首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 520 毫秒
1.
Li  Li  Wang  Qiyuan  Zhang  Xu  She  Yuanyuan  Zhou  Jiamao  Chen  Yang  Wang  Ping  Liu  Suixin  Zhang  Ting  Dai  Wenting  Han  Yongming  Cao  Junji 《Environmental science and pollution research international》2019,26(12):11730-11742

To investigate the chemical composition, size distribution, and mixing state of aerosol particles on heavy pollution days, single-particle aerosol mass spectrometry was conducted during 9–26 October 2015 in Xi’an, China. The measured particles were classified into six major categories: biomass burning (BB) particles, K-secondary particles, elemental carbon (EC)–related particles, metal-containing particles, dust, and organic carbon (OC) particles. BB and EC-related particles were the dominant types during the study period and mainly originated from biomass burning, vehicle emissions, and coal combustion. According to the ambient air quality index, two typical episodes were defined: clean days (CDs) and polluted days (PDs). Accumulation of BB particles and EC-related particles was the main reason for the pollution in Xi’an. Most types of particle size were larger on PDs than CDs. Each particle type was mixed with secondary species to different degrees on CDs and PDs, indicating that atmospheric aging occurred. The mixing state results demonstrated that the primary tracers were oxidized or vanished and that the amount of secondary species was increased on PDs. This study provides valuable information and a dataset to help control air pollution in the urban areas of Xi’an.

Graphical abstract

  相似文献   

2.

Dissolved humic substances (DHSs) are the major components of organic matter in the aquatic environment. DHSs are well known to considerably affect the speciation, solubility, and toxicity of a wide variety of pollutants in the aquatic environment. In this study, the effects of the toxicity of heavy metals and hydrophobic organic pollutants (HOPs) on Chlamydomonas reinhardtii in the presence of humic acid (HA) were examined by a microscale algal growth inhibition (μ-AGI) test based on spectrophotometric detection. To clarify the relationship between the chemical properties of HAs and the toxicity change of pollutants, eight HAs from different sources were prepared and used. HAs were responsible for mitigating the toxicity of Hg, Cu, pesticides (γ-HCH, 2,4-D, and DDT), and polycyclic aromatic hydrocarbons (PAHs) such as naphthalene (Nap), anthracene (Ant), and benzo[a]pyrene (BaP). In particular, an approximately 100-fold decrease in the toxicity of BaP was observed in the presence of 10 ppm HAs extracted from tropical peat. The results indicated that the carboxylic group content and the HA molecular weight are correlated to the changes in the heavy metal toxicity. For HOPs, the aromaticity and polarity of HAs are crucial for mitigating their toxicity. Furthermore, it was clearly shown that the lake water including a high concentration of DHSs collected from Central Kalimantan, Indonesia, reduced the toxicity of Hg and γ-HCH on Chlamydomonas reinhardtii.

Graphical abstract

  相似文献   

3.

Organophosphate pesticides (OPPs) are one type of the most massively used pesticides and ubiquitously detected in aquatic environments, which may pose potential risks to the aquatic organisms and human health. In the present study, the spatiotemporal distribution and potential risks of OPPs were investigated in overlying water and surficial sediments from urban waterways of Guangzhou. For all studied sites, in general, four target OPPs (i.e., malathion, chlorpyrifos, terbufos, and diazinon) were present in the overlying water, with malathion and chlorpyrifos as major components. Higher concentrations of the four OPPs were found for the water and sediments collected in the dry season compared to the wet season, possibly because of the dilution effect of heavy rains. The results of Pearson’s analyses and principal coordinate analyses (PCoA) suggested similar sources for target OPPs in the water and sediments across the Guangzhou urban waterways. Potential ecological risks of the OPPs to three representative taxons (algae, aquatic invertebrates, and fish) were evaluated via toxic units (TUs) and risk quotients (RQs), while risk assessment on human health was performed using hazard index (HI). Although TU results showed no acute risks to the aquatic organisms in the overlying water and surface sediments, RQ results of the mixture showed high risks to the aquatic invertebrate and fish in all water samples. Individual HI values and cumulative HI values were on the order of 10?6–10?3 for children and adults, suggesting no potential risks to either children or adults through drinking and bathing.

Graphical abstract
  相似文献   

4.

Drinking water reservoirs are threatened globally by anthropogenic nitrogen pollution. Hydrochemistry and isotopes were analyzed to identify spatial and temporal varieties of main nitrate sources in a large drinking water reservoir in East China. The results showed that NO3? was the main nitrogen form in both the dry and wet seasons, but dissolved organic nitrogen (DON) was increased in the wet season. The δ15N-NO3? values (+?1.3‰ to +?11.8‰) and δ18O-NO3? values (+?2.5‰ to +?13.5‰), combined with principal component analysis (PCA), indicated that chemical fertilizer was the main nitrate source during the dry season, while chemical fertilizer, soil N, and sewage/manure were the main nitrate sources during the wet season in the Qiandao Lake area. And, the nitrate isotopes showed the significant nitrification and assimilation in the Qiandao Lake area. A Bayesian isotopic mixing model (Stable Isotope Analysis in R) was applied to the spatial and seasonal trends in the proportional contribution of four NO3? sources (chemical fertilizer (CF), soil nitrogen (SN), sewage and manure (SM), and atmospheric deposition (AD)) in the Qiandao Lake area. It was revealed that CF was the most important nitrate source in the dry season, accounting for 53.4% with 19.2% of SM and 18.9% of SN, while the contribution of SN increased in the wet season, accounting for 31.6%, followed by CF (30.8%) and then SM (24.2%). The main nitrate sources in the urban area, rural area, and central lake area were CF and SN, accounting for 66.1% in the urban area, 71.7% in the rural area, and 68.2% in the central lake area. Measures should be made to improve chemical fertilizer use efficiency and to reduce nitrogen loss in the Qiandao Lake area.

.

  相似文献   

5.

The chitosan-stabilized ferrous sulfide nanoparticles were loaded on biochar to prepare a composite material FeS-CS-BC for effective removal of hexavalent chromium in water. BC and FeS-CS-BC were characterized by Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. Batch experiments were employed to evaluate the Cr(VI) removal performance. The experimental results showed that the removal rate of Cr(VI) by FeS-CS-BC(FeS:CS:BC?=?2:2:1) reached 98.34%, which was significantly higher than that of BC (44.58%) and FeS (79.91%). In the pH range of 2–10, the removal of Cr(VI) by FeS-CS-BC was almost independent of pH. The limitation of coexisting anions (Cl?、SO42?、NO3?) on Cr(VI) removal was not too obvious. The removal of Cr(VI) by FeS-CS-BC was fitted with the pseudo-second-order dynamics, which was a hybrid chemical-adsorption reaction. The X-ray photoelectron spectroscopy (XPS) analysis result showed that Cr(VI) was reduced, and the reduced Cr(VI) was fixed on the surface of the material in the form of Cr(VI)–Fe(III).

Removal of hexavalent chromium from wastewater by FeS-CS-BC composite synthesized by impregnation.

  相似文献   

6.

In the context of urban agriculture, where soils are frequently contaminated with metal(loid)s (TM), we studied the influence of vermicompost amendments on symbiotic fungal communities associated with plants grown in two metal-rich soils. Leek (Allium porrum L.) plants were grown with or without vermicompost in two metal-rich soils characterized by either geogenic or anthropogenic TM sources, to assess the influence of pollutant origin on soil-plant transfer. Fungal communities associated with the leek roots were identified by high throughput Illumina MiSeq and TM contents were measured using mass spectrometry. Vermicompost addition led to a dramatic change in the fungal community with a loss of diversity in the two tested soils. This effect could partially explain the changes in metal transfer at the soil-AMF-plant interface. Our results suggest being careful while using composts when growing edibles in contaminated soils. More generally, this study highlights the need for further research in the field of fungal communities to refine practical recommendations to gardeners.

Graphical abstract

  相似文献   

7.

The main characteristic of eutrophication is cyanobacteria harmful algae blooms. Microcystin-leucine arginine (MC-LR) is considered to be the most toxic and most commonly secondary metabolite produced by cyanobacteria. It has been reported that MC-LR had potential vascular toxicity. However, the mechanism that MC-LR-induced vascular toxicity is very limited and remains to be clarified. The aim of this study was to evaluate the toxic hazard toward the vasculogenesis and angiogenesis of MC-LR. Its effects on vasculogenesis, sprouting angiogenesis, and endothelial cell tube formation were studied. The study showed that MC-LR exposure blocked vasculogenesis in zebrafish embryos, sprouting angiogenesis from rat aorta, and tube formation of human umbilical vein endothelial cells (HUVECs). In addition, MC-LR exposure also induced the disruption of cytoskeletal structures and markedly inhibited endothelial cell (EC) migration from caudal hematopoietic tissue in zebrafish and HUVEC migration. Western blot analysis showed that MC-LR exposure downregulated the expressions of integrin β1, FAK, Rho, and ROCK. Combined with these results, MC-LR could induce disruption of cytoskeleton via downregulating integrin-mediated FAK/ROCK signaling pathway, leading to the inhibition of EC migration, which finally blocked vasculogenesis and angiogenesis.

Graphical abstract
  相似文献   

8.

A review of the applicability of electron beam water radiolysis for sewage sludge treatment is presented. Electron beam treatment has been proven to be a successful approach to the disinfection of both wastewater and sewage sludge. Nevertheless, before 2000, there were concerns about the perceived high capital costs of the accelerator and with public acceptance of the usage of radiation for water treatment purposes. Nowadays, with increased knowledge and technological development, it may be not only possible but also desirable to use electron beam technology for risk-free sewage sludge treatment, disposal and bio-friendly fertiliser production. Despite the developing interest in this method, there has been no attempt to perform a review of the pertinent literature relating to this technology. It appears that understanding of the mechanism and primary parameters of disinfection is key to optimising the process. This paper aims to reliably characterise the sewage sludge electron beam treatment process to elucidate its major issues and make recommendations for further development and research.

Graphical abstract

  相似文献   

9.

Atmospheric contamination by heavy metal(loid)–enriched particulate matter (metal-PM) is highly topical these days because of its high persistence, toxic nature, and health risks. Globally, foliar uptake of metal(loid)s occurs for vegetables/crops grown in the vicinity of industrial or urban areas with a metal-PM-contaminated atmosphere. The current study evaluated the foliar uptake of arsenic (As), accumulation of As in different plant organs, its toxicity (in terms of ROS generation, chlorophyll degradation, and lipid peroxidation), and its defensive mechanism (antioxidant enzymes) in spinach (Spinacia oleracea) after foliar application of As in the form of nanoparticles (As-NPs). The As-NPs were prepared using a chemical method. Results indicate that spinach can absorb As via foliar pathways (0.50 to 0.73 mg/kg in leaves) and can translocate it towards root tissues (0.35 to 0.68 mg/kg). However, health risk assessment parameters showed that the As level in the edible parts of spinach was below the critical limit (hazard quotient <?1). Despite low tissue level, As-NP exposure caused phytotoxicity in terms of a decrease in plant dry biomass (up to 84%) and pigment contents (up to 38%). Furthermore, several-fold higher activities of antioxidant enzymes were observed under metal stress than control. However, no significant variation was observed in the level of hydrogen peroxide (H2O2), which can be its possible transformation to other forms of reactive oxygen species (ROS). It is proposed that As can be absorbed by spinach via foliar pathway and then disturbs the plant metabolism. Therefore, air quality needs to be considered and monitored continuously for the human health risk assessment and quality of vegetables cultivated on polluted soils (roadside and industrial vicinity).

?

  相似文献   

10.

Wild black rats (Rattus rattus) inhabiting Abule Egba landfill (AEL) were used as zoomonitor to assess health risk associated with exposure to hazardous chemicals from landfills. Twenty five R. rattus (16♂ and 9♀) captured within AEL and 15 (9♂ and 6♀) (control) caught from Iyano Ipaja (10 km away from AEL) were examined for bone marrow micronucleated polychromatic erythrocytes (MNPCE) and polychromatic erythrocytes/normochromatic erythrocytes (PCE/NCE) ratio, abnormal sperm morphology, alterations in hematological indices and erythrocyte morphology, and histopathology of the viscera using standard protocols. There was significant (p < 0.05) increase in MNPCE but decrease PCE/NCE ratio in bone marrow cells of exposed rats than the reference site. MNPCE was insignificantly higher in male than females. Cauda epididymal sperms from exposed rats showed significant high frequency of teratozoospermia. Erythrocyte count, hemoglobin concentrations, percentage hematocrits, mean corpuscular hemoglobin concentrations, leucocyte count, and lymphocytes decreased while mean corpuscular volume, neutrophils, and mean corpuscular hemoglobin increased in the exposed rats compared to the control. Also, abnormal erythrocyte morphology: acanthocytes, codocytes (target cells), schizocytes, and tear drops significantly increased in the exposed rats. Marginal sexual dimorphism was observed between males and females in the incidence of hematological indices. Histopathological lesions including interstitial edema, hemorrhage, lymphoid depletion, cellular infiltrations, proliferation of the alveolar pneumocytes, necrosis, tissue degeneration, and reduced germinal epithelium were observed in the testes, liver, lungs, heart, kidney, and spleen from the exposed rats compared to the control. Some physicochemicals and metals analyzed in leachates from the landfill are capable of inducing genome instability and systemic toxicity in the exposed rats. Rattus rattus exposed to hazardous chemicals from AEL harbored somatic and germ cell mutations, and tissue damage compared to the control rats. We suggest that R. rattus are useful sentinel for genotoxicity and system toxicity assessment of landfill-polluted sites.

Graphical abstract

  相似文献   

11.

Electrocoagulation (EC) is an excellent and promising technology in wastewater treatment, as it combines the benefits of coagulation, flotation, and electrochemistry. During the last decade, extensive researches have focused on removal of emerging contaminants by using electrocoagualtion, due to its several advantages like compactness, cost-effectiveness, efficiency, low sludge production, and eco-friendness. Emerging contaminants (ECs) are micropollutants found in trace amounts that discharging into conventional wastewater treatment (WWT) plants entering surface waters and imposing a high threat to human and aquatic life. Various studies reveal that about 90% of emerging contaminants are disposed unscientifically into water bodies, creating problems to public health and environment. The studies on removal of emerging contaminants from wastewater are by global researchers are critically reviewed. The core findings proved that still more research required into optimization of parameters, system design, and economic feasibility to explore the potential of EC combined systems. This review has introduced an innovative collection of current knowledge on electro-coagulation for the removal of emerging contaminants.

Graphical abstract
  相似文献   

12.

The present study validates the oil-based paint bioremediation potential of Bacillus subtilis NAP1 for ecotoxicological assessment using a three-dimensional multi-species bio-testing model. The model included bioassays to determine phytotoxic effect, cytotoxic effect, and antimicrobial effect of oil-based paint. Additionally, the antioxidant activity of pre- and post-bioremediation samples was also detected to confirm its detoxification. Although, the pre-bioremediation samples of oil-based paint displayed significant toxicity against all the life forms. However, post-bioremediation, the cytotoxic effect against Artemia salina revealed substantial detoxification of oil-based paint with LD50 of 121 μl ml?1 (without glucose) and >?400 μl ml?1 (with glucose). Similarly, the reduction in toxicity against Raphanus raphanistrum seeds germination (%FG?=?98 to 100%) was also evident of successful detoxification under experimental conditions. Moreover, the toxicity against test bacterial strains and fungal strains was completely removed after bioremediation. In addition, the post-bioremediation samples showed reduced antioxidant activities (% scavenging?=?23.5?±?0.35 and 28.9?±?2.7) without and with glucose, respectively. Convincingly, the present multi-species bio-testing model in addition to antioxidant studies could be suggested as a validation tool for bioremediation experiments, especially for middle and low-income countries.

?

  相似文献   

13.

Trimethylamine (TMA) is an odorous volatile organic compound emitted by industries. Algal-based biotechnologies have been proven as a feasible alternative for wastewater treatment, although their application to abate polluted air emissions is still scarce. This work comparatively assessed the removal of TMA in a conventional bacterial bubble column bioreactor (BC) and a novel algal-bacterial bubble column photobioreactor (PBC). The PBC exhibited a superior TMA abatement performance compared to the conventional BC. In this sense, the BC reached a removal efficiency (RE) and an elimination capacity (EC) of 78% and 12.1 g TMA m?3 h?1, respectively, while the PBC achieved a RE of 97% and a EC of 16.0 g TMA m?3·h?1 at an empty bed residence time (EBRT) of 2 min and a TMA concentration ~500 mg m?3. The outstanding performance of the PBC allowed to reduce the operating EBRT to 1.5 and 1 min while maintaining high REs of 98 and 94% and ECs of 21.2 and 28.1 g m?3·h?1, respectively. Moreover, the PBC improved the quality of the gas and liquid effluents discharged, showing a net CO2 consumption and decreasing by ~ 30% the total nitrogen concentration in the liquid effluent via biomass assimilation. A high specialization of the bacterial community was observed in the PBC, Mumia and Aquamicrobium sp. being the most abundant genus within the main phyla identified.

GraphicalAbstract

  相似文献   

14.

Echinacea purpurea (L.) Moench was selected as a remediation plant in this study, and different concentrations of graphene oxide (GO) were added to Cd-contaminated soil. Through pot experiments, the effect of E. purpurea on Cd-contaminated soil was determined at 60 days, 120 days, and 150 days. A preliminary study on the remediation mechanism of GO was explored through changes in the forms of Cd in the rhizosphere soil, soil pH, and soil functional groups. Results showed that the optimal concentration of GO was 0.4 g/kg, and under the condition, the accumulation of Cd in the roots of E. purpurea was as high as 113.69 ± 23.86 mg/kg, and the maximum EF reached 5.87 ± 1.34. Compared with those of the control group, accumulated Cd concentration and EF in the roots increased by 60.34% and 2.32, respectively. Correlation analysis showed that the absorption and accumulation of Cd was negatively correlated with the exchangeable Cd content at 120 days, and the exchangeable Cd was negatively correlated with the relative content of functional groups in the soil with 0.4 g/kg GO (E2). The artificial application of GO to the soil can be used as an effective way to improve the effect of E. purpurea in the remediation of Cd soil pollution, and it has great application potential in the stabilization of plants and vegetations and restoration of high-concentration Cd-contaminated soil.

Graphical abstract
  相似文献   

15.

Climate change and increased greenhouse gas emissions boost the global average temperature to less than 2°C, which is the estimated breakeven point. The globe is moving into blue pollution economies as the environmental sustainability objective becomes more distorted. The study looked at three United Nations Sustainable Development Goals, namely (i) affordable and clean energy; (ii) industry, innovation, and infrastructure; and (iii) climate change, to see how far the Chinese economy has progressed toward green and clean development strategy. In the context of China, the “pollution damage function” was intended to refer to carbon damages related to carbon pricing, technological variables, sustained economic growth, incoming foreign investment, and green energy. The data was collected between 1975 and 2019 and analyzed using various statistical approaches. The results of the autoregressive distributed lag model suggest that carbon taxes on industrial emissions reduce carbon damages in the short and long run. Furthermore, a rise in inbound foreign investment and renewable energy demand reduces carbon damages in the short term, proving the “pollution halo” and “green energy” hypotheses; nonetheless, the results are insufficient to explain the stated results in the long run. In the long run, technology transfers and continued economic growth are beneficial in reducing carbon damages and confirming the potential of cleaner solutions in pollution mitigation. The causal inferences show the one-way relationship running from carbon pricing and technology transfer to carbon damages, and green energy to high-technology exports in a country. The impulse response estimates suggested that carbon tax, inbound foreign investment, and technology transfers likely decrease carbon damages for the next 10 years. On the other hand, continued economic growth and inadequate green energy sources are likely to increase carbon pollution in a country. The variance decomposition analysis suggested that carbon pricing and information and communication technology exports would likely significantly influence carbon damages over time. To keep the earth’s temperature within the set threshold, the true motivation to shift from a blue to a green economy required strict environmental legislation, the use of green energy sources, and the export of cleaner technologies.

Graphical abstract

Source: Authors’ self-extract

  相似文献   

16.

Agriculture is the main occupation of the majority of people in India. The majority of the population in India is dependent (directly or indirectly) on agriculture as an occupation. The agriculture sector requires more freshwater and power for better yield in the current scenario. Nevertheless, the ever-increasing rate of energy consumption, limited fossil fuels, and rising pollution have made the expansion of renewable resources essential. Due to the suitable solar potential available in India, the deployment of solar energy has been more as compared to other renewable resources. The current study aims to discuss the various technologies, initiatives and policies of solar energy usage in agriculture. This work delivers an assessment of the advancement of solar energy vis-à-vis agricultural applications through the greenhouse concept and photovoltaic approach in India. Various agricultural applications of solar energy, such as solar water desalination system, solar water pumping system, solar crop dryer system for food safety, etc. are discussed as a means to promote solar-based technology. It also highlights the scenario of solar energy in India with important accomplishments, developmental approaches, and future potential. In-depth studies of various policies and government initiatives including those in research and development are also discussed. The current survey on solar technologies will be an aid to agribusiness frameworks to comprehend the statuses, obstructions, and extent of advancement. Finally, some future recommendations for further developments in this approach are discussed. This work sheds light on varied areas of solar energy-assisted agricultural systems as a potentially sustainable and eco-friendly pathway.

Graphical abstract
  相似文献   

17.

Few studies have carried out soil washing experiments using pot experiments to simulate in situ soil washing operations, particularly for alkaline soils. This study explored the effects of multiple washing operations using pot experiments on the removal efficiencies of potentially toxic metals (PTM) from alkaline farmland soil and the reuse strategy of washed soil for safe agricultural production. The results showed that the removal efficiencies of Cd, Pb, Cu, and Zn after seven washings with a mixed chelator (EDTA, GLDA, and citric acid) were 41.1%, 47.1%, 14.7%, and 26.5%, respectively, which was close to the results of the EDTA treatment. For the alkaline soil studied, the second washing with the mixed chelators most effectively removed PTM owing to the activation of them after the first washing operation. The mixed chelator more effectively increased the proportion of stable fraction of PTM and maintained soil nutrients (e.g., nitrogen content) than EDTA, indicating little disturbance of alkaline soil quality after washing with the mixed chelator. After the amendment of the washed soil, there was no visible difference in the biomass weight of crops from the soils washed with different agents, indicating that the inhibitory effect of both washing agents on plant growth was effectively alleviated. The Cd and Pb contents in Z. mays were below the threshold of Hygienical Standard for Feeds of China (GB 13078–2017) (1 and 30 mg·kg?1). Moreover, after three cropping operations, the available concentrations of PTM in the soil washed with the mixed chelator were lower than those in the soil washed with EDTA, indicating the value and potential of agricultural reuse of alkaline farmland soil washed with the mixed chelator.

Graphical abstract
  相似文献   

18.

Clogging is the most significant challenge limiting the application of constructed wetlands. Application of a forced resting period is a practical way to relieve clogging, particularly bioclogging. To reveal the alleviation mechanisms behind such a resting operation, evapotranspiration and oxygen flux were studied during a resting period in a laboratory vertical-flow constructed wetland model through physical simulation and numerical model analysis. In addition, the optimum theoretical resting duration was determined based on the time required for oxygen to completely fill the pores, i.e., formation of a sufficiently thick and completely dry layer. The results indicated that (1) evapotranspiration was not the key factor, but was a driving force in the alleviation of bioclogging; (2) the rate of oxygen diffusion into the pores was sufficient to oxidize and disperse the flocculant biofilm, which was essential to alleviate bioclogging. This study provides important insights into understanding how clogging/bioclogging can be alleviated in vertical-flow constructed wetlands.

Evapotranspiration versus oxygen intrusion in alleviating bioclogging in vertical flow constructed wetlands

  相似文献   

19.

Phosphogypsum (PG) is one of solid wastes with large amount of yield and serious pollution, which has attracted wide attention. The aim of this study is to investigate filling performance of PG on polypropylene (PP) or high-density polyethylene (HDPE) matrix. In this work, PG was calcined initially to improve whiteness and fix impurities. X-ray diffraction (XRD) results showed that after calcined at 500 °C, the PG phase changed from CaSO4·2H2O to CaSO4. The modification effects of the three modifiers were evaluated by Fourier transform infrared spectra (FTIR), oil absorption value, water floatability, and contact angle analysis. The effects of weight fraction of PG in PP and HDPE matrix on mechanics and morphology were observed by tensile test, impact test, and scanning electron microscope. Scanning electron microscope (SEM) showed that modified PG can be dispersed uniformly in the matrix at low filling content. With the increase of PG filling content, the analysis of mechanical properties showed that the tensile strength of HDPE matrix increased, while the tensile strength of PP matrix decreased gradually. The impact strength of HDPE matrix would decrease, but the impact strength of PP matrix increased first and then decreased. Compared with calcium carbonate (CC), the mechanical properties of HDPE filled with PG performed better. The apparent density showed that polymer composites filled with PG have the characteristics of light weight.

Graphical abstract
  相似文献   

20.

The green innovations, environmental policies, and carbon taxes are the tools to achieve sustainable development goals (SDGs) in the mitigation process. This study is intended to examine the impact of innovation, carbon pricing (CTAX), environmental policies (EP), and energy consumption (ECON) on PM2.5 and greenhouse gas (GHG) emission for Central-Eastern European countries. The panel effect during 2000–2018 is tested using a dynamic panel data model while the Granger causality approach obtains country-related outcomes. The outcomes reveal that eco-friendly innovations have a more profound effect on carbon mitigation. Environmental policies reduce emissions by 2.7% in the short run and 17.4% in the long run. Similarly, CTAX mitigates GHG emissions by 8.6% in the short-run and PM2.5 by 0.9% and 5.7% in the short and long run. However, urbanization, energy consumption and trade openness are the leading polluters in the region. The main findings remain dominant in the country-specific results and find unidirectional and bidirectional causality evidence among variables. The research concludes that green innovations and strict environmental policy can lead towards achieving sustainable development goals using carbon taxes as a tool on the way.

Graphical abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号