首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
生物滴滤-生物过滤组合工艺处理汽车喷漆废气中试研究   总被引:3,自引:1,他引:2  
采用中试规模的生物滴滤-生物过滤组合工艺设备处理某汽车厂喷漆车间废气,研究了组合式反应器对废气的净化效果和2处理单元对污染组分的去除能力及微生物特性.该汽车厂喷漆车间废气中的主要组分为甲苯、二甲苯、乙酸乙酯、乙酸丁酯、丁醇、丙酮和甲基丙基甲酮.组合式反应器对废气中的污染物有较好的处理效果,但不同的污染组分在不同处理单元...  相似文献   

2.
ABSTRACT

The CHA Corporation has completed the U.S. Air Force Phase II Small Business Innovation Research program to investigate the feasibility of using a novel microwave-based process for the removal and destruction of volatile organic compounds (VOCs) in effluents from noncombustion sources, such as paint booth ventilation streams. Removal of solvents by adsorption, followed by the regeneration of saturated granular activated carbon (GAC) by microwave energy, was achieved in a single fixed-bed reactor. Microwave regeneration of the fixed-bed-saturated carbon restored the original GAC adsorption capacity. After 20 adsorption/regeneration cycles, the adsorption capacity dropped from 13.5 g methyl ethyl ketone (MEK)/100 g GAC to 12.5 g MEK/100 g GAC. During microwave regeneration of the GAC fixed bed, the concentrated desorbed paint solvent was oxidized by passing the solvent mixture through a fixed bed of an oxidation catalyst mixed with silicon carbide in a microwave reactor. A 98% oxidation efficiency was consistently achieved from the oxidation of VOCs in the microwave catalytic reactor.  相似文献   

3.
Because of the characteristics of low operating cost and convenient operation, the biotrickling filter is extensively researched and used to treat low concentration waste gas contaminated by volatile organic compounds (VOCs) and other odors. In this paper, two laboratory-scale biotrickling filters were constructed and toluene was selected as the sole carbon source, and the effects of different waste-gas flow configuration patterns on the purification capacity and the microbial community functional diversity of biotrickling filters were evaluated. The results indicated that the flow-directional-switching (FDS) biotrickling filter had better purification performance, and the maximum elimination capacity reached 480 g·m?3·hr?1, which was 17.1% higher than conventional unidirectional-flow (UF) biotrickling filter. Comparing the purification capacities of different sections in two biotrickling filters, the maximum toluene elimination capacity of section III in FDS system could reach 542 g·m?3·hr?1, which was 2.8 times as great as that in UF system, which resulted from the difference of elimination capacity in two systems. By analyzing the metabolic activity of two systems by community-level physiological profiling (CLPP) with Biolog (Biolog Inc., Hayward, CA) ECO-plate technique, metabolic activity in three sections of FDS system was higher than that of UF system. The metabolic activity was the highest in section III of FDS system and 46.8% higher than that of UF system. Shannon index and McIntosh index of section III in FDS system were 6.2% and 31.5% higher, respectively, than those of UF system.

Implications: The flow-directional-switching (FDS) biotrickling filter had a better purification performance than unidirectional-flow (UF) biotrickling filter at high inlet loadings, because FDS produced a more uniform distribution of biomass and microbial metabolic capacity along the length of the packed bed without diminishing activity and removal capacity in the inlet section.  相似文献   

4.
ABSTRACT

This paper presents results obtained from a performance study on the biotreatment of 1,3-butadiene in an air stream using a reactor that consisted of a two-stage, in-series biotrickling filter connected with a three-stage, in-series biofilter. Slags and pig manure-based media were used as packing materials for the biotrickling filter and the biofilter, respectively. Experimental results indicated that, for the biotrickling filter portion, the butadiene elimination capacities were below 5 g/m3/hr for loadings of less than 25 g/m3/hr, and the butadiene removal efficiency was only around 17%. For the biofilter portion, the elimination capacities ranged from 10 to 107 g/m3/hr for loadings of less than 148 g/m3/hr. The average butadiene removal efficiency was 75–84% for superficial gas velocities of 53–142 m/hr and a loading range of 10–120 g/m3/hr. The elimination capacity approached a maximum of 108 g/m3/hr for a loading of 150 g/m3/hr. The elimination rates of butadiene in both the biotrickling filter and biofilter were mass-transfer controlled for influent butadiene concentrations below about 600 ppm for superficial gas velocities of 29–142 m/hr. The elimination capacity was significantly higher in the biofilter than in the biotrickling filter. This discrepancy may be attributed to the higher mass-transfer coefficient and gas-solid interfacial area offered for transferring the gaseous butadiene in the biofilter.  相似文献   

5.
Abstract

Four different biofilter packing materials (two porous ceramics, perlite, and open pore polyurethane foam) were compared for the removal of toluene vapors. The focus was on evaluating performance at relatively short gas retention time (13.5 and 27 sec). The reactors were initially operated as biotrickling filters with continuous feeding and trickling of a nutrient solution. After significant plugging of the biotrickling filter beds with biomass was observed, the operation mode was switched to biofiltration with only periodic supply of mineral nutrients. This resulted in stable conditions, which allowed detailed investigations over >6 months. The reactor packed with cattle bone Porcelite (CBP), a ceramic material containing some macronutrients and micronutrients, exhibited the highest performance. The critical load (i.e., load at which 95% removal occurred) was 29 g m?3 hr?1 at a gas retention time of 13.5 sec and 66 g m?3 hr?1 at a gas retention time of 27 sec. After the long-term experiment, the packing materials were taken from the reactors and examined. The reactors were divided into three sections, top, middle, and bottom, to determine whether spatial differentiation of biomass occurred. The assays included a double-staining technique to count total and live microorganisms and determination of moisture, protein, and dry weight contents. Microbial community analysis was also conducted by denaturing gradient gel electrophoresis. The results showed that most reactors had a significant fraction of inactive biomass. Comparatively, the CBP biofilter held significantly higher densities of active biomass, which may be the reason for the higher toluene removal performance. The analyses suggest that favorable material properties and the nutrients slowly released by the CBP provided better environmental conditions for the process culture.  相似文献   

6.
The development of a thermophilic biotrickling ?lter (BTF) system to inoculate a newly isolated strain of Chelatococcus daeguensis TAD1 for the effective treatment of nitric oxide (NO) is described. A bench-scale BTF was run under high concentrations of NO and 8% O2 in thermophilic aerobic environment. A novel aerobic denitrifier Chelatococcus daeguensis TAD1 was isolated from the biofilm of an on-site biotrickling filter and it showed a denitrifying capability of 96.1% nitrate removal rate in a 24 h period in aerobic environment at 50 °C, with no nitrite accumulation. The inlet NO concentration fluctuated between approximately 133.9 and 669.6 mg m-3 and kept on a steady NOx removal rate above 80% in an oxygen stream of 8%. The BTF system was able to consistently remove 80–93.7% NO when the inlet NO was 535.7 mg m-3 in an oxygen stream of 2–20%. The biological removal efficiency of NO at 50 °C is higher than that at 25 °C, suggesting that the aerobic denitri?er TAD1 display well denitrification performance under thermophilic condition. Starvation for 2, 4 and 8 days resulted in the re-acclimation times of Chelatococcus daeguensis TAD1 ranging between 4 and 16 hours. A longer recovery time than that for weekend shutdown will be required when a longer starvation occurs. The results presented here demonstrate the feasibility of biotrickling ?lter for the thermophilic removal of NOx from gas streams.

Implications A novel denitrifier Chelatococcus daeguensis TAD1 was isolated from an on-site biotrickling filter in aerobic environment at 50 °C. To date, C. daeguensis has not been previously reported to be an aerobic denitrifier. In this study, a thermophilic biotrickling ?lter system inoculated with Chelatococcus daeguensis TAD1 for treatment of nitric oxide is developed. In coal-fired power plants, influent flue gas stream for nitrogen oxides (NOx) removal typically exhibit temperatures between 50 and 60 °C. Traditionally, cooling gases to below 40 °C prior to biological treatment is inevitable, which is costly. Therefore, the application of thermophilic microorganisms for the removal of nitric oxide (NO) at this temperature range would offer great savings and would greatly extend the applicability of biofilters and biotrickling filters. Until now there has not been any study published about thermophilic biological treatment of NO under aerobic condition.  相似文献   

7.
Compositions of volatile organic compound (VOC) emissions from painting applications and printing processes were sampled and measured by gas chromatography–mass spectrometry/flame ionization detection (GC–MS/FID) in Beijing. Toluene and C8 aromatics were the most abundant species, accounting for 76% of the total VOCs emitted from paint applications. The major species in printing emissions included heavier alkanes and aromatics, such as n-nonane, n-decane, n-undecane, toluene, and m/p-xylene. Measurements of VOCs obtained from furniture paint emissions in 2003 and 2007 suggest a quick decline in benzene levels associated with formulation changes in furniture paints during these years. A comparison of VOC source profiles for painting and printing between Beijing and other parts of the world showed significant region-specific discrepancies, probably because of different market demands and environmental standards. We conducted the evaluation of the source reactivities for various VOC emission sources. The ozone formation potential (OFP) for unit mass of VOCs source emissions is the highest for paint applications. Substituting solvent-based paints by water-based in Beijing will lead to an OFP reduction of 152,000 tons per year, which is more than 1/4 of the OFPs for VOCs emissions from vehicle exhaust in the city.  相似文献   

8.
Microwave process for volatile organic compound abatement   总被引:5,自引:0,他引:5  
The CHA Corporation has completed the U.S. Air Force Phase II Small Business Innovation Research program to investigate the feasibility of using a novel microwave-based process for the removal and destruction of volatile organic compounds (VOCs) in effluents from noncombustion sources, such as paint booth ventilation streams. Removal of solvents by adsorption, followed by the regeneration of saturated granular activated carbon (GAC) by microwave energy, was achieved in a single fixed-bed reactor. Microwave regeneration of the fixed-bed-saturated carbon restored the original GAC adsorption capacity. After 20 adsorption/regeneration cycles, the adsorption capacity dropped from 13.5 g methyl ethyl ketone (MEK)/100 g GAC to 12.5 g MEK/100 g GAC. During microwave regeneration of the GAC fixed bed, the concentrated desorbed paint solvent was oxidized by passing the solvent mixture through a fixed bed of an oxidation catalyst mixed with silicon carbide in a microwave reactor. A 98% oxidation efficiency was consistently achieved from the oxidation of VOCs in the microwave catalytic reactor.  相似文献   

9.
Abstract

Interest in regulations to control solvent emissions from automotive painting systems is increasing, especially in ozone nonattainment areas. Therefore, an accurate measurement method for VOC emissions from paint spray booths used in the automotive industry is needed to ascertain the efficiency of the spray booth capture and the total emissions. This paper presents the results of a laboratory study evaluating potential VOC sampling and analytical methods used in estimating paint spray booth emissions, and discusses these results relative to other published data. Eight test methods were selected for evaluation. The accuracy of each sampling and analytical method was determined using test atmospheres of known concentration and composition that closely matched the actual exhaust air from paint spray booths. The solvent mixture to generate the test atmospheres contained a large proportion of polar, oxygenated hydrocarbons such as ketones and alcohols. A series of identical tests was performed for each sampling/analytical method with each test atmosphere to assess the precision of the methods. The study identified significant differences among the test methods in terms of accuracy, precision, cost, and complexity.  相似文献   

10.
ABSTRACT

Xylene is the main component of many volatile industrial pollution sources, and the use of biotechnology to remove volatile organic compounds (VOCs) has become a growing trend. In this study, a biotrickling filter for gaseous xylene treatment was developed using activated sludge as raw material to study the biodegradation process of xylene. Reaction conditions were optimized, and long-term operation was performed. The optimal pH was 7.0, gas-liquid ratio was 15:1 (v/v), and temperature was 25 °C. High-throughput sequencing technique was carried out to analyze microbial communities in the top, middle, and bottom layers of the reactor. Characteristics of microbial diversity were elucidated, and microbial functions were predicted. The result showed that the removal efficiency (RE) was stable at 86%–91%, the maximum elimination capacity (EC) was 303.61 g·m?3·hr?1, residence time was 33.75 sec, and the initial inlet xylene concentration was 3000 mg·m?3, which was the highest known degradation concentration reported. Kinetic analysis of the xylene degradation indicated that it was a very high-efficiency-activity bioprocess. The rmax was 1059.8 g·m?3·hr?1, and Ks value was 4.78 g·m?3 in stationary phase. In addition, microbial community structures in the bottom and top layers were significantly different: Pseudomonas was the dominant genus in the bottom layer, whereas Sphingobium was dominant in the top layer. The results showed that intermediate metabolites of xylene could affect the distribution of community structure. Pseudomonas sp. can adapt to high concentration xylene–contaminated environments.

Implications: We combined domesticated active sludge and reinforced microbial agent on biotrickling filter. This system performed continuously under a reduced residence time at 33.75 sec and high elimination capacity at 303.61 g·m?3·hr?1 in the biotrickling reactor for about 260 days. In this case, predomestication combined with reinforcing of microorganisms was very important to obtaining high-efficiency results. Analysis of microbial diversity and functional prediction indicated a gradient distribution along with the concentration of xylene. This implied a rational design of microbial reagent and optimizing the inoculation of different sites of reactor could reduce the preparation period of the technology.  相似文献   

11.
The obvious disadvantages of biotrickling filters (BTFs) are the long start-up time and low removal efficiency (RE) when treating refractory hydrophobic volatile organic compounds (VOCs), which limits its industrial application. It is worthwhile to investigate how to reduce the start-up period of the BTF for treating hydrophobic VOCs. Here, we present the first study to evaluate the strategy of toluene induction combined with toluene-styrene synchronous acclimatization during start-up in a laboratory-scale BTF inoculated with activated sludge for styrene removal, as well as the effects of styrene inlet concentration (0.279 to 2.659 g·m?3), empty bed residence time (EBRT) (i.e., 136, 90, 68, 45, 34 sec), humidity (7.7% to 88.9%), and pH (i.e., 4, 3, 2.5, 2) on the performance of the BTF system. The experiments were carried out under acidic conditions (pH 4.5) to make fungi dominant in the BTF. The start-up period for styrene in the BTF was shortened to about 28 days. A maximum elimination capacity (ECmax) of 126 g·m?3·hr?1 with an RE of 80% was attained when styrene inlet loading rate (ILR) was below 180 g·m?3·hr?1. The highest styrene RE(s) [of BTF] that could be achieved were 95% and 93.4%, respectively, for humidity of 7.7% and at pH 2. A single dominant fungal strain was isolated and identified as Candida palmioleophila strain MA-M11 based on the 26S ribosomal RNA gene. Overall, the styrene induction with the toluene-styrene synchronous acclimatization could markedly reduce the start-up period and enhance the RE of styrene. The BTF dominated by fungi exhibited good performance under low pH and humidity and great potential in treating styrene with higher inlet concentrations.

Implications: The application of the toluene induction combined with toluene-styrene synchronous acclimatization demonstrated to be a promising approach for the highly efficient removal of styrene. The toluene induction can accelerate biofilm formation, and the adaptability of microorganisms to styrene can be improved rapidly by the toluene-styrene synchronous acclimatization. The integrated application of two technologies can shorten the start-up period of biotrickling filters markedly and promote its industrial application.  相似文献   


12.
ABSTRACT

The design and the construction of an actual 8.7-m3 pilot/ full-scale biotrickling filter for waste air treatment is described and compared with a previous conceptual scale-up of a laboratory reactor. The reactor construction costs are detailed and show that about one-half of the total reactor costs ($97,000 out of $178,000) was for personnel and engineering time, whereas ~20% was for monitoring and control equipment. A detailed treatment cost analysis demonstrated that, for an empty bed contact time of 90 sec, the overall treatment costs (including capital charges) were as low as $8.7/1000 m3 air in the case where a nonchlorinated volatile organic compound (VOC) was treated, and $14/ 1000 m3 air for chlorinated compounds such as CH2Cl2. Comparison of these costs with conventional air pollution control techniques demonstrates excellent perspectives for more field applications of biotrickling filters. As the specific costs of building and operating biotrickling filter reactors decrease with increasing size of the reactor, the cost benefit of biotrickling filtration is expected to increase for full technical-scale bioreactors.  相似文献   

13.
ABSTRACT

Air biofiltration is now under active consideration for the removal of the volatile organic compounds (VOCs) from polluted airstreams. To optimize this emerging environmental technology and to understand compound removal mechanisms, a biofilter packed with peat was developed to treat a complex mixture of VOCs: oxygenated, aromatic, and chlorinated compounds. The removal efficiency of this process was high. The maximum elimination capacity (ECmax) obtained was ~120 g VOCs/m3 peat/hr. Referring to each of the mixture's components, the ECmax showed the limits in terms of biodegradability of VOCs, especially for the halogenated compounds and xylene.

A stratification of biodegradation was observed in the reactor. The oxygenated compounds were metabolized before the aromatic and halogenated ones. Two assumptions are suggested. There was a competition between bacterial communities. Different communities colonized the peat-based biofilter, one specialized for the elimination of oxygenated compounds, the others more specialized for elimination of aromatic and halogenated compounds. There was also substrate competition. Bacterial communities were the same over the height of the column, but the more easily biodegradable compounds were used first for the microorganism metabolism when they were present in the gaseous effluent.  相似文献   

14.
ABSTRACT

The 1990 Amendments to the Clean Air Act have stimulated strong interest in the use of biofiltration for the economical, engineered control of volatile organic compounds (VOCs) in effluent air streams. Trickle bed air biofilters (TBABs) are especially applicable for treating VOCs at high loadings. For long-term, stable operation of highly loaded TBABs, removal of excess accumulated bio-mass is essential. Our previous research demonstrated that suitable biomass control for TBABs was achievable by periodic backwashing of the biofilter medium. Backwashing was performed by fluidizing the pelletized biological attachment medium with warm water to about a 40% bed expansion. This paper presents an evaluation of the impact of backwashing on the performance of four such TBABs highly loaded with toluene. The inlet VOC concentrations studied were 250 and 500 ppmv toluene, and the loadings were 4.1 and 6.2 kg COD/m3 day (55 and 83 g toluene/m3 hr). Loading is defined as kg of chemical oxygen demand per cubic meter of medium per day. Performance deterioration at the higher loading was apparently due to a reduction of the specific surface of the attached biofilm resulting from the accumulation of excess biomass. For a toluene loading of 4.1 kg COD/m3 day, it was demonstrated that the long-term performance of biofilters with either inlet concentration could be maintained at over 99.9% VOC removal by employing a backwashing strategy consisting of a frequency of every other day and a duration of 1 hr.  相似文献   

15.
ABSTRACT

A pilot apparatus of a regenerative catalytic oxidizer (RCO) equipped with two electrical heaters and two 20-cm i.d. × 200-cm height regenerative beds was used to treat methyl ethyl ketone (MEK) and toluene, respectively, in an airstream. The regenerative beds were packed with gravel (approximate particle size 1.25 cm, specific area 205 m2/m3, and specific heat capacity 840 J/kg °C) as a solid regenerative material and K-type thermal couples for measuring solid and gas temperatures, respectively. The catalyst bed temperature was kept around 400 °C and the gas superficial velocity was operated at 0.234 m/sec. This investigation measured and analyzed distributions of solid and gas temperatures with operating time and variations of volatile organic compound (VOC) concentrations in the regenerative beds. The overall VOC removal efficiency exceeded 98% for MEK and 95% for toluene. Degradation of VOCs will exist for MEK on the surface of solid material (gravel) in the temperature range of 330-400 °C, but toluene does not exhibit this phenomenon.  相似文献   

16.
ABSTRACT

A biotrickling filter with blast-furnace slag packings (sizes = 20-40 mm and specific surface area = 120 m2/m3) was utilized to treat NO in an air stream. The operational stability, as well as the effects of gas empty-bed retention time (EBRT) and nutrient addition on the removal ability of NO, were tested. Approximately six weeks were required for the development of a biofilm for NO degradation, and a two-week organic carbon deficiency resulted in the detachment of biofilms from the packing surfaces. A steady removal rate of 80% was attained at specified influent NO concentrations of 892 to 1237 ppm and an EBRT of 118 sec. The effluent NO concentration diminished exponentially with enlarging EBRT, with influent NO concentrations of 203-898 ppm, and EBRTs of 25 to 118 sec. Nutrient addition is essential for efficient removal of the influent NO. Mass ratios of C: P: N = 7: 1: 30 and NaHCO3: NO-N = 6.3 could be used for practical applications.  相似文献   

17.
Abstract

A polysulfone microporous membrane module was investigated for control of 1-butanol-contaminated gas streams. A diurnal loading condition, using two different butanol concentrations, was used to simulate startup and stop conditions associated with shift work. The membrane module was also used to remove 1-butanol from air under continuous loading conditions in a bioreactor. The reactors were seeded with a mixed bacterial consortium capable of butanol biodegradation. Biokinetic parameters for butanol utilization were determined for the culture to be a maximum specific utilization rate (k) equal to 4.3 d?1 and a half saturation constant (Ks) equal to 8.9 mg L?1. A biofilter running only with diurnal loading conditions giving a “40-hr workweek” had an average 1-butanol removal rate of 29% (111 ppm, 74 gm?3 hr?1) from a 350-ppm influent at the end of an 8-hr operational day. End-of-day removal varied between 4 and 67% during the operational period. With continuous steady-state operation followed by placement on a diurnal loading schedule and influent butanol concentrations increased to 700 ppm, butanol removal averaged 38% (269 ppm, 145 gm?3 hr?1). Under continuous loading, steady-state conditions, 1-butanol removal from the airstream was greater than 99% (200 ppm, 73 gm?3 hr?1). These results suggest that the bioreactor can be operated on a diurnal schedule or 40-hr week operational schedule without any decline in performance.  相似文献   

18.
This study investigates the volatile organic compounds (VOCs) constituents and concentration levels on a new university campus, where all of the buildings including classrooms and student dormitories were newly built and decorated within 1 year. Investigated indoor environments include dormitories, classrooms, and the library. About 30 dormitory buildings with different furniture loading ratios were measured. The characteristics of the indoor VOCs species are analyzed and possible sources are identified. The VOCs were analyzed with gas chromatography–mass spectroscopy (GC-MS). It was found that the average total VOC (TVOC) concentration can reach 2.44 mg/m3. Alkenes were the most abundant VOCs in dormitory rooms, contributing up to 86.5% of the total VOCs concentration. The concentration of α-pinene is the highest among the alkenes. Unlike the dormitory rooms, there is almost no room with TVOC concentration above 0.6 mg/m3 in classroom and library buildings. Formaldehyde concentration in the dormitory rooms increased about 23.7% after the installation of furniture, and the highest level reached 0.068 mg/m3. Ammonia released from the building antifreeze material results in an average indoor concentration of 0.28 mg/m3, which is 100% over the threshold and should be seriously considered. Further experiments were conducted to analyze the source of the α-pinene and some alkanes in dormitory rooms. The results showed that the α-pinene mainly comes from the bed boards, while the wardrobes are the main sources of alkanes. The contribution of the pinewood bed boards to the α-pinene and TVOC concentration can reach up to above 90%. The same type rooms were sampled 1 year later and the decay rate of α-pinene is quite high, close to 100%, so that it almost cannot be detected in the sampled rooms.

Implications: Analysis of indoor volatile organic compounds (VOCs) in newly built campus buildings in China identified the specific constituents of indoor VOCs contaminants exposed to Chinese college students. The main detected substances α-pinene, β-pinene, and 3-carene originated from solid wood bed boards and should be seriously considered. In addition, the contribution rates of building structure materials and furniture to specific VOCs constituents are quantitative calculated. Also, the decay rates of these specific constituents within 1 year are also quantitative calculated in this paper. This study can help us to better understand the sources and concentration levels of VOC contaminants in campus buildings, and to help select appropriate materials in buildings.  相似文献   


19.
Bioprocesses, such as biofiltration, are commonly used to treat industrial effluents containing volatile organic compounds (VOCs) at low concentrations. Nevertheless, the use of biofiltration for indoor air pollution (IAP) treatment requires adjustments depending on specific indoor environments. Therefore, this study focuses on the convenience of a hybrid biological process for IAP treatment. A biofiltration reactor using a green waste compost was combined with an adsorption column filled with activated carbon (AC). This system treated a toluene-micropolluted effluent (concentration between 17 and 52 µg/m3), exhibiting concentration peaks close to 733 µg/m3 for a few hours per day. High removal efficiency was obtained despite changes in toluene inlet load (from 4.2 × 10?3 to 0.20 g/m3/hr), which proves the hybrid system’s effectiveness. In fact, during unexpected concentration changes, the efficiency of the biofilter is greatly decreased, but the adsorption column maintains the high efficiency of the entire process (removal efficiency [RE] close to 100%). Moreover, the adsorption column after biofiltration is able to deal with the problem of the emission of particles and/or microorganisms from the biofilter.
ImplicationsIndoor air pollution is nowadays recognized as a major environmental and health issue. This original study investigates the performance of a hybrid biological process combining a biofilter and an adsorption column for removal of indoor VOCs, specifically toluene.  相似文献   

20.
Abstract

Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photo-catalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr?1, and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and form-aldehyde found in this study ranged from 0.381 to 1.01 hr?1 under different total air change rates, from 0.34 to 0.433 hr?1 under different RH, and from 0.381 to 0.433 hr?1 for different photocatalytic filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号