwater treatment wetlands. Comparison of particle size distribution between sediment cores and suspended solids in stormwater runoff indicated the wetland was effective at removing fine particles, with sediment cores containing 25% clay and 56% silt. A majority of the accretion of most metals and P could be attributed to efficient trapping of allochthonous material, while over half the accretion of C and N could be attributed to accumulation of autochthonous organic matter. Stormwater treatment was shown to be effective when physical properties of a retention basin are combined with the biological processes of a wetland, although sediment accretion can be relatively rapid.  相似文献   

2.
The digital elevation model data from traditional stereo photogrammetric methods are inadequate in providing accurate vertical parameters to feed hydrologic models for low‐lying, extremely flat areas. High‐resolution light detection and ranging (LiDAR) data provide the robust capability of capturing small variations in low‐relief playa wetlands. The Rainwater Basin in south‐central Nebraska includes a complex of seasonally shallow playa wetlands that attract millions of migratory waterfowl every spring and fall. This research focuses on the development of a procedure with applicable protocols to produce LiDAR‐derived three‐dimensional wetland maps and to extract the critical surface parameters (i.e., watershed boundaries, flow direction, flow accumulation, and drainage lines) for playa wetlands. The topo‐hydrologic conditions of playa wetlands were evaluated at the watershed level. The results show that in the Rainwater Basin, 70.7% of the historic hydric soil footprints identified in the Soil Survey Geographic (SSURGO) database were not functioning as topographically depressional wetlands. This finding was confirmed by a recent five‐year Annual Habit Survey showing that 69.8% of the historic hydric soil footprints did not function during the spring migratory bird seasons between 2004 and 2009. The majority of playa wetlands' topographic conditions have been substantially changed and the SSURGO data cannot fully reflect current topographic reality in the Rainwater Basin.  相似文献   

3.
This study investigated different sedimentation measurement techniques and examined patterns of short-term sedimentation in two 1-ha replicate created freshwater marshes in central Ohio, USA. Short-term (one-year) sediment accumulation above feldspar, clay, glitter, and sand artificial marker horizons was compared at different water depths and distances from wetland inflow. A sediment budget was also constructed from turbidity and suspended sediment data for comparison with marker horizons. Glitter and sand marker horizons were the most successful for measuring sediment accumulation (81-100% marker recovery), while clay markers were completely unsuccessful. The sedimentation rate for both wetlands averaged 4.9 cm yr(-1) (36 kg m(-2) yr(-1)), and ranged from 1.82 to 9.23 cm yr(-1) (12.4 to 69.7 kg m(-2) yr(-1)). Sedimentation rates in deep, open water areas were significantly higher than in shallow, vegetated areas for both wetlands (t test, p < 0.05). However, observed sedimentation patterns may be attributed more to preferential flow through open water areas than to water depth or presence of vegetation. Contrary to the expected spatial distribution, sedimentation was highly variable within the wetlands, suggesting that bioturbation and turbulence may cause significant resuspension or that high hydrologic loads may distribute sediments throughout the basins. A sediment budget estimated sediment retention of approximately 740 g m(-2) yr(-1) per wetland (43% removal rate), yet gross sediment accumulation was 36,000 g m(-2) yr(-1) measured by marker horizons. These results suggest that erosive forces may have influenced sedimentation, but also may indicate problems with the sediment budget calculation methodology.  相似文献   

4.
ABSTRACT: The three basins of Reelfoot Lake, which is located in northwestern Tennessee, were investigated using the Cs-137 tracer technique to determine rates of sediment deposition and to estimate the time before the basins will fill with sediment. Blue Basin, the largest of the three basins with 2922 ha, had an average annual sedimentation rate of 0.9 cm/yr from 1984 to 1984. The basin will become too shallow for most boating and recreational activities in about 200 years. Buck Basin, the central basin with 774 ha, had an average annual sedimentation rate of 1.1 cm/yr and will become too shallow for most recreational uses in about 100 years. Upper Blue Basin, the most upstream and smallest basin with 439 ha, had an average annual sedimentation rate of 1.7 cm/yr and will become too shallow for most recreational uses in about 60 years. Two important sources of sediment to Reelfoot Lake are erosion from a large number of soybean fields and channelization of many of the streams that flow into the lake. Changes in land management that would reduce erosion could increase the time the lake would remain usable for recreational activities.  相似文献   

5.
Factors influencing sediment availability are assessed and erosion rates are quantified for an off‐highway vehicle (OHV) trail system in the Ouachita Mountains of Arkansas. As of May 2012, the Wolf Pen Gap trail system included 77.0 km of "trails" which consist of county roads; open and closed Forest Service roads; and open and closed OHV trails. For a given trail length, the sediment volume available to be eroded is determined by bare trail width and sediment depth. Four condition types are defined that group trail sections based on statistically different trail widths or depths. Trail construction method appears to influence sediment availability differences more than erosion potential (as indexed by trail slope gradient and length). The range for annual trail erosion rates is estimated as 75 and 210 tonne/ha/yr. The high and low rates are obtained using two independent methods. The 210 tonne/ha/yr rate is computed from mean sediment capture at 30 sediment traps installed for 0.5–1.0 year. The 75 tonne/ha/yr rate is computed assuming all available trail sediment measured in a one‐time sampling is eroded over the next year. We argue in support of this assumption and suggest both rate values may be conservative. Trail erosion rates and sediment trap observations indicate frequent trap cleanout will be needed to continue sediment capture from All Terrain Vehicle trails.  相似文献   

6.
Worldwide studies show 80%–90% of all sediments eroded from watersheds is trapped within river networks such as reservoirs, ponds, and wetlands. To represent the impact of impoundments on sediment routing in watershed modeling, Soil and Water Assessment Tool (SWAT) developers recommend to model reservoirs, ponds, and wetlands using impoundment tools (ITs). This study evaluates performance of SWAT ITs in the modeling of a small, agricultural watershed dominated by lakes and wetlands. The study demonstrates how to incorporate impoundments into the SWAT model, and discusses and evaluates involved parameters. The study then recommends an appropriate calibration sequence, i.e., landscape parameters calibration, followed by pond/wetlands calibration, then channel parameter calibrations, and lastly, reservoir parameter calibration. Results of this study demonstrate not following SWAT recommendation regarding modeling water land use as an impoundment depreciates SWAT performance, and may lead to misplaced calibration efforts and model over‐calibration. Further, the chosen method to model impoundments’ outflow significantly impacts sediment loads in the watershed, while streamflow simulation is not very sensitive. This study also allowed calculation of mass accumulation rates in modeled impoundments where the annual mass accumulation rate in wetlands (2.3 T/ha/yr) was 39% higher than mass accumulation rate in reservoirs (1.4 T/ha/yr).  相似文献   

7.
This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. The trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e.,>10 yr after construction).  相似文献   

8.
We quantified annual sediment deposition, bank erosion, and sediment budgets in nine riverine wetlands that represented a watershed continuum for 1 year in the unregulated Yampa River drainage basin in Colorado. One site was studied for 2 years to compare responses to peak flow variability. Annual mean sediment deposition ranged from 0.01 kg/m2 along a first-order subalpine stream to 21.8 kg/m2 at a sixth-order alluvial forest. Annual mean riverbank erosion ranged from 3 kg/m-of-bank at the first-order site to 1000 kg/m at the 6th-order site. Total sediment budgets were nearly balanced at six sites, while net export from bank erosion occurred at three sites. Both total sediment deposition (R2 = 0.86, p < 0.01) and bank erosion (R2 = 0.77, p < 0.01) were strongly related to bankfull height, and channel sinuosity and valley confinement helped to explain additional variability among sites. The texture and organic fraction of eroded and deposited sediment were relatively similar in most sites and varied among sites by watershed position. Our results indicate that bank erosion generally balances sediment deposition in riverine wetlands, and we found no distinct zones of sediment retention versus export on a watershed continuum. Zones of apparent disequilibrium can occur in unregulated rivers due to factors such as incised channels, beaver activity, and cattle grazing. A primary function of many western riverine wetlands is sediment exchange, not retention, which may operate by transforming materials and compounds in temporary sediment pools on floodplains. These results are considered in the context of the Hydrogeomorphic approach being implemented by the U.S. government for wetland resource management.  相似文献   

9.
The goal of wetland creation is to produce an artificial wetland that functions as a natural wetland. Studies comparing created wetlands to similarly aged natural wetlands provide important information about creation techniques and their improvement so as to attain that goal. We hypothesized that differences in sediment phosphorus accretion, deposition, and chemistry between created and natural wetlands in the Atchafalaya Delta, Louisiana, USA were a function of creation technique and natural river processes. Sediment deposition was determined with feldspar marker horizons located in created and natural wetlands belonging to three age classes (<3, 5-10, and 15-20 yr old). Phosphorus fractions were measured in these deposited sediments and in suspended and bedload sediment from the Atchafalaya River. Bedload sediment had significantly lower iron- and aluminum-bound, reductant-soluble, and total phosphorus than suspended sediment due to its high sand percentage. This result indicates that wetlands artificially created in the Atchafalaya Delta using bedload sediment will initially differ from natural wetlands of the same age. Even so, similarities between the mudflat stratum of the <1- to 3-yr-old created wetland and the mudflat stratum of the 15- to 20-yr-old natural wetland support the contention that created wetlands in the Atchafalaya Delta can develop natural characteristics through the deposition of river suspended sediment. Differences between three created wetland strata, the 15- to 20-yr-old willow stratum and the <1- to 3-yr-old willow and mixed marsh strata, and their natural counterparts were linked to design elements of the created wetlands that prevented the direct deposition of the river's suspended sediment.  相似文献   

10.
This study was undertaken to determine the fate of As, Mo, and V (trace elements, TEs) in the sediments of a constructed wetland in use for the remediation of potentially toxic trace element-contaminated agricultural drainwater. After three years of wetland operation, sediment cores were collected to determine changes in TE concentrations as a function of depth and the effects of varying water column depth. All TE concentrations were highest in the top 2 to 4 cm and decreased with depth. Molybdenum accumulated in the wetland sediments, up to levels of 32.5 +/- 4.6, 30.2 +/- 8.9, and 59.3 +/- 26.1 mg kg(-1) in the top 1 cm of sediment at water depths of 15, 30, and 60 cm, respectively. In the top 2 cm of sediment, As accumulated (28.2 +/- 3.0 mg kg(-1)) only at the 60-cm water depth. Below 2 cm, as much as 10 mg kg(-1) of As was lost from the sediment at all water depths. In most cases, V concentrations decreased in the sediment. In this wetland system, the lowest redox potentials were found near the sediment surface and increased with depth. Thus, in general As, Mo, and V concentrations in the sediment were highest under more reducing conditions and lowest under more oxidizing conditions. Most of the accumulated Mo (73%) became water soluble on drying of samples. This has important implications for systems undergoing changes in redox status; for instance, if these wetland sediments are dried, potentially large amounts of Mo may be solubilized.  相似文献   

11.
The 2010 dam breach and consequent anomalous flood event on the Cedar River in Nebraska, USA provided an opportunity to study the following objectives: (1) evaluate the impact of an extreme flood event on streambank retreat along a 45 km stretch relative to the average annual retreat; (2) quantify the changes in streambank retreat for each km segment downstream of the breach; and (3) examine the influence of riparian vegetation and radius of curvature on meander bank erosion rate. During the hydrologic event, discharge peaked at nearly three times greater than the next highest recorded rate and equated to a return period of 2,000 years. Aerial images and ArcGIS were utilized to calculate the average annual streambank retreat for each year during the preflood (2006–2010), flood (2010), and postflood (2010–2016) periods. The 2010 flood period had a significantly higher average annual streambank retreat of 2,820 m2/km/yr than the preflood and postflood periods, which, respectively, measured 576 and 384 m2/km/yr. From 2006 to 2016, 29% of all streambank erosion was from this one extreme flood event, thus demonstrating the impact that one extreme flood event can have on streambank retreat and the geomorphology of a stream system.  相似文献   

12.
Loss of Louisiana's coastal wetlands has reached catastrophic proportions. The loss rate is approximately 150 km2/yr (100 acres/day) and is increasing exponentially. Total wetland loss since the turn of the century has been almost 0.5 million ha (1.1 million acres) and represents an area larger than Rhode Island. The physical cause of the problem lies in man's attempts to control the Mississippi River's flooding, while enhancing navigation and extracting minerals. Levee systems and control structures confine sediments that once nourished the wetlands to the river channel. As a consequence, the ultimate sediment deposition is in deep Gulf waters off the Louisiana coast. The lack of sediment input to the interdistributary wetlands results in an accretion deficit. Natural and human-induced subsidence exceeds accretion so that the wetlands sink below sea level and convert to water. The solution is to provide a thin veneer of sediment (approximately 0.6 cm/yr; an average of 1450 g m?2 yr?1) over the coastal marshes and swamps and thus prevent the submergence of vegetation. The sediment source is the Mississippi River system. Calculations show that 9.2% of the river's annual suspended sediment load would be required to sustain the deltaic plain wetlands. It should be distributed during the six high-water months (December–June) through as disaggregated a network as possible. The problem is one of distribution: how can the maximum acres of marsh be nourished with the least cost? At present, the river is managed through federal policy for the benefit of navigation and flood control. A new policy structure, recognizing the new role for the river-sediment distribution, is recommended.  相似文献   

13.
To explore the agronomic potential of an Australian coal fly ash, we conducted two glasshouse experiments in which we measured chlorophyll fluorescence, CO2 assimilation (A), transpiration, stomatal conductance, biomass accumulation, seed yield, and elemental uptake for canola (Brassica napus) grown on soil amended with an alkaline fly ash. In Experiment 1, application of up to 25 Mg/ha of fly ash increased A and plant weight early in the season before flowering and seed yield by up to 21%. However, at larger rates of ash application A, plant growth, chlorophyll concentration, and yield were all reduced. Increases in early vigor and seed yield were associated with enhanced uptake of phosphorus (P) by the plants treated with fly ash. Fly ash application did not influence accumulation of B, Cu, Mo, or Zn in the stems at any stage of plant growth or in the seed at harvest, except Mo concentration, which was elevated in the seed. Accumulation of these elements was mostly in the leaves, where concentrations of Cu and Mo increased with any amount of ash applied while that of B occurred only with ash applied at 625 Mg/ha. In Experiment 2, fly ash applied at 500 Mg/ha and mixed into the whole 30 cm soil core was detrimental to growth and yield of canola, compared with restricting mixing to 5 or 15 cm depth. In contrast, application of ash at 250 Mg/ha with increasing depth of mixing increased A and seed yield. We concluded that fly ash applied at not more than 25 Mg/ha and mixed into the top 10 to 15 cm of soil is sufficient to obtain yield benefits.  相似文献   

14.
The relationship between nutrient removal and loading rate was examined using data from five forested wetlands in Louisiana that have received secondarily treated effluent from 3 to 60 years. Loading rates ranged from 0.65 to 26.80 g/m2/yr for total nitrogen and 0.18 to 8.96 g/m2/yr for total phosphorus. At loading rates below 20 g/m2/yr, total nitrogen concentrations in surface waters of Louisiana forested wetlands were reduced to background concentrations (i.e., ≤3 mg/l). Similarly, at loading rates below 2 g/m2/yr, total phosphorus concentrations were also generally reduced to background concentrations (i.e., ≤1 mg/l). These data demonstrate that freshwater forested wetlands can reduce nutrient concentrations in treated effluent to background concentrations present in relatively undisturbed wetlands. An understanding of the relationship between loading rates and nutrient removal in natural wetlands is important, particularly in Louisiana where discharges of fresh water are being used in ecosystem restoration.  相似文献   

15.
Wang X  Yu J  Zhou D  Dong H  Li Y  Lin Q  Guan B  Wang Y 《Environmental management》2012,49(2):325-333
In this study, we compared ecological characteristics of wetland vegetation in a series of restoration projects that were carried out in the wetlands of Yellow River Delta. The investigated characteristics include plant composition structure, species diversity and community similarity in three kinds of Phragmites australis wetlands, i.e. restored P. australis wetlands (R1, R2, R3 and R4: restored in 2002, 2005, 2007 and 2009, respectively), natural P. australis wetland (N) and degraded P. australis wetland (D) to assess the process of wetlands restoration. The coverage of the R1 was 99%, which was similar to natural wetland. Among all studied wetlands, the highest and lowest stem density was observed in R1 and R2, respectively, Plant height and stem diameter show the same trend as N > R2 > R1 > R3 > D > R4. Species diversity of restored P. australis wetlands became closed to natural wetland. Both species richness and Shannon–Wiener index had similar tendency: increased first and then decreased with restored time. The highest species richness and species diversity were observed in R2, while the lowest values of those parameters were found in natural P. australis wetland. Similarity indexes between restored wetlands and natural wetland increased with the restoration time, but they were still less than 50%. The results indicate that the vegetation of P. australis wetlands has experienced a great improvement after several years’ restoration, and it is feasible to restored degraded P. australis wetlands by pouring fresh water into those wetlands in the Yellow River Delta. However, it is notable that costal degraded P. australis wetland in this region may take years to decades to reach the status of natural wetland.  相似文献   

16.
Soil cores and suspended sediments were collected within the Old Woman Creek, Ohio (OWC) watershed following a thunderstorm and analyzed for 7Be, 137Cs, and 210Pb activities to compare the effects of till vs. no-till management on soil erosion and sediment yield. The upper reaches of the watershed draining tilled agricultural fields were disproportionately responsible for the majority of the suspended sediment load compared with lower in the watershed (2.0-7.0 metric tons/km2 [Mg/km2] vs. 1.2-2.6 Mg/km2). About 6 to 10 times more sediment was derived from the subbasins that are predominantly tilled (6.8-12.4 Mg/km2) compared with the subbasins undergoing no-till practices (0.5-1.1 Mg/km2). In undisturbed soils the 210Pb activities decreased with movement toward the bottom of the cores to the constant supported 210Pb value at a depth of about 10 cm. There was a subsurface maximum in 137Cs activity within the top 10 cm. In contrast, the 210Pb and 137Cs distributions in soils that are currently or were previously tilled were nearly homogeneous with depth, reflecting continuing or previous mixing by plowing. The activities of 210Pb and 7Be were linearly correlated and were higher in suspended sediments derived from no-till subbasins than those derived from tilled subbasins, indicating that the soil surface is the source of suspended sediment. This study demonstrates that no-till farming results in decreases in soil erosion and decreases in suspended sediment discharges and that those eroded sediments have a radionuclide signature corresponding to the tillage practice and the depth of erosion.  相似文献   

17.
ABSTRACT: The important ecological and hydrological roles of wetlands are widely recognized, but the geomorphic functions of wetlands are also critical. Wetlands can be defined in geomorphic, as well as in hydrological or biological terms, and a geomorphic definition of wetlands is proposed. An analysis of fluvial sediment budget studies shows that wetlands typically serve as short-term sediment sinks or longer-term sediment storage sites. In ten study basins of various sizes, an estimated 14 to 58 percent of the total upland sediment production is stored in alluvial wetland or other aquatic environments. Of the sediment reaching streams, 29 to 93 percent is stored in alluvial wetland or channel environments. For basins of more than 100 km2, more than 15 percent of total upland sediment production and more than 50 percent of sediment reaching streams is deposited in wetlands. The data underestimates the magnitude of wetland sediment storage due to the lack of data from large river systems. A theoretical analysis of river channel sediment delivery shows that wetland and aquatic sediment storage is inevitable in fluvial systems and systematically related to basin size. Results suggest that wetlands should be managed in the context of drainage basins, rather than as discrete, independent units.  相似文献   

18.
In the Lusatian lignite mining district of eastern Germany, extremely acid lakes developed during ground water rising after exploitation of lignite in open-cast mines. The reasons of plant colonization (Juncus bulbosus L.) of some lakes exhibiting moderate pH values while others remain extremely acid and unvegetated are unknown. Alkalinity gain may be achieved by addition of alkaline materials and/or decomposition of organic matter. Our objective was to examine fly ash deposition and the resulting changes in organic matter composition in the uppermost 0 to 5 cm of the sediment sampled from vegetated and unvegetated lakes. Bulk soil and particle size fractions were analyzed for elemental composition, magnetic susceptibility, and chemical structure of the organic matter by 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. The lignite content of the samples was estimated by 14C activity measurements. The pH values decreased with increasing depth and the changes in pH were found to be correlated with changes in magnetic susceptibility. Carbon and nitrogen contents were found to decrease with increasing depth. The C to N ratios are consistent with the (i) the presence of decomposing plant residues and/or microbial material such as algae in the upper 0 to 5 cm of the sediment and (ii) the dominance of lignite in the layers below this depth as confirmed by 14C activity measurements. The structural analyses of the particle size separates from the 0- to 5-cm depth were consistent with the presence of organic matter derived from plant material. This study confirms that fly ash is an important source of alkalinity in the upper 0 to 5 cm of the sediment that enhanced plant growth and led to enrichment of the sediment with organic matter derived from plant material.  相似文献   

19.
Wetland restoration has been proposed as a tool to mitigate excess runoff and associated nonpoint source pollution in the Upper Midwestern United States. This study quantified the surficial water retention capacity of existing and drained wetlands for the Greater Blue Earth River Basin (GBERB), an intensively drained agricultural watershed. Using airborne light detection and ranging, the historic depressional storage was determined to be 152 mm. Individual depression analysis suggested that the restoration of most drained areas would have little impact on the storage capacity of the GBERB because the majority (53%) of retention capacity was in large depressions (>40 ha) which comprised only a small proportion (<1.0) of the observed depressions. Accounting for change in storage and the difference in annual evapotranspiration (ET) between wetlands and the croplands that replaced them, restoration of all depressions in the Minnesota portion of GBERB would provide a maximum of 131 mm additional capacity over and above the modern day capacity (193 mm; 56 mm depressional storage; 60 mm wetland ET; and 77 mm cropland ET). Considering that depressional depths in smaller areas are within the range of uncertainty of the lidar digital elevation models and larger depressions have the most storage, we conclude that efforts to increase the surficial water‐holding capacity of the GBERB would be best served in the restoration of large (>40 ha) depressions.  相似文献   

20.
ABSTRACT: Erosion and sedimentation data from research watersheds in the Silver Creek Study Area in central Idaho were used to test the prediction of logging road erosion using the R1-R4 sediment yield model, and sediment delivery using the “BOISED” sediment yield prediction model. Three small watersheds were instrumented and monitored such that erosion from newly constructed roads and sediment delivery to the mouths of the watersheds could be measured for four years following road construction. The errors for annual surface erosion predictions for the two standard road tests ranged from +31.2 t/ha/yr (+15 percent) to -30.3 t/ha/yr (-63 percent) with an average of zero t/ha/yr and a standard deviation of the differences of 18.7 t/ha/yr. The annual prediction errors for the three watershed scale tests had a greater range from -40.8 t/ha/yr (-70 percent) to +65.3 t/ha/yr (+38 percent) with a mean of -1.9 t/ha/yr and a standard deviation of the differences of 25.2 t/ha/yr. Sediment yields predicted by BOISED (watershed scale tests) were consistently greater (average of 2.5 times) than measured sediment yields. Hillslope sediment delivery coefficients in BOISED appear to be overly conservative to account for average site conditions and road locations, and thus over-predict sediment delivery. Mass erosion predictions from BOISED appear to predict volume well (465 tonnes actual versus 710 tonnes predicted, or a 35 percent difference) over 15 to 20 years, however mass wasting is more episodic than the model predicts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号