首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
我国是CO2排放大国,水泥、钢铁、化工等高碳排放行业节能降碳势在必行。钢渣碳酸化是利用冶金固废转炉渣吸收捕集温室气体CO2的低碳技术,既可实现CO2捕集消纳,还可通过碳酸化反应实现钢渣的安定化处理,提升钢渣建材制品性能。因此,钢渣碳酸化技术应用前景较为广阔。基于此,详细介绍了国内外钢渣碳酸化技术研究、发展及存在问题,进一步分析了前沿的微生物碳酸化钢渣技术及其应用情况。提出应加强开发低投入、高成效的碳酸化效率提升技术,如钢渣微生物碳酸化技术,在保证碳酸化钢渣凝胶特性的同时,同步提升钢渣碳酸化效率和速率,以具有实现钢渣资源化利用和碳减排的重大意义。  相似文献   

2.
以炼钢过程中排放的固体废弃物钢渣为碳捕获剂,进行了钢渣湿法捕获烟气CO2工艺的实验研究。通过分析钢渣的组成成份及反应机理,研究液固比、反应温度、反应时间、pH值及反应产物等主要参数对钢渣湿法碳捕获状况的影响。实验证明,通过合理的设计和适当的操作,可使钢渣湿法碳捕获效率达60%以上,具有一定的应用价值。  相似文献   

3.
非光合CO2同化微生物菌群的选育/优化及其群落结构分析   总被引:4,自引:2,他引:2  
通过从海水及其沉积物中分离、筛选,并结合电子供体和无机碳源结构的优化以期获得不用光照与供氢的高效固碳微生物菌群;通过16S rDNA序列分析、比对等手段研究非光合固碳微生物菌群的结构,以期为优化群落配置,进一步提升固碳效率提供理论依据.结果显示,通过分离和长期驯化可从海洋中得到在普通好氧、厌氧条件下具有固碳能力的非光合微生物菌群.添加硫代硫酸钠、硫化钠和氢气作为电子供体可有效提升菌群的固碳效率,在以硫代硫酸钠为电子供体的好氧、厌氧条件下,该菌群的CO2同化效率分别可达10.44 mg/L和12.56 mg/L.该固碳菌群对混合无机碳源的同化效率显著高于单一碳源,在以CO2、碳酸氢钠及碳酸钠为混合碳源情况下,菌群好氧、厌氧固碳效率(以CO2计)分别可达110 mg.(L.d)-1,和72mg.(L.d)-1,接近氢氧化细菌的水平.微生物群落结构分析结果表明,添加不同电子供体后,固碳微生物菌群的优势种发生了显著变化,在发现的16个优势菌种中,11个是不可培养微生物,即其只能以共生方式存在.菌群混合培养时的固碳效率可能是多种菌共同作用的结果,因此优化固碳微生物菌群的结构和配比将有利于其固碳效率的进一步提升.  相似文献   

4.
随着温室气体减排和低碳发展的要求,生物质炭作为农业固碳的新型技术引起人们的关注。固碳潜力评价和经济效益分析是生物质炭规模化开发利用的基础。论文利用"生物质资源—固碳潜力—经济效益"集成评估方法,以山西省为研究区域,估算了农业生物质的固碳潜力和经济效益。结果显示:山西省3种生物质资源(农作物秸秆、禽畜粪便和作物加工副产品)的固碳总潜力为1 228.10×10~4t CO_2当量,约占2014年山西省全年碳排放总量的2.5%。在2014年碳均价和碳高价情形下,农作物秸秆和作物加工副产品实现了正效益,每t原料综合效益分别为8.09和21.79元。全年3种生物质炭固碳综合效益为0.44×10~8~2.80×10~8元,证实了山西省生物质固碳技术的经济可行性。  相似文献   

5.
以典型厨余垃圾厌氧消化工程为研究对象,使用碳氮平衡全流程模型计算,分析比较了碳氮物质流模型计算结果与采样实测数据;通过碳氮在固液气三相的全流程分配,评价工程实际运行效能.结果表明,实测数据与模拟结果比较,显示碳氮物质流在厌氧产气部分拟合效果较好(拟合优度0.88),但在固液分离组件环节存在显著缺陷.通过优化消化液含固率(TS)与固液分离分配比的关系,改进了模型的固液分离组件,从而提高了沼液和沼渣含固率的模拟效果,拟合优度分别提高至0.97和0.82;通过嵌入实际产气程度(RBMP),提出并应用了一种基于碳氮平衡模型的评估方法,可判别厌氧消化反应器运行状况.  相似文献   

6.
"温室效应"日趋严重,生物固碳特别是微生物固碳将发挥独特的作用.固定N2的微生物固氮菌和固定CO2的微生物固碳菌早已被研究和发现,但能同时固定大气中的CO2、N2并以CO2、N2分别为碳、氮源的微生物至今未见报道,本研究称之为兼性固CO2、N2菌.研究通过固碳菌、固氮菌培养基的优化组合出无碳、氮培养基(分别以空中的CO2、N2为碳源和氮源);通过无氮碳源的兼性固碳氮菌培养基进行分离,筛选分离到一株分别以CO2和N2为碳源和氮源.通过对该菌株的生长特性和固碳酶活性及固氮酶活性进行测定;利用PCR和琼脂糖凝胶电泳技术检测到该菌含有固碳酶RubisCO中cbbL基因及固氮酶nifH基因片段的特异性条带;对该菌进行对照验证实验证明该菌能同时固定空气中的CO2和N2并分别以CO2和N2为碳源和氮源;最后对其形态观察和16SrRNA全序列分析证明该菌株HSJ隶属于链霉菌.  相似文献   

7.
为综合评估餐厨垃圾厌氧处理的环境影响与效益,对某餐厨垃圾厌氧处理工艺及其技术单元进行生命周期环境影响评价,并建立“碳中和”计算模型预测与验证实际碳排及耗能情况,综合“环境影响-碳排耗能-经济效益-社会效益”对实际案例进行评估.结果表明,沼肥加工和沼气提纯技术单元分别造成39%和59%总环境影响.另外,粗油提炼、沼气提纯以生物基产品回收形式大幅度削减碳排,分别占理论碳削减的9.7%和54.7%.餐厨垃圾处理厂需通过增加系统稳定性、完善气体监测体系、提高技术处理效率和优化设备额外耗能情况等方式,以减少理论与实际碳排能耗偏差.经综合评价,该餐厨垃圾处理厂模式具备实现“负碳”潜力,其工艺推广具有未来前景.  相似文献   

8.
中国四大林区固碳效率:测算、驱动因素及收敛性   总被引:2,自引:0,他引:2  
论文将林业碳汇纳入到林业经济核算体系之中,构建含有正外部性产出的DEAMalmquist效率分析模型,在系统测算林业固碳量的基础上,对1988—2013年中国四大林区的林业固碳效率变动及驱动因素进行了分析,并进一步对其效率收敛性进行了检验。研究结果表明:1)全国四大林区间的固碳量及固碳价值差异较大,固碳总价值从高到低依次为西南(1 870.69×108元)、东北(1 335.41×108元)、南方(842.73×108元)、北方林区(407.35×108元)。2)1988—2013年不含碳汇产出的林业生产Malmquist指数较低,为0.958;而把碳汇纳入林业产出进行考量,全国林业Malmquist指数整体有所提升,主要源于技术效率推动,年均增长速度为0.6%;其中南方、东北林区固碳效率处于提升状态,而西南林区和北方林区呈下降趋势。3)西南和南方林区固碳效率随时间变动呈现倒"U"型态势;四大林区中南方林区效率均值最高,为1.036,其次是东北林区,为1.020。4)我国四大林区地区间固碳Malmquist指数没有出现σ收敛,相反,还存在绝对β发散现象,即四大林区地区内的林业固碳效率绝对值和增长率差异并没有随着时间而缩减。  相似文献   

9.
随着温室气体减排和低碳发展的要求,生物质炭作为农业固碳的新型技术引起人们的关注。固碳潜力评价和经济效益分析是生物质炭规模化开发利用的基础。论文利用“生物质资源—固碳潜力—经济效益”集成评估方法,以山西省为研究区域,估算了农业生物质的固碳潜力和经济效益。结果显示:山西省3种生物质资源(农作物秸秆、禽畜粪便和作物加工副产品)的固碳总潜力为1 228.10×104 t CO2当量,约占2014年山西省全年碳排放总量的2.5%。在2014年碳均价和碳高价情形下,农作物秸秆和作物加工副产品实现了正效益,每t原料综合效益分别为8.09和21.79元。全年3种生物质炭固碳综合效益为0.44×108~2.80×108元,证实了山西省生物质固碳技术的经济可行性。  相似文献   

10.
运用生命周期评价(LCA)方法,对以电石渣等工业固废为全部原料的水泥制造工艺产生的环境影响进行评价.通过对生产工艺进行分解及建模,基于实际数据建立生命周期清单,利用ReCiPe2016方法,在全球变暖、化石资源消耗、土地占用等17个小类及人体健康影响、生态系统影响及资源消耗3个大类中对工艺产生的环境影响进行评价.评价过程包括特征化、标准化和敏感性分析.结果表明,在以1 t成品水泥为功能单位的生产过程中,造成的环境影响总值为-0.0045 pt,其中,在人体健康影响和生态系统影响分类下最为显著,分别为-0.0027 pt和-0.0020 pt.与传统水泥生产相比,本工艺具有更低的资源能源消耗与碳排放量.固废作为原料来源带来的正面环境效益最为显著,而熟料煅烧与水泥粉磨则显示出最大的环境损害,也说明由于消纳了大量工业固废,本工艺对环境总体上是有益的.  相似文献   

11.
Basic-oxygen furnace slag(BOF-slag) contains 35%CaO,a potential component for CO_2sequestration.In this study,slag-water-CO_2 reaction experiments were conducted with the longest reaction duration extending to 96 hr under high CO_2 pressures of 100-300 kg/cm2 to optimize BOF-slag carbonation conditions,to address carbonation mechanisms,and to evaluate the extents of V and Cr release from slag carbonation.The slag carbonation degree generally reached the maximum values after 24 hr slag-water-CO_2 reaction and was controlled by slag particle size and reaction temperature.The maximum carbonation degree of 71%was produced from the experiment using fine slag of0.5 mm under 100℃and a CO_2 pressure of 250 kg/cm~2 with a water/slag ratio of 5.Vanadium release from the slag to water was significantly enhanced(generally 2 orders) by slag carbonation.In contrast,slag carbonation did not promote chromium release until the reaction duration exceeded 24 hr.However,the water chromium content was generally at least an order lower than the vanadium concentration,which decreased when the reaction duration exceeded 24 hr.Therefore,long reaction durations of 48-96 hr are proposed to reduce environmental impacts while keeping high carbonation degrees.Mineral textures and water compositions indicated that Mg-wustite,in addition to CaO-containing minerals,can also be carbonated.Consequently,the conventional expression that only considered carbonation of the CaO-containing minerals undervalued the CO_2 sequestration capability of the BOF-slag by~20%.Therefore,the BOF-slag is a better CO_2 storage medium than that previously recognized.  相似文献   

12.
Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system.  相似文献   

13.
Technological and regulatory responses to large-scale environmental threats, such as depletion of the natural resources and climate change, tend to focus on one issue at time. Emerging carbon capture and storage (CCS) technologies that are in different stages of development offer a case that demonstrates this dilemma. This article approximates the implications of two emerging CCS applications on existing steel mill’s CO2 emissions and its use of material resources. The evaluated applications are based on the mineralization method and the comparative case represents two versions of a geological CCS method. The results of the evaluation indicate that if technical bottleneck issues related to CO2 sequestration with mineralization can be solved, it can be possible to achieve a similar CO2 reduction performance with mineralization-based CCS applications as with more conventional CCS applications. If the CO2 capturing potential of mineralization-based applications could be taken into use, it could also enable the significant improvement of material efficiency of industrial operations. Urgent problem hampering the development of mineralization-based CCS applications is that the policy regimes related to CCS especially in the European Union (EU) do not recognize mineralization as a CCS method. Article suggests that the focus in the future evaluations and in policy should not be directed only on CO2 sequestration capacity of CCS applications. Similarly important is to consider their implications on material efficiency. Article also outlines modifications to the EU’s CCS policy in terms of the formal terminology.  相似文献   

14.

Carbon capture and storage (CCS) is an economically attractive strategy for avoiding carbon dioxide (CO2) emissions from, e.g., power plants to the atmosphere. The combination of CCS and biomass combustion would result in a reduction of atmospheric CO2, or net negative emissions, as plant growth is a form of sequestration of atmospheric carbon. Carbon capture can be achieved in a variety of ways, one of which is chemical looping. Chemical-looping combustion (CLC) and chemical looping gasification (CLG) are two promising technologies for conversion of biomass to heat and power or syngas/methane with carbon capture. There have been significant advances made with respect to CLC in the last two decades for all types of fuel, with much less research on the gasification technology. CLG offers some interesting opportunities for production of biofuels together with carbon capture and may have several advantages with respect to the bench mark indirect gasification process or dual-bed fluidized bed (DFBG) in this respect. In CLG, an oxygen carrier is used as a bed material instead of sand, which is common in indirect gasification, and this could have several advantages: (i) all generated CO2 is present together with the syngas or methane in the fuel reactor outlet stream, thus in a concentrated stream, viable for separation and capture; (ii) the air reactor (or combustion chamber) should largely be free from trace impurities, thus preventing corrosion and fouling in this reactor; and (iii) the highly oxidizing conditions in the fuel reactor together with solid oxide surfaces should be advantageous with respect to limiting formation of tar species. In this study, two manganese ores and an iron-based waste material, LD slag, were investigated with respect to performance in these chemical-looping technologies. The materials were also impregnated with alkali (K) in order to gauge possible catalytic effects and also to establish a better understanding of the general behavior of oxygen carriers with alkali, an important component in biomass and biomass waste streams and often a precursor for high-temperature corrosion. The viability of the oxygen carriers was investigated using a synthetic biogas in a batch fluidized bed reactor. The conversion of CO, H2, CH4, and C2H4 was investigated in the temperature interval 800–950 °C. The reactivity, or oxygen transfer rate, was highest for the manganese ores, followed by the LD slag. The conversion of C2H4 was generally high but could largely be attributed to thermal decomposition. The K-impregnated samples showed enhanced reactivity during combustion conditions, and the Mangagran-K sample was able to achieve full conversion of benzene. The interaction of the solid material with alkali showed widely different behavior. The two manganese ores retained almost all alkali after redox testing, albeit exhibiting different migration patterns inside the particles. LD slag lost most alkali to the gas phase during testing, although some remained, possibly explaining a small difference in reactivity. In summary, the CLC and CLG processes could clearly be interesting for production of heat, power, or biofuel with negative CO2 emissions. Manganese ores are most promising from this study, as they could absorb alkali, giving a better conversion and perhaps also inhibiting or limiting corrosion mechanisms in a combustor or gasifier.

  相似文献   

15.
This paper investigates overall CO2 balances of combined heat and power (CHP) plants with CO2 capture and storage (CCS) in Kraft pulp and paper mills. The CHP plants use biomass-based fuels and feature advanced gasification and combined cycle technology. Results from simple process simulations of the considered CHP plants are presented. Based on those results and taking into account the major direct and indirect changes in CO2 emissions, the study shows that implementing CCS leads to steep emission reductions. Furthermore, a preliminary cost assessment is carried out to analyse the CO2 mitigation cost and its dependence on the distance that the CO2 must be transported to injection sites.  相似文献   

16.
Microalgae: a promising tool for carbon sequestration   总被引:1,自引:1,他引:0  
Increasing trends in global warming already evident, the likelihood of further rise continuing, and their impacts give urgency to addressing carbon sequestration technologies more coherently and effectively. Carbon dioxide (CO2) is responsible for over half the warming potential of all greenhouse gases (GHG), due to the dependence of world economies on fossil fuels. The processes involving CO2 capture and storage (CCS) are gaining attention as an alternative for reducing CO2 concentration in the ambient air. However, these technologies are considered as short-term solutions, as there are still concerns about the environmental sustainability of these processes. A promising technology could be the biological capture of CO2 using microalgae due to its unmatched advantages over higher plants and ocean fertilization. Microalgae are phototrophic microorganisms with simple nutritional requirements, and comprising the major primary producers on this planet. Specific pathways include autotrophic production via both open pond or closed photobioreactor (PBR) systems. Photosynthetic efficiency of microalgae ranged from 10?C20 % in comparison with 1?C2 % of most terrestrial plants. Some algal species, during their exponential growth, can double their biomass in periods as short as 3.5 hours. Moreover, advantage of being tolerant of high concentration of CO2 (flue gas), low light intensity requirements, environmentally sustainable, and co-producing added value products put these as the favoured organisms. Advantages of microalgae in comparison with other sequestration methodologies are discussed, which includes the cultivation systems, the key process parameters, wastewater treatment, harvesting and the novel bio-products produced by microalgal biomass.  相似文献   

17.
The study presents the results of an integrated assessment of carbon capture and storage (CCS) in the power plant sector in Germany, with special emphasis on the competition with renewable energy technologies. Assessment dimensions comprise technical, economic and environmental aspects, long-term scenario analysis, the role of stakeholders and public acceptance and regulatory issues. The results lead to the overall conclusion that there might not necessarily be a need to focus additionally on CCS in the power plant sector. Even in case of ambitious climate protection targets, current energy policy priorities (expansion of renewable energies and combined heat and power plants as well as enhanced energy productivity) result in a limited demand for CCS. In case that the large energy saving potential aimed for can only partly be implemented, the rising gap in CO2 reduction could only be closed by setting up a CCS-maximum strategy. In this case, up to 22% (41 GW) of the totally installed load in 2050 could be based on CCS. Assuming a more realistic scenario variant applying CCS to only 20 GW or lower would not be sufficient to reach the envisaged climate targets in the electricity sector. Furthermore, the growing public opposition against CO2 storage projects appears as a key barrier, supplemented by major uncertainties concerning the estimation of storage potentials, the long-term cost development as well as the environmental burdens which abound when applying a life-cycle approach. However, recently, alternative applications are being increasingly considered?Cthat is the capture of CO2 at industrial point sources and biomass based energy production (electricity, heat and fuels) where assessment studies for exploring the potentials, limits and requirements for commercial use are missing so far. Globally, CCS at power plants might be an important climate protection technology: coal-consuming countries such as China and India are increasingly moving centre stage into the debate. Here, similar investigations on the development and the integration of both, CCS and renewable energies, into the individual energy system structures of such countries would be reasonable.  相似文献   

18.
China encourages the demonstration of carbon capture and storage (CCS) projects. In an effort to identify gaps and provide suggestions for environmental risk management of carbon dioxide (CO2) geological storage in China, this article presents a concise overview of potential health, safety and environmental (HSE) risks and environmental management regulations for CO2 geological storage in Australia, Japan, the United States (USA), the European Union (EU), and the United Kingdom (UK). The environmental impact assessment (EIA) experience of Shenhua Ordos Coal-to-Liquid (CTL) Project and PetroChina Jilin Oil Field enhanced oil recovery (EOR) is subsequently analyzed in light of our field investigation, and gaps in current EIA guidelines that are applicable to CO2 geological storage projects are identified. It is found that there are no specific environmental risk regulations suitable for CO2 storage in China, and environmental risk management lags behind the development of CCS technology, which presents a challenge to demonstration enterprises in terms of assessing environmental risk. One major challenge is the overestimation or underestimation of this risk on the part of the enterprise, and another is a lack of applicable regulations for government sectors to supervise the risk throughout CCS projects. Therefore, there is a pressing need for China to formulate environmental management regulations that include environmental risk assessment, mandatory monitoring schemes, environmental emergency plans, and related issues.  相似文献   

19.

Corporate image, European Emission Trading System and Environmental Regulations, encourage pulp industry to reduce carbon dioxide (CO2) emissions. Kraft pulp mills produce CO2 mainly in combustion processes. The largest sources are the recovery boiler, the biomass boiler, and the lime kiln. Due to utilizing mostly biomass-based fuels, the CO2 is largely biogenic. Capture and storage of CO2 (CCS) could offer pulp and paper industry the possibility to act as site for negative CO2 emissions. In addition, captured biogenic CO2 can be used as a raw material for bioproducts. Possibilities for CO2 utilization include tall oil manufacturing, lignin extraction, and production of precipitated calcium carbonate (PCC), depending on local conditions and mill-specific details. In this study, total biomass-based CO2 capture and storage potential (BECCS) and potential to implement capture and utilization of biomass-based CO2 (BECCU) in kraft pulp mills were estimated by analyzing the impacts of the processes on the operation of two modern reference mills, a Nordic softwood kraft pulp mill with integrated paper production and a Southern eucalyptus kraft pulp mill. CO2 capture is energy-intensive, and thus the effects on the energy balances of the mills were estimated. When papermaking is integrated in the mill operations, energy adequacy can be a limiting factor for carbon capture implementation. Global carbon capture potential was estimated based on pulp production data. Kraft pulp mills have notable CO2 capture potential, while the on-site utilization potential using currently available technologies is lower. The future of these processes depends on technology development, desire to reuse CO2, and prospective changes in legislation.

  相似文献   

20.
Carbon dioxide capture and permanent storage (CCS) is one of the most frequently discussed technologies with the potential to mitigate climate change. The natural target for CCS has been the carbon dioxide (CO2) emissions from fossil energy sources. However, CCS has also been suggested in combination with biomass during recent years. Given that the impact on the earth's radiative balance is the same whether CO2 emissions of a fossil or a biomass origin are captured and stored away from the atmosphere, we argue that an equal reward should be given for the CCS, independent of the origin of the CO2. The guidelines that provide assistance for the national greenhouse gas (GHG) accounting under the Kyoto Protocol have not considered CCS from biomass (biotic CCS) and it appears that it is not possible to receive emission credits for biotic CCS under the first commitment period of the Kyoto Protocol, i.e., 2008–2012. We argue that it would be unwise to exclude this GHG mitigation alternative from the competition with other GHG mitigation options. We also propose a feasible approach as to how emission credits for biotic CCS could be included within a future accounting framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号