首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The rupture of a high-pressure natural-gas pipeline can lead to outcomes that can pose a significant threat to people and property in the immediate vicinity of the failure location. The dominant hazards are thermal radiation from sustained fire and collapse of buildings from explosion inside or in a partially confined area enclosed by buildings. A simplified equation has been developed that relates the diameter, the operating pressure and the length of pipeline to the size of the affected area in the event of a full-bore rupture. The equation is based on release rate, gas jet and heat flux from fire to estimate the hazard area. Hazard area is directly proportional to the operating pressure raised to a half power, and to the pipeline diameter raised to five-fourths power, but inversely proportional to the pipeline length raised to a quarter power. The simplified equation will be a useful tool for safety management of high-pressur natural-gas pipelines.  相似文献   

2.
为探究喷射火灾下石化管廊管道热力学响应特征,依据流体力学相似理论搭建缩比试验平台,开展石化管廊管道热力学响应试验研究.通过分析火灾中管道热力学响应特征及事故多米诺演化特征,探讨各因素对管道升温和失效的影响程度,并结合强度理论建立管道失效时间定量计算模型.研究结果表明:火灾功率是管道失效的主导因素,随着火灾功率的增大,管...  相似文献   

3.
The formation of a crater by the abrupt and catastrophic rupture of a high-pressure pipeline can be highly relevant, especially when the crater uncovers other pipelines, which could undergo a domino effect with a significant increase of the consequences on people or on the environment. However, this scenario has been only partially studied in the literature. To assess the influence of the pipeline parameters on the dimensions of the resulting crater, a statistical analysis of accidental ruptures of buried natural gas pipelines that have involved the formation of a crater was carried out. Mathematical expressions are proposed to describe the proportionality relationships found, which can be very useful to support adequate separation distances in the design and construction of parallel corridors of pipelines after appropriate escalating effects are considered. Finally, detailed event trees were developed to calculate the probability of occurrence of the final outcomes, as well as the identified domino sequences, based on a qualitative and quantitative analysis of the data. The study of these accident scenarios, based on actual cases, represents a useful and needed advance in risk analysis of natural gas transportation through pipelines.  相似文献   

4.
As part of the EC funded Naturalhy project, two large scale experiments were conducted to study the hazard presented by the rupture of high pressure transmission pipelines conveying natural gas or a natural gas/hydrogen mixture containing approximately 22% hydrogen by volume. The experiments involved complete rupture of a 150 mm diameter pipeline pressurised to nominally 70 bar. The released gas was ignited and formed a fireball which rose upwards and then burned out. It was followed by a jet fire which continued to increase in length, reaching a maximum of about 100 m before steadily declining as the pipeline depressurised. During the experiments, the flame length and the incident radiation field produced around the fire were measured. Measurements of the overpressure due to pipeline rupture and gas ignition were also recorded. The results showed that the addition of the hydrogen to the natural gas made little difference to radiative characteristics of the fires. However, the fraction of heat radiated by these pipeline fires was significantly higher than that observed for above ground high pressure jet fires (also conducted as part of the Naturalhy project) which achieved flame lengths up to 50 m. Due to the lower density, the natural gas/hydrogen mixture depressurised more quickly and also had a slightly reduced power. Hence, the pipeline conveying the natural gas/hydrogen mixture resulted in a slightly lower hazard in terms of thermal dose compared to the natural gas pipeline, when operating at the same pressure.  相似文献   

5.
This paper describes the results from a series of fire tests that were carried out to measure the effect of defects in thermal protection systems on fire engulfed propane pressure vessels.

In North America thermal protection is used to protect dangerous goods rail tank-cars from accidental fire impingement. They are designed so that a tank-car will not rupture for 100 min in a defined engulfing fire, or 30 min in a defined torching fire. One common system includes a 13 mm blanket of high-temperature ceramic fibre thermal insulation covered with a 3 mm steel jacket. Recent inspections have shown that some tanks have significant defects in these thermal protection systems. This work was done to establish what levels of defect are acceptable from a safety standpoint.

The tests were conducted using 1890 l (500 US gallon) ASME code propane pressure vessels (commonly called tanks in the propane industry). The defects tested covered 8% and 15% of the tank surface. The tanks were 25% engulfed in a fire that simulated a hydrocarbon pool fire with an effective blackbody temperature of 870 °C.

The fire testing showed that even relatively small defects can result in tank rupture if the defect area is engulfed in a severe fire, and the defect area is not wetted by liquid from the inside. A wall failure prediction technique based on uniaxial high-temperature stress rupture test data has been developed and agrees well with the observed failure times.  相似文献   


6.
不同气油比的油气混输管道泄漏后果危害形式和风险差异的准确判断对于管道泄漏应急处置至关重要。以中国西部某油田集输管道为研究对象,针对不同气油比管道泄漏的火灾危害进行了对比分析,构建了FLACS CFD模型,并研究了油气混输管道原油泄漏形成池火的火灾特征和影响范围,以及天然气泄漏形成喷射火的高温分布和影响规律。研究结果表明:应急处置应考虑不同气油比下池火与喷射火危害的差异。在油气混输管线泄漏10 min形成稳定火焰的场景中,气油比低于100 m3/t时,原油池火为火灾危险的主要影响因素;气油比高于200 m3/t时,天然气喷射火为主要影响因素;气油比超过250 m3/t,高温覆盖距离不再明显增加;40 m为此场景下混输油气泄漏喷射火致死距离上限,120 m为温度影响上限。  相似文献   

7.
In the United States, Canada, the United Kingdom, and other countries with advanced pipeline management, some organizations are responsible for pipeline safety protection management for underground hazardous materials. The security and maintenance of a hazardous material pipeline are serious considerations for urban safety, because the materials transported by underground pipelines contain hazardous goods, such as the flammable or explosive particles of solids, liquids, and gases. Damage to a pipeline by external forces often leads to secondary disasters, such as the leakage of hazardous materials, fires, explosions, and environmental pollution. Such events seriously affect the safety of individuals and their property.Accordingly, this study used seismic scenario analysis with a spatial grid to evaluate earthquake damage to an underground pipeline in an urban area. Damage to underground pipelines was classified, pipeline disaster management procedures were discussed, and improvement measures were proposed, such as establishing a geographic information platform and conducting disaster impact assessments for hazardous material pipelines. Underground hazardous material pipelines were assessed in scenarios including earthquakes. Such assessments are intended to provide disaster reduction plans and disaster prevention drills to improve pipeline safety as well as the planning for pipeline materials to aid seismic resistance.  相似文献   

8.
In this paper, safety distances around pipelines transmitting liquefied petroleum gas and pressurized natural gas are determined considering the possible outcomes of an accidental event associated with fuel gas release from pressurized transmission systems. Possible outcomes of an accidental fuel gas release were determined by performing the Event Tree Analysis approach. Safety distances were computed for two pipeline transmission systems of pressurized natural gas and liquefied petroleum gas existing in Greece using real data given by Greek Refineries and the Greek Public Gas Enterprise. The software packages chetah and breeze were used for thermochemical mixture properties estimation and quantitative consequence assessment, respectively. Safety distance determination was performed considering jet fire and gas dispersion to the lower flammable limit as the worst-case scenarios corresponding to immediate and delayed cloud ignition. The results showed that the jet fire scenario should be considered as the limiter for safety distances determination in the vicinity of natural and petroleum gas pipelines. Based on this conclusion, the obtained results were further treated to yield functional diagrams for prompt safety distance estimation. In addition, qualitative conclusions were made regarding the effect of atmospheric conditions on possible events. Thus, wind velocity was found to dominate during a jet fire event suppressing the thermal radiation effect, whereas gas dispersion was found to be affected mainly by solar radiation that favors the faster dissolution of fuel gas below the lower flammable limit.  相似文献   

9.
This paper describes the development and experimental validation of a three-phase flow model for predicting the transient outflow following the failure of pressurised CO2 pipelines and vessels. The choked flow parameters at the rupture plane, spanning the dense-phase and saturated conditions to below the triple point, are modelled by maximisation of the mass flowrate with respect to pressure and solids mass fraction at the triple point. The pertinent solid/vapour/liquid phase equilibrium data are predicted using an extended Peng–Robinson equation of state.The proposed outflow model is successfully validated against experimental data obtained from high-pressure CO2 releases performed as part of the FP7 CO2PipeHaz project (www.co2pipehaz.eu).The formation of solid phase CO2 at the triple point is marked by a stabilisation in pressure as confirmed by both theory and experimental observation. For a fixed diameter hypothetical pipeline at 100 bar and 20 °C, the flow model is used to determine the impact of the pipeline length on the time taken to commence solid CO2 discharge following its rupture.  相似文献   

10.
This paper reviews and analyses frequency and consequences of failure of onshore pipelines transporting oil, refined products and natural gas. Generally accepted risk levels are indicated and a desirable risk range is proposed.Pipeline failure statistics from the United States (US), Canada, Europe and Brazil are compared. Failure rates for internal and external corrosion, human action and natural forces are analyzed and the expected failure rate for each failure mechanism is indicated. The effects of relevant construction and environmental factors on the failure frequency are studied and mean trends are obtained. Furthermore, the sizes of the holes indicated at different databases are compared and a typical distribution of failure sizes is proposed for each mode of failure. Finally, the frequency of ignition after a loss of containment is studied for gas and liquid pipelines.Historical data on consequences of the accidental loss of containment of onshore pipelines is reviewed. Property damage and environmental reparation costs are evaluated directly from pipeline failure data. Straightforward regression models are proposed to quantify these types of consequence taking into account the released fluid and the characteristics of the environment. Societal impact is evaluated by combining simple fire models, heat versus mortality correlations and population density.Finally, values for the desired risk level are evaluated by three methods: i) a risk value representing the good engineering practice; ii) the risk associated to the most relevant codes and regulations concerning pipeline risk assessment and/or construction and operation; iii) an analytically derived optimal risk level. The risk values obtained by the three methodologies are similar and a desirable risk range is proposed.  相似文献   

11.
为研究油气并行管道中,天然气管道喷射火对相邻输油管道内流体与管壁的热影响,设计并搭建天然气喷射火对输油管道热影响实验平台。实验平台由环道及冷却系统、火焰系统、控制及数据采集系统3个部分组成。完成平台搭建并验证环道系统气密性后,以0#柴油为介质,开展验证实验。研究结果表明:火焰系统工作可靠且可控,冷却系统能够将柴油温度控制在初馏点以下,数据采集系统能够正常采集油品压力、温度、流量、管壁温度、火焰温度等预定数据,实验平台具备一定可行性与安全性。实验平台可进行在不同管道规格及材质、火灾形式、油品介质及流速条件下的热影响实验。实验平台结合材料性能进行测试,可研究喷射火对管材性能的影响,为油气并行管道的安全运行提供相关实验依据。  相似文献   

12.
Individual risk analysis of high-pressure natural gas pipelines   总被引:1,自引:0,他引:1  
Transmission pipelines carrying natural gas are not typically within secure industrial sites, but are routed across land out of the ownership of the pipeline company. If the natural gas is accidentally released and ignited, the hazard distance associated with these pipelines to people and property is known to range from under 20 m for a smaller pipeline at lower pressure to up to over 300 m for a larger pipeline at higher pressure. Therefore, pipeline operators and regulators must address the associated public safety issues.This paper focuses on a method to explicitly calculate the individual risk of a transmission pipeline carrying natural gas. The method is based on reasonable accident scenarios for route planning related to the pipeline's proximity to the surrounding buildings. The minimum proximity distances between the pipeline and buildings are based on the rupture of the pipeline, with the distances chosen to correspond to a radiation level of approximately 32 kW/m2. In the design criteria for steel pipelines for high-pressure gas transmission (IGE/TD/1), the minimum building proximity distances for rural areas are located between individual risk values of 10−5 and 10−6. Therefore, the risk from a natural gas transmission pipeline is low compared with risk at the building separated minimum distance from chemical industries.  相似文献   

13.
Experience shows that, despite the best efforts of the pipeline industry worldwide, pipelines do fail and release their contents to the atmosphere. In the case of below-ground pipelines transmitting natural gas, there is a chance that the release will be ignited, posing a significant hazard to any people in the vicinity. Mindful of this hazard, an international group of gas companies have collaborated over a period of many years on research projects aimed at developing an understanding of how these releases may arise (failure causes), how often they might occur (failure frequency), what type of releases might be produced (failure modes) and what type of behaviour might be produced for each of these modes of release (consequence analysis). This paper has been prepared to describe the mathematical models that have been developed on behalf of this group to assess the initial transient period following the rupture of a buried natural gas transmission pipeline assuming the release ignites immediately. It gives details of the equations used by the different models and it refers to some of the experimental data that has been used in the development of the models. A comparison of the model with the experimental data is provided. This demonstrates that the early stages could have a significant impact when evaluating the harm that could be caused. This provides a justification for developing the models rather than using a simpler alternative that does not take the initial highly transient period into account.  相似文献   

14.
The paper presents a mathematical model for predicting outflow rates from a ruptured pipeline transporting compressed volatile liquids. The main focus of the paper is the methodology used to predict thermodynamic properties of interest. The model is validated using experimental data in the open literature. As the field scale outflow data does not include typical operating conditions the model is further validated at higher pressures and longer pipelines by comparing outflow rates calculated using a commercial pipeline simulation package, PROFES. The mathematical model predictions of mass flow rate and pipeline inventory agree well with the measured data and the more sophisticated pipeline model.

The simple pipeline rupture model is a useful tool for consequence analysis as it has a fast runtime on a standard PC. A further advantage is it is more easily, without having to address all of the numerical issues that arise when using a more sophisticated pipeline model. This allows a safety engineer to focus on the potential hazard rather than driving the model.  相似文献   


15.
A reliability model for underground pipeline management that can quantify the trade-off between risk reduction and increased maintenance costs in various underground piping management scenarios can be useful for many pipeline-maintenance decision-makers. In this paper, we propose a comprehensive framework for analyzing underground pipeline management options. Pipeline reliability is calculated using time-dependent and independent limit state functions with a probabilistic model and a deterministic model about the frequency of a failure occurrence event. The proposed framework includes the target reliability, consequences, and cost model, and has the advantage that it can be intuitively utilized for piping management decision-making. We conducted several case studies using a Monte Carlo simulation on pipelines in industrial complexes in Korea.  相似文献   

16.
为了对城镇中低压燃气管线喷射火事故进行有效的风险评估,根据典型事故案例创建了城镇路面埋地燃气管线泄漏场景,建立模型并划分网格,使用Fluent进行模拟计算,得到了不同泄漏口孔径、不同泄漏口形状、不同管内压力等工况下喷射火的火焰长度、火焰中心面温度分布和临近区域内的热流密度,并通过分析不同工况下的火焰形态和热辐射分布,探讨初始条件对事故后果的影响程度。结果表明:此类型喷射火长度可达数十米,火焰最高温度为2 000 K左右,最高温度位置的高度不超过火焰长度的30%;下风向的热流密度较其他方向更强;在50 mm的泄漏口孔径和0.38 MPa的管内压力下,泄漏口为梭子形,较泄漏口为圆形时的热流密度在下风向整体大15.2%。最后,根据模拟结果构建了快速风险评估模型。  相似文献   

17.
On the response of 500 gal propane tanks to a 25% engulfing fire   总被引:1,自引:0,他引:1  
This paper presents detailed data on the thermal response of two 500 gal ASME code propane tanks that were 25% engulfed in a hydrocarbon fire. These tests were done as part of an overall test programme to study thermal protection systems for propane-filled railway tank-cars.

The fire was generated using an array of 25 liquid propane-fuelled burners. This provided a luminous fire that engulfed 25% of the tank surface on one side. The intent of these tests was to model a severe partially engulfing fire situation.

The paper presents data on the tank wall and lading temperatures and tank internal pressure. In the first test the wind reduced the fire heating and resulted in a late failure of the tank at 46 min. This tank failed catastrophically with a powerful boiling liquid expanding vapour explosion (BLEVE). In the other test, the fire heating was very severe and steady and this tank failed very quickly in 8 min as a finite rupture with massive two-phase jet release. The reasons for these different outcomes are discussed. The different failures provide a range of realistic outcomes for the subject tank and fire condition.  相似文献   


18.
The boiling liquid expanding vapour explosion (BLEVE) has existed for a long time and for most of this time it has been cloaked in mystery. Several theories have been put forward to explain this very energetic event but none have been proven. This paper describes a series of tests that have recently been conducted to study this phenomenon.

The study involved ASME code automotive propane tanks with nominal capacities of 400 litres. The tanks were exposed to a combination of pool and/or torch fires. These fire conditions led to thermal ruptures, and in some cases these ruptures resulted in BLEVEs. The variables in the tests were the pressure-relief valve setting, the tank wall thickness, and the fire condition.

In total, 30 tests have been conducted, of which 22 resulted in thermal ruptures. Of those tanks that ruptured, 11 resulted in what we call BLEVEs. In this paper, we have defined a BLEVE as the explosive release of expanding vapour and boiling liquid following a catastrophic tank failure. Non-BLEVEs involved tanks that ruptured but which only resulted in a prolonged jet release.

The objective of this study was to investigate why certain tank ruptures lead to a BLEVE rather than a more benign jet-type release. Data are presented to show how wall temperature, wall thickness, liquid temperature and fill level contribute to the BLEVE process.  相似文献   


19.
This paper presents a risk assessment methodology for high pressure CO2 pipelines developed at the Health and Safety Laboratory (HSL) as part of the EU FP7 CO2Pipehaz project. Until recently, risk assessment of dense phase and supercritical CO2 pipelines has been problematic because of the lack of suitable source term and integral consequence models that handle the complex behaviour of CO2 appropriately. The risk assessment presented uses Phast, a commercially available source term and dispersion model that has been recently updated to handle the effects of solid CO2. A test case pipeline was input to Phast and dispersion footprints to different levels of harm (dangerous toxic load and probit values) were obtained for a set of pipeline specific scenarios. HSL's risk assessment tool QuickRisk was then used to calculate the individual and societal risk surrounding the pipeline. Knowledge gaps that were encountered such as: harm criteria, failure rates and release scenarios were identified and are discussed.  相似文献   

20.
为提升含腐蚀缺陷管道失效压力预测精度,准确把控管道状态,建立基于DE-BPNN的含腐蚀缺陷管道失效压力预测模型,有效避免BPNN模型陷入局部最优问题,提升预测精度。基于61组管道爆破实验数据,分别用DE-BPNN与BPNN模型进行仿真计算。结果表明:DE-BPNN预测结果平均相对误差为3.26%,R2为0.985 85,预测精度较BPNN模型有明显提升。应用DE-BPNN模型预测含腐蚀缺陷的管道失效压力可为长输管道运输调配和检维修提供决策支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号