首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most studies on the treatment of chlorinated contaminants by Fe(0) focus on aqueous system tests. However, few is known about the effectiveness of these tests for degrading chlorinated contaminants such as 1,1,1-trichloroethane (TCA) in soil. In this work, the reductive degradation performance of 1,1,1-TCA by Fe(0) was thoroughly investigated in a soil slurry system. The effects of various factors including acid-washed iron, the initial 1,1,1-TCA concentration, Fe(0) dosage, slurry pH, and common constituents in groundwater and soil such as Cl?, HCO3 ?, SO4 2?, and NO3 ? anions and humic acid (HA) were evaluated. The experimental results showed that 1,1,1-TCA could be effectively degraded in 12 h for an initial Fe(0) dosage of 10 g L?1 and a soil/water mass ratio of 1:5. The soil slurry experiments showed two-stage degradation kinetics: a slow reaction in the first stage and a fast reductive degradation of 1,1,1-TCA in the second stage. The reductive degradation of 1,1,1-TCA was expedited as the mass concentration of Fe(0) increased. In addition, high pHs adversely affected the degradation of 1,1,1-TCA over a pH range of 5.4–8.0 and the reductive degradation efficiency decreased with increasing slurry pH. The initial 1,1,1-TCA concentration and the presence of Cl? and SO4 2? anions had negligible effects. HCO3 ? anions had a accelerative effect on 1,1,1-TCA removal, and both NO3 ? and HA had inhibitory effects. A Cl? mass balance showed that the amount of Cl? ions released into the soil slurry system during the 1,1,1-TCA degradation increased with increasing reaction time, suggesting that the main degradation mechanism of 1,1,1-TCA by Fe(0) in a soil slurry system was reductive dechlorination with 1,1-DCA as the main intermediate. In conclusion, this study provides a theoretical basis for the practical application of the remediation of contaminated sites containing chlorinated solvent.  相似文献   

2.
A field study was performed to evaluate the potential for in-situ aerobic cometabolism of 1,1,1-trichloroethane (1,1,1-TCA) through bioaugmentation with a butane enrichment culture containing predominantly two Rhodococcus sp. strains named 179BP and 183BP that could cometabolize 1,1,1-TCA and 1,1-dicholoroethene (1,1-DCE). Batch tests indicated that 1,1-DCE was more rapidly transformed than 1,1,1-TCA by both strains with 183BP being the most effective organism. This second in a series of bioaugmentation field studies was conducted in the saturated zone at the Moffett Field In Situ Test Facility in California. In the previous test, bioaugmentation with an enrichment culture containing the 183BP strain achieved short term in situ treatment of 1,1-DCE, 1,1,1-TCA, and 1,1-dichloroethane (1,1-DCA). However, transformation activity towards 1,1,1-TCA was lost over the course of the study. The goal of this second study was to determine if more effective and long-term treatment of 1,1,1-TCA could be achieved through bioaugmentation with a highly enriched culture containing 179BP and 183BP strains. Upon bioaugmentation and continuous addition of butane and dissolved oxygen and or hydrogen peroxide as sources of dissolved oxygen, about 70% removal of 1,1,1-TCA was initially achieved. 1,1-DCE that was present as a trace contaminant was also effectively removed ( 80%). No removal of 1,1,1-TCA resulted in a control test leg that was not bioaugmented, although butane and oxygen consumption by the indigenous populations was similar to that in the bioaugmented test leg. However, with prolonged treatment, removal of 1,1,1-TCA in the bioaugmented leg decreased to about 50 to 60%. Hydrogen pexoxide (H2O2) injection increased dissolved oxygen concentration, thus permitting more butane addition into the test zone, but more effective 1,1,1-TCA treatment did not result. The results showed bioaugmentation with the enrichment cultures was effective in enhancing the cometabolic treatment of 1,1,1-TCA and low concentrations of 1,1-DCE over the entire period of the 50-day test. Compared to the first season of testing, cometabolic treatment of 1,1,1-TCA was not lost. The better performance achieved in the second season of testing may be attributed to less 1,1-DCE transformation product toxicity, more effective addition of butane, and bioaugmentation with the highly enriched dual culture.  相似文献   

3.
Dissolved silica species are naturally occurring, ubiquitous groundwater constituents with corrosion-inhibiting properties. Their influence on the performance and longevity of iron-based permeable reactive barriers for treatment of organohalides was investigated through long-term column studies using Connelly iron as the reactive medium. Addition of dissolved silica (0.5 mM) to the column feed solution led to a reduction in iron reactivity of 65% for trichloroethylene (TCE), 74% for 1,1,2-trichloroethane (1,1,2-TCA), and 93% for 1,1,1-trichloroethane (1,1,1-TCA), compared to columns operated under silica-free conditions. Even though silica adsorption was a gradual process, the inhibitory effect was evident within the first week, with subsequent decreases in reactivity over 288 days being relatively minor. Lower concentrations of dissolved silica species (0.2 mM) led to a lesser decrease (70%) in iron reactivity toward 1,1,1-TCA. The presence of dissolved silica species produced a shift in TCE product distribution toward the more highly chlorinated product cis-dichloroethylene (cis-DCE), although it did not appear to alter products originating from the trichloroethanes. The major corrosion products identified were magnetite (Fe3O4) or maghemite (gamma-Fe2O3) and carbonate green rust ([Fe4(2+)Fe(2)3+(OH)12][CO(3).2H2O]). Iron carbonate hydroxide (Fe(II)1.8Fe(III)0.2(OH)2.2CO3) was only found in the silica-free column, indicating that silica may hinder its formation. A comparison with columns operated under the same conditions, but using Master Builder iron as the reactive matrix, showed that Connelly iron is initially less reactive, but performs better than Master Builder iron over 288 days.  相似文献   

4.
The transformability of trihalomethanes, carbon tetrachloride, 1,1,1-trichloroethane, 1,2-dibromoethane, tetrachloroethylene, hexachloroethane, and dibromochloropropane was studied under conditions of denitrification, sulfate respiration, and methanogenesis. These compounds at concentrations commonly found in groundwater were continuously administered to anoxic biofilm columns that resembled groundwater environments. Acetate was the primary substrate to support microbial growth. All of the compounds studied were transformed under methanogenesis. Bromoform, bromodichloromethane, carbon tetrachloride, and hexachloroethane were transformed even under the less reducing conditions of denitrification. Some of the compounds were partially mineralized to CO2. However, reductive dehalogenation appeared to be the predominant mechanism for removal. Characterization of the available electron acceptors in the subsurface is important for assessing organic micropollutant biotransformation. Reaction rates observed in the laboratory biofilms indicate that biotransformation could be responsible for significant removals of these halogenated compounds in the subsurface.  相似文献   

5.
零价铁与厌氧微生物协同还原地下水中的硝基苯   总被引:1,自引:0,他引:1  
通过间歇式实验,考察了零价铁与厌氧微生物协同还原地下水中硝基苯的效果。实验结果表明,由零价铁腐蚀为厌氧微生物提供H2电子供体还原硝基苯的效果明显优于零价铁和微生物单独作用,硝基苯去除率分别提高21.8%和57.0%。弱酸性条件有利于协同反应进行,当初始pH为5.0和6.0时,4 d后硝基苯去除率比初始pH为7.0时的提高74.4%和35.2%。增加零价铁投加量可提高协同还原的效果,零价铁最佳投加量为250 mg/L。零价铁腐蚀产生的Fe2+无法作为电子供体被微生物利用,但可作为无机营养元素促进协同过程。由于零价铁产H2速率受表面覆盖物影响不明显,在地下水修复过程中可保证协同效果并延长零价铁的使用寿命。  相似文献   

6.
An important issue of concern for permeable reactive iron barriers is the long-term efficiency of the barriers due to the long operational periods required. Mineral precipitation resulting from the anaerobic corrosion of the iron filings and bacteria present in the barrier may play an important role in the long-term performance. An integrated study was performed on the Vapokon permeable reactive barrier (PRB) in Denmark by groundwater and iron core sample characterization. The detailed field groundwater sampling carried out from more than 75 well screens up and downstream the barrier showed a very efficient removal (>99%) for the most important CAHs (PCE, TCE and 1,1,1-TCA). However, significant formation of cis-DCE within the PRB resulted in an overall insufficient efficiency for cis-DCE removal. The detailed analysis of the upstream groundwater revealed a very heterogeneous spatial distribution of contaminant loading into the PRB, which resulted in that only about a quarter of the barrier system is treating significant loads of CAHs. Laboratory batch experiments using contaminated groundwater from the site and iron material from the core samples revealed that the aged iron material performed equally well as virgin granular iron of the same type based on determined degradation rates despite that parts of the cored iron material were covered by mineral precipitates (especially iron sulfides, carbonate green rust and aragonite). The PCR analysis performed on the iron core samples indicated the presence of a microbial consortium in the barrier. A wide range of species were identified including sulfate and iron reducing bacteria, together with Dehalococcoides and Desulfuromonas species indicating microbial reductive dehalogenation potential. The microbes had a profound effect on the performance of the barrier, as indicated by significant degradation of dichloromethane (which is typically unaffected by zero valent iron) within the barrier.  相似文献   

7.
The suitability of a granulated zero valent iron (ZVI) permeable reactive barrier (PRB) remediation strategy was investigated for tribromoethene (TriBE), cis-1,2-dibromoethene (c-DBE), trans-1,2-dibromoethene (t-DBE) and vinyl bromide (VB), via batch and large-scale column experiments that were subsequently analysed by reactive transport modelling.The brominated ethenes in both batch and large-scale column experiments showed rapid (compared to controls and natural attenuation) degradation in the presence of ZVI. In the large-scale column experiment, degradation half-lives were 0.35 days for TriBE, 0.50 days for c-DBE, 0.31 days for t-DBE and 0.40 days for VB, under site groundwater flow conditions, resulting in removal of brominated ethenes within the first 0.2 m of a 1.0 m thick ZVI layer, indicating that a PRB groundwater remediation strategy using ZVI could be used successfully.In the model simulations of the ZVI induced brominated ethene degradation, assuming a dominant reductive β-elimination pathway via bromoacetylene and acetylene production, simulated organic compound concentrations corresponded well with both batch and large-scale column experimental data. Changes of inorganic reactants were also well captured by the simulations. The similar ZVI induced degradation pathway of TriBE and TCE suggests that outcomes from research on ZVI induced TCE remediation could also be applied to TriBE remediation.  相似文献   

8.

This work demonstrates the impact of hydroxylamine hydrochloride (HAH) addition on enhancing the degradation of trichloroethene (TCE) by the citric acid (CA)-chelated Fe(II)-catalyzed percarbonate (SPC) system. The results of a series of batch-reactor experiments show that TCE removal with HAH addition was increased from approximately 57 to 79% for a CA concentration of 0.1 mM and from 89 to 99.6% for a 0.5 mM concentration. Free-radical probe tests elucidated the existence of hydroxyl radical (HO) and superoxide anion radical (O2 •-) in both CA/Fe(II)/SPC and HAH/CA/Fe(II)/SPC systems. However, higher removal rates of radical probe compounds were observed in the HAH/CA/Fe(II)/SPC system, indicating that HAH addition enhanced the generation of both free radicals. In addition, increased contribution of O2 •- in the HAH/CA/Fe(II)/SPC system compared to the CA/Fe(II)/SPC system was verified by free-radical scavengers tests. Complete TCE dechlorination was confirmed based on the total mass balance of the released Cl species. Lower concentrations of formic acid were produced in the later stages of the reaction for the HAH/CA/Fe(II)/SPC system, suggesting that HAH addition favors complete TCE mineralization. Studies of the impact of selected groundwater matrix constituents indicate that TCE removal in the HAH/CA/Fe(II)/SPC system is slightly affected by initial solution pH, with higher removal rates under acidic and near neutral conditions. Although HCO3 was observed to have an adverse impact on TCE removal for the HAH/CA/Fe(II)/SPC system, the addition of HAH reduced its inhibitory effect compared to the CA/Fe(II)/SPC system. Finally, TCE removal in actual groundwater was much significant with the addition of HAH to the CA/Fe(II)/SPC system. The study results indicate that HAH amendment has potential to enhance effective remediation of TCE-contaminated groundwater.

  相似文献   

9.
修复铬污染地下水的可渗透反应墙介质筛选   总被引:1,自引:0,他引:1  
通过实验研究筛选出一种经济、高效的用于修复铬污染地下水的可渗透反应墙(PRB)介质。实验以铬污染地下水为研究对象,分别对Fe0、Fe0+石英砂和包覆型零价铁填料进行了筛选实验,选取处理效果好且经济可行的包覆型零价铁材料作为PRB反应介质。结果表明,以包覆型零价铁材料作为PRB反应介质,大大提高了铁粉的利用效率,且缓解了系统堵塞严重的问题。以包覆型零价铁材料作为PRB反应介质修复Cr(VI)污染地下水是可行的。  相似文献   

10.
A permeable reactive barrier (PRB) was installed in Aznalcóllar (Spain) in order to rehabilitate the Agrio aquifer groundwater severely contaminated with acid mine drainage after a serious mining accident. The filling material of the PRB consisted of a mixture of calcite, vegetal compost and, locally, Fe0 and sewage sludge. Among the successes of the PRB are the continuous neutralisation of pH and the removal of metals from groundwater within the PRB (removals of >95 %). Among the shortcomings are the improper PRB design due to the complexity of the internal structure of the Agrio alluvial deposits (which resulted in an inefficient capture of the contaminated plume), the poor degradability of the compost used and the short residence time within the PRB (which hindered a complete sulphate reduction), the clogging of a section of the PRB and the heterogeneities of the filling material (which resulted in preferential flows within the PRB). Undoubtedly, it is only through accumulated experience at field-scale systems that the potentials and limits of the PRB technology can be determined.  相似文献   

11.
Lim LL  Lynch R 《Chemosphere》2011,82(4):613-620
Methyl tert-butyl ether (MTBE) groundwater remediation projects often require a combination of technologies resulting in increasing the project costs. A cost-effective in situ photocatalytic reactor design, Honeycomb II, is proposed and tested for its efficiency in MTBE degradation at various flows. This study is an intermediate phase of the research in developing an in situ photocatalytic reactor for groundwater remediation. It examines the effect of the operating variables: air and water flow and double passages through Honeycomb II, on the MTBE removal. MTBE vaporisation is affected by not only temperature, Henry’s law constant and air flow to volume ratio but also reactor geometry. The column reactor achieved more than 84% MTBE removal after 8 h at flows equivalent to horizontal groundwater velocities slower than 21.2 cm d−1. Despite the contrasting properties between a photocatalytic indicator methylene blue and MTBE, the reactor efficiency in degrading both compounds showed similar responses towards flow (equivalent groundwater velocity and hydraulic residence time (HRT)). The critical HRT for both compounds was approximately 1 d, which corresponded to a velocity of 21.2 cm d−1. A double pass through both new and used catalysts achieved more than 95% MTBE removal after two passes in 48 h. It also verified that the removal efficiency can be estimated via the sequential order of the removal efficiency of one pass obtained in the laboratory. This study reinforces the potential of this reactor design for in situ groundwater remediation.  相似文献   

12.
Lu C  Bjerg PL  Zhang F  Broholm MM 《Chemosphere》2011,83(11):1467-1474
The sorption of chlorinated solvents and degradation products on seven natural clayey till samples from three contaminated sites was investigated by laboratory batch experiments in order to obtain reliable sorption coefficients (Kd values). The sorption isotherms for all compounds were nearly linear, but fitted by Freundlich isotherms slightly better over the entire concentration range. For chloroethylenes, tetrachloroethylene (PCE) was most strongly sorbed to the clayey till samples (Kd = 0.84-2.45 L kg−1), followed by trichloroethylene (TCE, Kd = 0.62-0.96 L kg−1), cis-dichloroethylene (cis-DCE, Kd = 0.17-0.82 L kg−1) and vinyl chloride (VC, Kd = 0.12-0.36 L kg−1). For chloroethanes, 1,1,1-trichloroethane (1,1,1-TCA) was most strongly sorbed (Kd = 0.2-0.45 L kg−1), followed by 1,1-dichloroethane (1,1-DCA, Kd = 0.16-0.24 L kg−1) and chloroethane (CA, Kd = 0.12-0.18 L kg−1). This is consistent with the order of hydrophobicity of the compounds. The octanol-water coefficient (log Kow) correlated slightly better with log Kd values than log Koc values indicating that the Kd values may be independent of the actual organic carbon content (foc). The estimated log Koc or log Kd for chlorinated solvents and degradation products determined by regression of data in this study were significantly higher than values determined by previously published empirical relationships. The site specific Kd values as well as the new empirical relationship compared well with calculations on water and soil core concentration for cis-DCE and VC from the Rugårdsvej site. In conclusion, this study with a wide range of chlorinated ethenes and ethanes - in line with previous studies on PCE and TCE - suggest that sorption in clayey tills could be higher than typically expected.  相似文献   

13.
Yu JJ  Chou SY 《Chemosphere》2000,41(3):371-378
Groundwater contaminated by dense, non-aqueous phase liquids (DNAPLs) such as chlorinated solvents has become a serious problem in some regions of Taiwan. The sources of these contaminants are due to industrial discharges. These chlorinated volatile organic compounds (VOCs) have been proven to be carcinogenic to humans. The groundwater is used for domestic drinking water supply in some cities of Taiwan and the severely contaminated groundwater has to be treated in order to meet the requirement of drinking water standards. This study covers two areas of work. In the first part, polluted groundwater samples were collected from the contaminated site and analytical results indicated measurable concentrations of 12 representative chlorinated VOCs in water samples. The primary VOCs detected included trichloroethene (TCE), tetrachloroethene (PCE), 1,1,2-trichloroethane (1,1,2-TCA), and 1,1-dichloroethene (1,1-DCE). Second, to remove VOCs groundwater was treated using adsorption on activated carbon fiber (ACF). This involved pumping groundwater through vessels containing ACF. Most VOCs, including TCE, PCE, 1,1,2-TCA, and DCE, were readily adsorbed onto ACF and are removed from the water stream. Our study showed that the technology was able to significantly reduce chlorinated VOCs concentrations in groundwater.  相似文献   

14.
During 20 months of proper operation the full scale passive treatment in Mina Esperanza (SW Spain) produced around 100 mg/L of ferric iron in the aeration cascades, removing an average net acidity up to 1500 mg/L as CaCO3 and not having any significant clogging problem. Complete Al, As, Cd, Cr, Cu, Ti and V removal from the water was accomplished through almost the entire operation time while Fe removal ranged between 170 and 620 mg/L. The system operated at a mean inflow rate of 43 m3/day achieving an acid load reduction of 597 g·(m2 day)−1, more than 10 times higher than the generally accepted 40 g·(m2 day)−1 value commonly used as a passive treatment system designing criteria. The high performance achieved by the passive treatment system at Mina Esperanza demonstrates that this innovative treatment design is a simple, efficient and long lasting remediation option to treat highly polluted acid mine drainage.  相似文献   

15.

Zero-valent iron (Fe0) has been widely used for Cr(VI) removal; however, the removal mechanisms of Cr(VI) from aqueous solution under complex hydrogeochemical conditions were poorly understood. In this research, the mixed materials containing cast iron and activated carbon were packed in columns for the treatment of aqueous Cr(VI)-Cr(III) in groundwater with high concentration of Ca2+, Mg2+, HCO3 , NO3 , and SO4 2−. We investigate the influences of those ions on Cr(VI) removal, especially emphasizing on the reaction mechanisms and associated precipitations which may lead to porosity loss by using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) techniques. The results show that the precipitations accumulated on the material surface were (Fe/Cr) (oxy)hydroxide, mixed Fe(III)-Cr(III) (oxy)hydroxides, Fe2O3, CaCO3, and MgCO3. During these reactions, the Cr(VI) was reduced to Cr(III) coupled with the oxidated Fe0 to Fe(II) through the galvanic corrosion formed by the Fe0-C and/or the direct electron transfer between Fe0 and Cr(VI). In addition, Cr(VI) could be reduced by aqueous Fe(II), which dominated the whole removal efficiency. The primary aqueous Cr(III) was completely removed together with Cr(III) reduced from Cr(VI) even when Cr(VI) was detected in the effluent, which meant that the aqueous Cr(III) could occupy the adsorption sites. In general, the combined system was useful for the Cr(VI)-Cr(III) treatment based on galvanic corrosion, and the hardness ions had a negative effect on Cr(VI) removal by forming the carbonates which might promote the passivation of materials and decrease the removal capacity of the system.

  相似文献   

16.
为了提高固定化微生物凝胶球的性能,实验研究了在凝胶球中添加无机材料粉末活性炭、SiO2、CaCO3和人造沸石,并从固定化微生物凝胶球的生物活性、机械强度、微观结构和溶出性多方面考核,比较不同无机材料对凝胶球性能的影响。研究结果表明,添加CaCO3能明显提高凝胶球的传质性能,进而提高凝胶球对氨氮的处理效果,添加人造沸石能提高凝胶球的抗拉强度,添加SiO2能提高凝胶球的密度,添加粉末活性炭能提高凝胶球的压缩强度。  相似文献   

17.

Background, aim, and scope  

In literature, the environmental applications of green rust (GR) have mainly been pointed out through the reduction of inorganic contaminants and the reductive dechlorination of chlorinated organics. However, reactions involving GR for the oxidation and mineralization of organic pollutants remain very scantly described. In this study, the ability of three synthetic Fe(II)–Fe(III) green rusts, GR(CO32−), GR(SO42−), and GR(Cl), to promote Fenton-like reaction was examined by employing phenol as a model pollutant. Unlike the traditional Fenton’s reagent (dissolved Fe(II) + H2O2), where the pH values have to be lowered to less than 4, the proposed reaction can effectively oxidize the organic molecules at neutral pH and could avoid the initial acidification which may be costly and destructive for the in situ remediation of contaminated groundwater and soils. The green rust reactivity towards the oxidative transformation of phenol was thoroughly evaluated by performing a large kinetic study, chemical analyses, and spectroscopic investigations.  相似文献   

18.
Abstract

Increasing public concerns over odors and air regulations in nonattainment zones necessitate the remediation of a wide range of volatile organic compounds (VOCs) generated in the poultry-rendering industry. Currently, wet scrubbers using oxidizing chemicals such as chlorine dioxide (ClO2) are utilized to treat VOCs. However, little information is available on the kinetics of ClO2 reaction with rendering air pollutants, limiting wet scrubber design and optimization. Kinetic analysis indicated that ClO2 does not react with hexanal and 2-methylbutanal regardless of pH and temperature and implied that alde-hyde removal occurs primarily via mass transfer. Contrary to the aldehydes, ethanethiol or ethyl mercaptan (a model compound for methanethiol or methyl mercaptan) and dimethyl disulfide (DMDS) rapidly reacted with ClO2. The overall reaction was found to be second and third order for ethanethiol and DMDS, respectively. Moreover, an increase in pH from 3.6 to 5.1 exponentially increased the reaction rate of ethanethiol (e.g., k 2 = 25– 4200 L/mol/sec from pH 3.6 to 5.1) and significantly increased the reaction rate of DMDS if increased to pH 9 (k 3 = 1.4 × 106 L2/mol2/sec). Thus, a small increase in pH could significantly improve wet scrubber operations for removal of odor-causing compounds. However, an increase in pH did not improve aldehyde removal. The results explain why aldehyde removal efficiencies are much lower than methanethiol and DMDS in wet scrub-bers using ClO2.  相似文献   

19.
Isotopic measurements of the 34 m3/s discharge from the Fall River Springs of northern California indicate recharge from 50 km upgradient in high elevation regions of Medicine Lake Volcano. Age determinations suggest less than 20-year travel time. Data demonstrate Klamath Basin further north cannot be a recharge source. Mass balance calculations support that annual precipitation on the volcano supplies observed spring discharge, requiring 50%–75% recharge rates. Radiocarbon and δ13C of dissolved inorganic carbon indicate 30%–40% is derived from magmatic CO2. Measured excess 3He is also consistent with the presence of magmatic gas derived from the Quaternary Age Medicine Lake Volcano.  相似文献   

20.
Zheng M  Bao J  Liao P  Wang K  Yuan S  Tong M  Long H 《Chemosphere》2012,87(10):1097-1104
A novel electrolytic groundwater remediation process, which used the H2 continuously generated at cathode to achieve in situ catalytic hydrodechlorination, was developed for the treatment of 2,4-dichlorophenol (2,4-DCP) in groundwater. Catalytic hydrodechlorination using Pd supported on bamboo charcoal and external H2 showed that 2,4-DCP was completely dechlorinated to phenol within 30 min at pH ? 5.5. In a divided electrolytic system, the catalytic hydrodechlorination of 2,4-DCP in cathodic compartment by H2 generated at the cathode under 20 and 50 mA reached 100% at 120 and 60 min, respectively. Two column experiments with influent pHs of 5.5 (unconditioned) and 2 were conducted to evaluate the feasibility of this process. The 2,4-DCP removal efficiencies were about 63% and nearly 100% at influent pHs of 5.5 and 2, respectively. Phenol was solely produced by 2,4-DCP hydrodechlorination, and was subsequently degraded at the anode. A low pH could enhance the hydrodechlorination, but was not necessarily required. This study provides the preliminary results of a novel effective electrolytic process for the remediation of groundwater contaminated by chlorinated aromatics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号