首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
《环境科学与技术》2021,44(7):60-69
机动车保有量的持续增长使道路交通成为城市颗粒物排放的主要贡献源,颗粒污染物富含各种重金属,对人体健康与环境保护都构成了极大的威胁。为探究不同车型对颗粒物总排放量以及不同排放物的分担率,文章选取福州市金鸡山隧道路段作为研究区域进行研究。结果表明,总车型占比为2.77%的大型客车、重型货车、轻型货车,贡献了74.43%的尾气颗粒物排放;小型客车贡献91.36%的制动颗粒物排放以及91.59%的轮胎颗粒物排放,而仅贡献8.94%的尾气颗粒物排放。根据隧道路段颗粒物排放量及机动车排放成分谱,计算出颗粒物中34种元素的排放量共计1 075.24 g/d,占颗粒物总质量(2 181.71 g/d)的49.28%;小型客车的重金属元素排放占总重金属排放的89.08%,其中尾气、制动和轮胎的颗粒物排放分别占0.28%、90.28%和9.44%;57.72%的非金属元素则来自大型客车、重型货车和轻型货车,其中尾气、制动和轮胎排放分别占96.30%、2.34%和1.36%。占比仅为2.77%的大型客车、重型货车和轻型货车为道路尾气污染物的主要贡献源,而保有量巨大的小型客车(89.63%)则主要以制动、轮胎排放的方式排放颗粒物及重金属污染物。  相似文献   

2.
建立了泉州市"十二五"期间机动车排放清单,获得了不同机动车排放贡献率.结果表明:摩托车和小型客车占总机动车保有量的比例最大,成为泉州市机动车排放的主要来源;污染物排放量排序:CO>NOx>HC>PM;甲醛>苯>乙醛>1,3-丁二烯>氨;CO2>N2O>CH2;不同车型对机动车污染物的排放贡献率有显著不同,小型客车对于CO和HC排放贡献最大,NOx、PM的主要排放源为重型货车;摩托车、小型客车、中型货车对有毒有害物的贡献率最大;小型客车对温室气体的贡献率最大.  相似文献   

3.
成都市道路移动源排放清单与空间分布特征   总被引:4,自引:0,他引:4  
以成都市为例开展了路网、交通流、道路行驶工况和机动车保有量等数据的收集工作,运用自下而上的方法,基于实测校正和本地化的IVE模型计算了不同区域机动车在高速路、主干道、次干道和支路的排放因子,应用GIS技术建立了1 km×1 km的成都市高时空分辨率道路移动源排放清单.结果表明,2016年成都市道路移动源CO、VOCs、NO_x、SO_2、PM_(10)和NH_3排放量分别为4.2×10~5、4.5×10~4、7.2×10~4、0.4×10~3、1.1×10~4和6.2×10~3t.CO排放主要贡献车型为小型客车、中型客车和大型客车,VOCs排放主要源于小型客车和摩托车,NOx和SO2排放主要产生于小型客车和重型货车,PM10排放主要贡献车型为重型货车,NH3排放主要由小型客车贡献.污染物排放量空间分布呈现出由城市中心向卫星城市、远郊区递减趋势,中心城区和二圈层区域路网密集,排放呈片状分布,三圈层则呈带状分布.排放清单机动车技术分布数据可靠性较高,而交通流数据和排放因子存在一定不确定性.  相似文献   

4.
调查和研究了9种车型:轿车、出租车、摩托车、中型客车、小型面包车、大公共汽车、轻型货车、中型货车、重型货车的汽油和柴油的NOx,CO、HC、SO2、PM10污染排放量及分别在主干线、次干线、支路、街巷路中每条路段不同时间车流量密度及利用排放因子,求出每条路段机动车污染物排放量。同时分别汇总主干线、次干线、支路、街巷路中9种车型车流量密度及污染物排放量,最后估算出污染物排放总量。  相似文献   

5.
根据车辆类型及排放因子计算西安市机动车尾气污染物排放CO、碳氢化合物(HC)、氮氧化物(NOx)及颗粒物(PM)的特征。结果显示,机动车排放污染物中一氧化碳含量远大于其他三者。CO和HC主要来自客车,尤其是小型客车,而颗粒物主要由重型货车排放;超过80%的CO和HC来自汽油车,而超过90%的PM排放来自柴油车;国Ⅰ前汽车在西安市汽车保有量中仅占3.48%,而四种污染物排放量在的比例分别为33.55%、29.68%、11.92%和21.43%。为减少机动车尾气污染物的排放,建议淘汰国Ⅰ前车辆,对柴油车尾气加强处理。  相似文献   

6.
以青岛市2000~2014年机动车保有量与活动水平数据为基础,综合考虑排放标准与燃油品质的动态变化,以及机动车在城市路、郊区路和高速路的行驶比例与行驶工况,基于COPERT模型和GIS技术建立了0.02°×0.02°高分辨率机动车排放清单.结果表明,青岛市机动车CO、VOCs与SO_2的排放置由2000年的168.68,33.57,5.27kt下降至2014年的155.14,17.51,2.44kt,NO_x、PM_(10)与CO_2的排放量则由23.88,1.22,2647.32kt上升至57.82,2.76,17736.06kt.其中,CO与VOCs排放主要贡献车型为轻型载客车和摩托车,NO_x与PM_(10)排放主要来自于重型载客车与重型载货车,而CO_2和SO_2排放主要来源于轻型载客车与重型载货车.机动车排放空间分布呈现出由城市中心向城市边缘的递减趋势,并沿高速路呈明显的带状分布.李沧区、市北区、市南区和城阳区机动车排放强度较高,平度市、莱西市与崂山区机动车排放强度较低.  相似文献   

7.
广州市机动车尾气排放特征研究   总被引:3,自引:1,他引:2  
文章利用COPERT IV模型计算广州市机动车尾气排放因子,结合机动车保有量和构成,获得2008年广州市机动车尾气排放总量并对排放因子的速度敏感性,以及不同车型、不同排放标准、不同燃料类型机动车排放特征进行了分析。结果表明:2008年广州市机动车CO、NOX、VOC和PM的排放总量分别为138 772.42 t、80 868.69 t、24 907.26 t和3 171.97 t。摩托车和小客车是CO和VOC的主要贡献车型,贡献率总和分别达到78.31%和70.52%;而作为NOX和PM的主要贡献车型,大客车和重型货车的贡献率总和分别达到78.94%和83.72%。国0标准机动车排放水平高于其他排放标准的车型,CO和VOC的排放分担率接近于保有量比例的2倍。汽油车是CO和VOC的主要贡献车型,其排放贡献率超过80%;而PM排放主要以柴油车为主;柴油车的NOX排放总量高,接近于汽油车的2倍。  相似文献   

8.
上海市机动车尾气排放协同控制效应研究   总被引:4,自引:0,他引:4  
以2007~2012年为一个时间序列,通过详细调查上海市机动车道路交通等基础资料对机动车各污染物排放量进行测算,并利用协同控制坐标系评价方法,设计单一措施、结构性措施和综合性措施等3种机动车污染减排控制情景.结果表明:2007~2012年,上海市机动车污染物年排放量呈递减趋势,其中摩托车(MC)、小型汽油客车(LDGV)、重型柴油货车(HDDT)和大型柴油客车(HDDV)是机动车污染物主要的排放源,其排放量总和占到机动车污染物总量的90%以上.按当前上海市机动车保有量增长速度,2018年机动车尾气排放的可吸入颗粒物(PM10)增长7%,温室气体增长比例为15%~108%,其中二氧化碳(CO2)增长比例达到45%以上.在各控制情景下污染物和温室气体均有不同程度下降,但减排效果有明显差异.在单一措施控制情景下,淘汰黄标车和提高排放标准对两类污染物的削减效果明显,削减比例均在20%以上;而结构性控制措施对这两类污染物的削减尤为明显,削减比例达到40%以上且正向协同效应突出.  相似文献   

9.
机动车排放污染物已经成为大气污染的重要来源.基于福建省高速公路交通流量数据,采用自下而上的计算方法建立了2020年1—7月福建省高速公路机动车高分辨率污染物排放清单.结果表明,受疫情影响,福建省高速公路月均车流量和污染物排放量呈先下降后上升的变化趋势,4月污染物排放量达到最低,5月污染物排放量又迅速恢复到疫情前的排放水平,其中,疫情中期污染物CO、HC、NOx、PM2.5和PM10排放较疫情后期分别减少了90.68%、89.06%、92.58%、89.58%和89.63%.在整个研究期内,不同城市高速公路机动车污染物排放的分担率有所不同,泉州、福州和漳州的高速公路机动车排放分担率较高;从车型来看,小型客车和轻型货车是CO和HC的主要贡献车型,NOx和PM主要来自重型货车和轻型货车;从燃料类型来看,汽油车是CO和HC的主要贡献源,柴油车则对NOx和PM贡献突出;从排放标准来看,国三和国四车对各项污染物的贡献率最大.各项污染物空间分布一致,排放高值区位于东部沿海地区路段,西部内陆的...  相似文献   

10.
以机动车碳排放模型为基础,结合不同类型机动车存活曲线,建立分车龄的车队构成,并利用年均行驶里程和燃油消耗量,分析了京津冀地区2005~2020年道路碳排放量的演变及区域分布特征.结果显示,河北省道路碳排放量增长迅速,近5a仍以7.14%的年均增长率快速增长,而北京和天津两市的道路碳排放已经进入低速增长期,近5a的年均增长率分别仅为1.01%和2.27%.小型客车一直都是道路碳排放的主力车型,其碳排放量占京津冀道路碳排放总量50%以上;轻型货车在北京市道路碳排放中的贡献越来越突出,而河北和天津两地轻型和重型货车正在逐渐发展为道路碳排放增长的主要驱动因素.从京津冀道路碳排放的4km×4km网格分布图可知,因北京和天津拥有更密集的道路,其碳排放强度远高于河北省.  相似文献   

11.
北京市机动车尾气排放因子研究   总被引:21,自引:10,他引:11  
樊守彬  田灵娣  张东旭  曲松 《环境科学》2015,36(7):2374-2380
通过调研北京市机动车车型构成、车辆行驶工况、环境温度、油品品质等基础数据,利用COPERTⅣ模型计算了机动车尾气中CO、NOx、HC和PM的排放因子.应用车载测试系统对典型轻型汽油客车和柴油货车的实际道路排放因子进行测量,并将测量结果与模型计算结果对比,结果发现国Ⅳ标准下,轻型汽油客车的CO排放因子的实测数据是模型数据的0.96倍,NOx的实测数据是模型数据的0.64倍,HC的实测数据是模型数据的4.89倍.对于国Ⅲ排放标准的柴油货车,轻型、中型和重型货车的CO排放因子,实测数据分别是模型数据的1.61、1.07和1.76倍,NOx排放因子的实测数据是模型数据的1.04、1.21和1.18倍,HC排放因子的实测数据是模型数据的3.75、1.84和1.47倍,PM排放因子则为模型数据是实测数据的1.31、3.42和6.42倍.  相似文献   

12.
环境保护部日前发布((2013年中国机动车污染防治年报》,公布了2012年全国机动车污染排放状况。本期“研究成果展示”专栏以六篇形式连载。本文刊载2012年全国机动车污染物排放量现状及其变化趋势的内容,以飨读者。该年报指出,2012年,全国机动车排放污染物4612.1万吨,比2011年增加0.1%,其中氮氧化物(NOx)640.0万吨,碳氢化合物(HC)438.2万吨,一氧化碳(CO)3471.7万吨,颗粒物(PM)62.2万吨。汽车是污染物总量的主要贡献者,其排放的NOx和PM超过90%,HC和CO超过70%。按车型分类,全国货车排放的NOx和PM明显高于客车,其中重型货车是主要贡献者;而客车CO和HC排放量则明显高于货车。按燃料分类,全国柴油车排放的NOx接近汽车排放总量的70%,PM超过90%;而汽油车CO和HC排放量则较高,超过排放总量的70%。按排放标准分类,占汽车保有量7.8%的国I前标准汽车,其排放的四种主要污染物占排放总量的35.0%以上:而占保有量61.6%的国Ⅲ及以上标准汽车,其排放量还不到排放总量的30.0%。按环保标志分类,仅占汽车保有量13.4%的“黄标车”却排放了58.2%的NOx、56.8%的Hc、52.5%的CO和81.9%的PM。2012年,全国机动车保有量比2011年增长了7.8%,但四项污染物排放总量与2011年基本持平,这与实施更严格的机动车排放标准、加快淘汰高排放的“黄标车”、提升车用燃料品质等措施有关。  相似文献   

13.
我国城市机动车尾气污染防治策略   总被引:7,自引:0,他引:7  
孙强  赵丽 《环境保护》1999,(2):43-45
随着改革开放,城市规模在不断扩大,农村人口逐渐涌向城市,致使城市人口膨胀,车辆急增,道路堵塞,污染加重。目前,我国大中城市正在由煤烟型向尾气型污染转化。1我国城市机动车尾气污染的危害与现状在1988-1998年的10年间,我国城市人口翻了1.1倍,从1988年的1.7亿增加到1997年的3.6亿。机动车保有量由1988年的540万辆,猛增到1997年的1730万辆,翻了2.2倍。预计2010年城市人口将达到5.8亿,机动车保有量将达到5900万辆。1980年前,我国汽车工厂仅有56家,主要生产中型卡车和大型客车,年产汽车为十几万辆。进人80年代,我国大量…  相似文献   

14.
为实现单车层面的动态排放轨迹追踪,基于电警式卡口产生的逐秒过车记录数据建立了车辆排放轨迹计算方法,通过提取动态轨迹中的运行参数及机动车保有量数据库中的技术参数,并结合排放模型计算了2018年5月10日~6月9日安徽宣城市中心城区123条路段上共133,906辆车的44,672,343条轨迹的排放数据.研究结果显示,出租车是CO的重要排放来源且交通兴趣点附近路段排放强度较高;公交车和重型货车是NOx的重要排放来源,公交车工作日NOx排放总量达1.3kg,约为重型货车的7.5倍,且路线固定、排放分布随发车班次周期循环;轻型货车排放路线多围绕货运需求且多为昼间行驶,而重型货车多选择凌晨出行;通勤类私家车工作日昼出夜归,路线固定且往返过程各污染物排放量均较稳定.对于全路网,CO、VOCs的高排放强度区域多集中于中心路网,NOx、PM则多分布于外围路网.  相似文献   

15.
利用IVE模型建立成都市轻型汽油客车排放清单   总被引:5,自引:3,他引:2  
城市机动车污染物排放清单的建立是控制机动车污染的关键.本研究以2012年为基准年,通过对成都市轻型汽油客车技术水平分布、活动水平和保有量等数据的调查,将IVE模型本地化,计算了成都市2012年轻型汽油客车VOCs、PM、NOx、CO的排放清单,并分析了清单的不确定性.结果表明:成都市2012年轻型汽油客车排放的VOCs、PM、NOx和CO分别为2.23×104t、1.6×102t、1.26×104t和2.03×105t;轻型汽油客车中黄标车VOCs、PM、NOx、CO的排放量分别占排放总量的27.5%、18.1%、37.2%和42.5%,表明黄标车是轻型汽油客车污染物排放的主要来源;排放清单的不确定性主要来自于排放因子,VOCs、PM、NOx和CO清单的不确定性分别为-31.67%~32.35%、-54.75%~55.09%、-6.56%~6.76%和-12.22%~12.51%.  相似文献   

16.
乌鲁木齐市城区机动车大气污染物排放特征   总被引:4,自引:1,他引:3  
对乌鲁木齐市城区车辆信息(包括车流量和车辆构成、车辆控制技术水平、车辆行驶工况、车辆启动分布等)进行调研和测试,并根据IVE模型计算得到机动车污染物排放清单,获得分车型、燃料类型及启动/运行方式的机动车污染物排放分担率.结果表明:2011年乌鲁木齐市机动车CO、NO_x、HC和PM的排放量分别为20.22×104、2.60×104、1.84×104和0.44×10~4t·a~(-1),机动车污染物排放分担率差别显著,乘用车、公交车和重型货车是CO和HC主要排放源;重型货车和乘用车是NO_x的主要排放源;重型货车是PM的主要排放源.汽油车是CO和HC排放的主要来源,柴油车是NO_x和PM排放的主要来源,天然气车各类污染物排放量均较低.控制柴油重型货车是消减机动车污染物排放的重要方式.  相似文献   

17.
廊坊市区主要大气污染源排放清单的建立   总被引:4,自引:1,他引:3  
通过调研、统计廊坊市区工业、城中村及机动车等资料,结合以往清单文献研究结果及清单编制指南中的排放因子,计算了廊坊市区主要大气污染物的排放量,得到廊坊市区2014年主要大气污染源排放清单.结果显示,2014年廊坊市区工业源(固定燃烧)NO_x、SO_2、NMVOC、CO、PM_(10)、PM_(2.5)排放总量分别为6.4×10~3、1.2×10~4、31、1.0×10~4、7.3×10~2、4.4×10~2t,其中热电行业排污贡献率最高,分别占NO_x、SO_2、CO、PM_(10)、PM_(2.5)工业源(固定燃烧)年排放总量的55%、48%、67%、63%、69%;安次区工业企业对气态污染物贡献较高,广阳区及开发区工业企业对颗粒物排污贡献较大.低矮面源(城中村)NO_x、SO_2、NMVOC、CO、PM10、PM_(2.5)年排放总量分别为1.8×10~2、3.6×10~3、3.0、4.9×10~3、1.5×10~2、72 t.道路移动源CO、HC、NO_x、PM_(2.5)年排放总量分别为2.4×10~4、1.9×10~3、2.2×10~3、44 t,其中小型客车对HC和CO贡献率较高,分别为53%和61%;NO_x年排放总量中26%由重型货车贡献;PM_(2.5)则主要由轻型货车和重型货车贡献,占比分别为39%和21%.  相似文献   

18.
本文在对广州市工业能源消费和二氧化碳排放研究基础上,通过分析工业总产值、产业结构、社会固定资产投资、能源消费结构、能源利用效率、工业科技投入六个影响因素对工业二氧化碳排放的影响,将我市工业二氧化碳排放影响因素分析最终归结为产业结构、能源消费结构、科技投入三个综合性影响因素,从而提出减少工业二氧化碳排放对策建议。  相似文献   

19.
文章介绍了机动车主要污染物及其危害,根据近年来西安市机动车的保有量变化情况,对现有数据线性回归可以预测到2015年机动车保有量约为222万辆,运用数学统计的方法计算出2008-2015年机动车尾气中CO、HC、NOx的排放量,据此提出今后西安市防治尾气污染的对策和建议。  相似文献   

20.
文中对阜新市的机动车尾气监测结果进行了统计分析,结果表明,汽油机动车一氧化碳排放浓度平均值为1.2%,碳氢化合物排放浓度平均值为355.0ppm;汽油机动车尾气排放超标率为6.09%;不同车型的统计结采表明,一氧化碳和碳氢化合物排放浓度平均值;柴油机动车的烟气黑度平均值为3.87,柴油机动车尾气排放超标牢为24.11%,明显高于汽油机动车(6.09%);柴油机动车不同车型的统计结果表明,烟气黑度平均值,轿车〈货车〈客车。排放尾气的烟气黑度超标率为轿车〈客车〈货车;相关分析结果表明,汽油机动车尾气中一氧化碳排放浓度与碳氢化合物排放浓度有极显著的正相关,轿车、客车、货车的相关系数分别为0.5518、0.4059、0.4714。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号