首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
杨燕萍  陈强  王莉娜  杨丽丽 《环境科学》2020,41(12):5267-5275
为研究西北工业城市冬季PM2.5污染特征及理化性质,以甘肃省白银市为例,采用单颗粒气溶胶质谱等相关仪器,开展实时在线PM2.5化学组分观测,与兰州市同期进行对比分析.结果表明,观测期间白银市PM2.5浓度(44.89 μg·m-3)显著低于同期兰州市(70.69 μg·m-3),但含重金属颗粒物占比(7.84%)明显高于兰州市(2.92%),化学组分复杂,PM2.5以较大粒径颗粒物贡献为主;白银含Cu、Pb和Zn颗粒物粒径分布范围较宽,其中含Cu和Zn颗粒物数量、颗粒物混合比多大于兰州市;主要污染源为汽车尾气30.91%和二次无机源13.00%,机动车尾气贡献均高于其他对比城市;2020年1月4日发生的污染过程主要由汽车尾气和二次无机源贡献增加引起,加之前期气象扩散条件较差.白银冬季PM2.5污染治理应以汽车尾气和二次无机源减排为主,同时加强大气重金属污染管控.  相似文献   

2.
利用南京与北京地区2014年5月1日—2019年10月31日的PM2.5监测数据、气溶胶光学厚度观测资料以及同期MICAPS地面气象要素的观测资料,对两地PM2.5浓度的变化规律及其与气溶胶光学厚度、气象要素的关系进行了分析和讨论,结果表明:南京与北京均呈现PM2.5浓度冬季显著高于夏季,AOD冬季小于夏季的特征;对比而言,北京PM2.5月均浓度高于南京地区;南京与北京的PM2.5浓度与AOD均为正相关关系,PM2.5浓度与AOD间相关性存在显著的季节差异,主要表现为夏季相关性大于冬季相关性;两地AOD与PM2.5浓度均为正相关关系,在同一AOD水平下,相对湿度越大,PM2.5浓度越大,气溶胶吸湿增长易造成污染物积累;南京PM2.5浓度与能见度的r为0.57,而北京的r为0.83,两地的PM2.5浓度与能见度的冬季相关性较夏季好,在高相对湿度下,同一PM2.5浓度水平时,南京能见度较北京好.  相似文献   

3.
利用多旋翼无人机于2021年7月30—31日对塔克拉玛干沙漠的塔中(飞行高度0~2000 m)、民丰地区(飞行高度0~1000 m)不同粒径 颗粒物浓度、气温、相对湿度和风速进行垂直观测,结合多地面站点、再分析资料、后向轨迹模型和卫星遥感数据,对沙尘污染过程中的影响 因素、颗粒物垂直分布特征及污染成因进行了分析.结果表明:①近地面低气温、高相对湿度、高风速的气象条件有利于沙尘污染事件的发生,通过无人机探测数据发现高相对湿度有利于颗粒物吸湿增长,气温和风速的上升能够加强大气对流运动,有利于污染物的输送.②在沙尘污染期间,塔中地区PM1、PM2.5和PM10的浓度分别为0.8~45.7、1.0~267.0和1.0~588.7 μg·m-3;民丰地区PM1、PM2.5和PM10的浓度分别为21.5~126.9、39.6~263.6和48.5~520.6 μg·m-3.③在沙尘污染期间,塔克拉玛干沙漠腹地颗粒物组成以粗颗粒物为主,南缘则以细颗粒物为主.民丰地区PM1/PM2.5比值(0.48~0.55)和PM2.5/PM10比值(0.55~0.83)在同时刻均高于塔中地区(PM1/PM2.5为0.18~0.33, PM2.5/PM10为0.33~0.51).④天气形势和后向轨迹表明,此次污染主要由西风环流导致,气团分别从北面翻越天山和东面绕道进入塔克拉玛干沙漠,携带了塔克拉玛干沙漠东部地区沙尘颗粒和新疆北部人为污染物.⑤CALIPSO卫星数据表明,此次污染中气溶胶存在于海拔1~8 km之间,主要集中在低层(消光系数在 海拔1.0~2.2 km左右最大).气溶胶类型为沙尘气溶胶、污染沙尘气溶胶和烟雾气溶胶,其中,沙尘气溶胶占主要部分.  相似文献   

4.
PM2.5与PM10的时空分布特征及其相关性是大气颗粒物研究的主要内容,传统方法是基于监测站点数据进行分析,难以揭示PM2.5与PM10时空分布的区域特征.为此,本文利用地理加权回归模型估算了2016年新疆地区PM2.5与PM10的月均浓度,在此基础上对区域尺度的PM2.5与PM10浓度特征进行分析.结果表明:地理加权回归相较最小二乘回归的拟合精度更高,PM2.5和PM10的决定系数分别为0.93和0.96,且误差较小;PM2.5和PM10年均浓度分别为70.88 μg·m-3和194.53 μg·m-3,说明大气颗粒物污染严重,且空间分布呈西南高、东北低的特征;PM2.5和PM10季节浓度均为春季最高,夏季最低;PM2.5月均浓度2月最高,9月最低,PM10月均浓度3月最高,8月最低;PM2.5与PM10年均浓度的相关系数r为0.95,相关性较高;PM2.5/PM10冬季最高为51%,其余季节小于50%,说明冬季PM2.5对大气颗粒物污染贡献率较高,其余季节则以可吸入颗粒物中的粗颗粒贡献为主.  相似文献   

5.
西宁市大气污染来源和输送季节特征   总被引:3,自引:2,他引:1  
刘娜  余晔  马学谦 《环境科学》2021,42(3):1268-1279
在2016~2018年西宁市大气污染物PM10和PM2.5季节污染特征分析的基础上,利用HYSPLIT模式和GDAS资料计算了逐日72 h气流后向轨迹,通过聚类分析确定气流输送路径及其对日均PM10和PM2.5质量浓度的影响,运用TrajStat软件提供的潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨不同季节影响西宁市PM10和PM2.5质量浓度的潜在源区分布及贡献.结果表明,输送来源位置多分布在西宁的西-北方向和东-北方向,周边及邻近区域垂直高度较低.输送路径主要受西风、偏西风、西北、西南和偏东气流的影响.距离短、高度低和移速慢的气流轨迹出现概率最高,是最主要的输送路径,该路径在春夏秋三季来源于青海,冬季则源自新疆,省内输送占主导地位,且不同输送轨迹对PM10和PM2.5浓度影响不同.污染气流主要来自青海省内源、新疆外源及新疆以西的境外源,源地多沙漠和戈壁等脆弱地带分布.潜在源区范围及贡献大小有明显季节差异,冬季范围广且贡献最大,春秋次之,夏季最小.最主要潜在源区位于青海北部、中部和东部地区、新疆南部、中部和东部,其周边地区为中等贡献潜在源区.  相似文献   

6.
2015年12月中国长三角区域经历了4次高浓度、大范围、长时间的颗粒物污染.本研究基于HYSPLIT后向轨迹模式结合GDAS(Global Data Assimilation System,全球资料同化系统)气象数据和长三角区域15个主要城市的PM2.5质量浓度数据,利用轨迹聚类、潜在源贡献因子法(Potential Source Contribution Function,PSCF)和浓度权重轨迹法(Concentration-Weighted Trajectory,CWT)分析了2015年12月长三角区域主要气流轨迹方向和重污染过程中细颗粒物的潜在来源分布,探讨了不同污染过程的气象特征和影响气团分布.结果表明,2015年12月长三角区域主要受到来自西北和北方气流影响(B、C、D类),其出现概率分别为39.5%、20.0%和25.8%;西方内陆(A类)出现概率最低,仅为14.7%.西北内陆方向长距离输送(B类)对长三角区域空气质量影响较大,在此类气团主导下,长三角区域颗粒物(PM2.5、PM10)质量浓度和气态污染物(SO2、NO2、CO)质量浓度平均值分别为90.9、135.1、32.4、54.4和1200 μg·m-3,且粗颗粒物比重较其它3类聚类高;经过东北海面气团(C类)携带的颗粒物浓度也较高,且PM2.5/PM10比值最高,可能是其水汽含量较高加剧了污染物的二次生成.PSCF和CWT分析结果表明,污染过程1(12月5-8日)期间,长三角区域PM2.5浓度主要受内蒙东部、京津冀、山东和江苏东部等地影响;污染过程2(12月10-11日)和污染过程3(12月13-15日)期间,京津冀地区对长三角区域PM2.5浓度的贡献都较低,污染过程2的主要潜在源区较为集中,主要为内蒙东部、辽宁、山东东部、江苏和上海;而污染过程3的潜在源区较广,内蒙西南地区、甘肃、山西、陕西、河南、河北南部、山东、安徽北部等地及长三角本地对区域PM2.5浓度均有重要贡献;污染过程4(12月20-27日)持续时间最长,相较前3次污染过程,京津冀地区和西南地区对长三角区域PM2.5浓度的贡献相对增加.总体来说,2015年12月4次污染过程期间长三角区域PM2.5污染的潜在贡献源主要集中在华北和华东(长三角)地区,区域性污染和长距离输送对冬季长三角区域空气质量有重要影响.  相似文献   

7.
颗粒物化学组分特征对于分析污染来源及成因具有较好的指示意义,能够为城市制定颗粒物源的有效管控提供基础数据支撑.本研究采集和分析了武汉市4个季节8个受体点位的PM2.5浓度及其化学组分数据.结合各点位组分特征及周边污染源分布情况,通过聚类分析讨论PM2.5化学组分的时空分布特征.结果表明,武汉市PM2.5年平均浓度为70.7μg·m-3,其中冬季PM2.5浓度(103.1μg·m-3)显著高于其它季节,秋季浓度最低(52.4μg·m-3).从空间分布来看,东湖高新、沌口新区和青山钢花站点的PM2.5浓度显著高于其它站点.武汉市PM2.5主要的化学组分为OC和SO42-,占比分别为15.4%和14.2%.OC浓度表现为冬季最高,除了与不利的气象条件有关外,还可能受到周边区域传输的影响;而SO42-浓度夏季最高,具有较强的SO2二次转化.武汉市OC/EC年均比值为2.80,其中冬、春季小于夏、秋季;物质重构结果表明无机盐(SO42-、NO3-、NH4+)和有机物(OM)是PM2.5中的主要物质,占比分别为32.34%和20.44%;工业燃煤源及机动车源可能是武汉市环境受体中PM2.5主要贡献源.基于受体组分特征的聚类分析可见,武汉市8个站点可分为3类:其中汉阳月湖、灰霾超站、东湖梨园和黄陂区站为一类,主要特征是各站点组分浓度均较低;沌口新区与青山钢花为一类,NO3-和NH4+组分浓度较高;东湖高新与吴家山为一类,该两个站点不仅工业源污染较重,机动车及扬尘污染也有较大的贡献.  相似文献   

8.
长三角地区大气污染物对新冠肺炎封城的时空响应特征   总被引:3,自引:0,他引:3  
利用2020年1月1日—2月29日上海、南京、合肥和杭州4个城市常规污染物的逐时监测资料,结合卫星反演的NO2垂直柱浓度信息,探讨了新冠肺炎封城的前、中、后期长三角地区城市大气污染物的污染水平及响应特征.结果显示:除O3外,其余大气污染物的平均浓度在时间上的整体变化趋势均表现为封城前>封城中(1月24日—2月10日)>封城后,表明空气质量并非完全受封城导致的污染减排控制.封城期间的PM2.5/PM10比值高于封城前和封城后,表明气溶胶二次生成对封城期间仍出现的颗粒物污染可能有重要贡献.Ox浓度在封城期间也有显著上升(p<0.01),表明大气氧化性可能在NO2减少的背景下得到强化,从而促进二次气溶胶的生成.从空间看,O3分布呈以城市为中心的包围式往内聚集分布,表明以局地生成为主.PM2.5、PM10、CO、SO2和NO2分布特征为北高南低,表明冬季自北向南的区域传输对封城期间的空气污染有重要贡献.卫星反演结果进一步证实华北平原是污染的主要源区,这也得到轨迹来源分析的佐证.  相似文献   

9.
对东南沿海平原地区某燃煤电厂不同方位距离的9个采样点进行为期9个月的大气颗粒物采集,以PM2.5、PM10为对象,研究了颗粒物与颗粒物汞的时空分布,探讨了燃煤电厂排放对周边大气颗粒物与颗粒物汞分布的影响.结果表明:①本研究区PM2.5平均浓度为78.10 μg·m-3,其中颗粒物汞平均浓度为294.88 pg·m-3;PM10平均浓度为114.48 μg·m-3,其中颗粒物汞平均浓度为363.41 pg·m-3,均高于海内外众多城市.②冬季颗粒物、碳组分及颗粒物汞的浓度远高于春、夏、秋三季,冬季燃煤量大、逆温等气象因素及远距离污染物传输均造成当地冬季颗粒物累积.③大气颗粒物汞浓度随距电厂距离的增加先增加后降低,最大浓度范围为电厂W-NW方向1.3~2.5 km处.④各采样点均受到多种污染源共同影响,以燃煤尘为主,餐饮油烟、机动车尾气、生物质燃烧和扬尘次之,燃煤电厂对周边区域环境大气可吸入颗粒物主要影响区域为W-NW方向1.3~2.5 km.  相似文献   

10.
了解大气污染物的潜在源区分布对制定污染物减排措施至关重要.本文采用HYSPLIT模型,模拟出抵达铁岭市地区72 h的主要气流轨迹,结合铁岭市2015—2018年PM2.5逐小时浓度数据资料,采用CWT方法(concentration-weighted trajectory method)对铁岭市PM2.5潜在源区浓度进行了分析,在此基础上,提出了PCWT方法(percentage concentration-weighted trajectory method),对铁岭市地区PM2.5潜在源区浓度占比及传输过程进行了定量分析.研究表明,铁岭市PM2.5来源呈现出不同的季节特征:春季PM2.5主要来源于铁岭市西北和南部地区,夏季PM2.5主要来源于铁岭市南部地区,秋季PM2.5主要来源于铁岭市西北部及东北部地区,冬季PM2.5主要来源于铁岭市西北部及铁岭市周边地区.铁岭市PM2.5主要来源于3个方向,其中来自铁岭西北方向的源区贡献值4年平均占比27.36%、东北方向占18.51%、西南方向占15.73%;铁岭及周边城市、吉林省松嫩平原、科尔沁沙地以及辽宁中部城市群、环渤海湾地区是铁岭市PM2.5的主要国内源区;俄罗斯、蒙古、朝鲜是铁岭市PM2.5的主要国外源区,且近几年有增加趋势.研究成果对建立铁岭市生态环境管控分区,制定有效防治大气污染措施有重要的科学支撑作用.  相似文献   

11.
利用2011年5月11—12日辽宁沙尘天气过程的相关资料,分析了沙尘天气对不同粒径颗粒物及空气质量的影响及此次沙尘过程的天气成因.结果表明:沙尘天气发生前后可吸入颗粒物PM10、PM2.5和PM1的浓度变化很大,沈阳、鞍山、本溪和丹东4城市PM10、PM2.5的小时浓度最大值都增大了1.5~20倍;粗粒子PM(2.5~10)的数量浓度分别增加了30~41倍,质量浓度分别增加了27~30倍;细粒子PM(1~2.5)的质量浓度分别增加了30~35倍,数量浓度分别增加了15~30倍;微粒子的数量浓度和质量浓度各城市表现不同,沈阳微粒子的数量浓度和质量浓度最大值增大了3倍和5倍,而鞍山PM1的数量浓度和质量浓度分别减少了50%和10%.受蒙古气旋的影响内蒙古地区产生大风降温天气,大风将内蒙古地区的沙尘带到高空并随西风带向东移动进入辽宁,由于辽宁地区风速比较小,造成了辽宁大部分地区的浮尘天气,并对辽宁各地空气质量造成了严重影响,除丹东外辽宁其他13个城市空气质量都达到了轻微污染到重度污染的级别,铁岭、阜新、沈阳和抚顺的污染指数分别超过了300,达到了重度污染的级别.  相似文献   

12.
邯郸市大气颗粒物污染特征的监测研究   总被引:6,自引:1,他引:5  
使用振荡天平颗粒物在线监测仪连续监测了邯郸市PM10和PM2.5浓度,分析了2012年7月31日—12月2日4个月内PM10、PM2.5的浓度水平、时变规律和PM2.5/PM10的变化情况.结果表明,监测时段内PM10和PM2.5的日均浓度平均值分别为208.4 μg·m-3和99.1 μg·m-3,是国家二级标准的1.4倍和1.3倍;浓度超标的天数占总观测天数的61.6%和60.0%,其污染程度与北京、天津相当,属污染较严重的地区.PM2.5/PM10在19.3%~89.8%之间周期性波动,平均值为49.4%,接近北方城市的平均水平.PM10和PM2.5的浓度变化具有很好的正相关性;日均值在4个月中呈现明显的周期性变化和月际波动,10、11月的PM10和PM2.5浓度变化剧烈且大大高于8、9月份.PM10和PM2.5浓度一天中小时均值的变化呈同步的双峰型分布,最高值出现在9:00和20:00左右,最低值出现在15:00~17:00之间.本研究系统分析了夏秋季节邯郸市大气颗粒物污染状况,以期为当地颗粒物污染的控制提供科学依据.  相似文献   

13.
石家庄市采暖前后大气颗粒物及其碳组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物、碳组分特征和污染来源,采集2016年11月1日—12月31日石家庄市大气颗粒物(PM10、PM2.5和PM1)样品,分析采暖前后PM10、PM2.5和PM1及其中OC(有机碳)、EC(元素碳)和WSOC(水溶性有机碳)浓度水平,计算颗粒物与碳组分间相关性,进行OC/EC(质量浓度之比,下同)特征比值法和8个碳组分(OC1、OC2、OC3、OC4、OPC、EC1、EC2和EC3)研究.结果表明:①采暖后ρ(PM10)和ρ(PM2.5)比采暖前分别增加了26.4%和32.1%,而采暖后ρ(PM1)比采暖前降低了12.2%.采样期间ρ(PM10)与ρ(PM2.5)显著相关,而ρ(PM1)分别与ρ(PM2.5)和ρ(PM10)相关性差.采暖后散煤燃烧造成ρ(PM10)和ρ(PM2.5)增加,区域机动车限行和工业限产/停产导致ρ(PM1)降低.②Pearson相关系数计算可知,ρ(OC)与ρ(EC)强相关;ρ(PM10)和ρ(PM2.5)分别与ρ(OC)和ρ(WSOC)强相关,而ρ(PM1)分别与ρ(OC)和ρ(WSOC)中等相关;ρ(PM10)和ρ(PM2.5)分别与ρ(EC)弱相关,ρ(PM1)与ρ(EC)中等相关.③采暖后PM10、PM2.5和PM1中ρ(OC)比采暖前分别增加了215.1%、97.2%和18.5%;采暖后PM10和PM2.5中ρ(EC)比采暖前分别增加了65.2%和5.3%,而采暖后PM1中ρ(EC)比采暖前降低了10.9%.集中供热和散煤燃烧排放了大量OC;PM10和PM2.5中EC主要来源于散煤燃烧,PM1中EC主要来源于工业排放和机动车尾气.④采暖前PM10、PM2.5和PM1中OC/EC平均值分别为4.5、4.5和4.3;采暖后PM10和PM2.5中OC/EC平均值分别为9.8和9.7,而PM1中OC/EC平均值为7.4.采暖前后SOC/OC(质量浓度之比,下同)平均值的范围为0.36~0.65,石家庄市冬季大气中SOC污染严重;⑤8个碳组分分析发现,石家庄市机动车限行导致PM1中ρ(EC1)降低,而采暖后集中供暖和散煤燃烧的增加,导致ρ(OC2)明显增加.研究显示,大气颗粒物中碳组分采暖前主要来源于机动车尾气,而采暖后主要来源于燃煤燃烧,尤其是散煤燃烧.   相似文献   

14.
2013年1月邯郸市严重霾天气的污染特征分析   总被引:4,自引:3,他引:1  
利用河北工程大学大气环境监测站点的PM10、PM2.5、SO2和NOx在线监测数据,并结合能见度、湿度数据,对邯郸市2012年12月1日到2013年1月31日的大气污染状况进行分析,特别是2013年1月持续发生的霾天气,以探讨严重霾污染的过程特征.结果表明,2013年1月,SO2与NOx的平均浓度分别为225.3 μg·m-3和217.8 μg·m-3,PM10和PM2.5的平均浓度分别为328.5 μg·m-3和229.4 μg·m-3,均超过新颁布的环境空气质量标准,是2012年12月平均浓度的1.4~3.5倍.重污染过程分析结果显示,污染峰值附近几天内PM10、PM2.5的时均浓度变化无明显规律.累积阶段的PM2.5/PM10在0.42~0.52之间,峰值前后上升并超过0.70,扩散阶段PM2.5/PM10降到0.70以下,且呈波动式变化.当PM2.5/PM10小于0.40时,能见度基本位于2~18 km之间;当PM2.5/PM10在0.40~0.60之间时,能见度在0.7~8 km之间;当PM2.5/PM10大于0.60时,能见度分布于2 km以下.  相似文献   

15.
邯郸市大气复合污染特征的监测研究   总被引:8,自引:2,他引:6  
利用邯郸市4个大气环境监测站点的PM2.5、PM10、O3等在线连续观测数据,对2013年全年的PM2.5、PM10、O3的浓度水平、变化规律和PM2.5/PM10的变化情况进行了分析,并从地形、气象、污染物排放及冬、夏季逐时PM2.5、O3和各类气体污染物浓度之间的关系等方面进行了研究.结果表明:12013年PM2.5、PM10的年均浓度分别为139和238μg·m-3,分别是国家二级标准的4.0倍和3.4倍.PM2.5、PM10日均浓度超过标准的天数均在280 d左右,全年3/4以上天数均超标.其颗粒物污染程度甚至超过北京、天津、长三角和珠三角等超大城市或城市群,属于严重超载的红色预警地区.整个采暖期PM2.5、PM10平均浓度分别为209和322.1μg·m-3,为非采暖期平均浓度的2倍和1.6倍;同时,采暖期PM2.5/PM10平均值为63%,高出非采暖期10%,采暖期细颗粒物污染问题特征明显.22013年O3日最大8小时平均浓度的最大值为238μg·m-3,是国家二级标准的1.5倍,超标天数为53 d,超标率为14.5%;最大时均浓度为288μg·m-3,是国家二级标准的1.4倍,超标小时数为148h,占全年有效数据的1.7%;与北方城市相比,其污染程度超过北京、天津等,略低于洛阳污染水平.3邯郸市大气复合污染的形成,除了区域大气环流与特殊地形叠加影响外,还主要归因于相对较高的人为源大气污染物排放,因此,要想走出复合污染的困局,减排是硬道理,解决灰霾污染需开展颗粒物、NOx、SO2等污染物的协同控制.  相似文献   

16.
为探究临沂市PM_(2.5)和PM_(10)中元素的污染特征及来源,于2016年12月至2017年10月对临沂市环境空气中PM_(2.5)和PM_(10)进行了同步采样.利用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES)测定了其中的23种元素,并采用富集因子法和PMF法分析其来源.结果表明,采样期间临沂市PM_(2.5)和PM_(10)中主要元素为Si、Ca、Al、Fe、K、Na和Mg,分别占所测元素的质量分数为92.93%和94.61%. 18种元素(除Ti、Ni、Mo、Cd和Mg)的浓度水平在冬春季最高,夏秋季最低.其中Si、Al、Ca、K和Na表现为春季浓度最高,主要分布在粗颗粒中;Cu、Zn、Pb和Sb表现为冬季浓度最高,主要分布在细颗粒中.富集因子结果表明Cd、Sb和Bi元素富集程度显著,主要受燃煤、工业生产、垃圾焚烧等人为源共同影响.PMF源解析结果表明,临沂市PM_(2.5)中元素来源主要有燃煤和铜冶炼的混合源、市政垃圾焚烧源、扬尘源、机动车排放和工业源,贡献率分别为22.64%、 7.49%、 41.22%、 14.71%和13.94%.PM_(10)中元素来源主要有扬尘源、燃煤和铜冶炼的混合源、机动车排放和工业源,贡献率分别为55.47%、 19.80%、 7.48%和12.83%.由此可见,扬尘源和燃煤与铜冶炼的混合源是临沂市颗粒物污染形成过程中的重要源类.  相似文献   

17.
2014—2016年海口市空气质量概况及预报效果检验   总被引:1,自引:0,他引:1  
本文主要基于CUACE模式在海口市的预报产品,结合2014年3月—2017年2月海口市AQI、PM2.5、PM10和O3的实况资料进行预报效果检验.结果表明,①近3年海口市空气质量等级主要以优和良为主,但仍有少部分天数以PM10、PM2.5和O3为首要污染物,分别占所有首要污染物天数的27.6%、29.5%和42.9%,其中O3上升幅度较快.②CUACE模式能较好的模拟出AQI和3类污染物浓度的变化特征,其中PM2.5的预报值与实测值最为接近,而PM10和O3普遍偏低.③日平均浓度的预报效果检验表明,PM2.5的标准误差(RMSE)最小,AQI和PM10次之,O3最大.3个时次预报平均偏差(MB)和归一化偏差(MNB)均为负值,表明CUACE模式预报的污染要素浓度均偏低于实测值.④海口市空气质量为优等级时,TS评分最高;无首要污染物时,首要污染物预报的TS评分最高,但首要污染物为PM2.5、PM10或O3时,TS评分均偏低.  相似文献   

18.
济南市春季大气颗粒物污染研究   总被引:10,自引:2,他引:8  
对济南市2005年春季大气颗粒物中PM10、PM2.5和细颗粒物中的黑碳气溶胶的浓度水平、时间分布和日变化进行了观测,并结合气象资料对变化特征进行综合分析,探讨了PM10,PM2.5和黑碳的相对含量以及对能见度的影响等.研究结果表明,PM10和PM2.5平均浓度分别为242.5μg·m-3和109.4μg·m-3.与我国空气质量二级标准PM10日均值150μg·m-3和美国国家空气质量PM2.5日均标准65μg·m-3相比,超标率分别达到80.77%和84.61%,污染较严重;监测期间PM2.5/PM10的平均值为0.456.在PM2.5中,黑碳气溶胶平均质量浓度为5.39μg·m-3,占PM2.5的5.06%,日浓度变化呈双峰型.在监测时间内,污染物浓度与温度无明显的相关性;与相对湿度呈弱正相关;与风速呈明显的负相关关系.降水对PM10、PM2.5和黑碳的清除作用较为显著.PM10、PM2.5和黑碳浓度与能见度均呈负相关,相关系数(r)分别为-0.633、-0.695和-0.704,细颗粒物是影响能见度的主要因素.  相似文献   

19.
南昌市大气颗粒物污染特征及PM2.5来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨2013年南昌市大气颗粒物的污染特征及分布状况,收集南昌市9个大气监测站点实时发布的PM10和PM2.5数据,分析了ρ(PM10)、ρ(PM2.5)和ρ(PM2.5)/ρ(PM10)的变化规律及其与气态污染物的相关性,并结合污染严重的秋季时段,采用PCA-MLR(主成分分析-多元线性回归)模型对大气PM2.5中化学组分来源进行解析.结果表明:①ρ(PM10)和ρ(PM2.5)的年均值分别为(115.4±39.1)(69.1±26.8)μg/m3,均超过GB 3095-2012《环境空气质量标准》二级标准限值,ρ(PM10)和ρ(PM2.5)的最高值分别出现在石化、省外办监测站点,最低值出现在林科所监测站点.ρ(PM10)和ρ(PM2.5)季节性变化特征明显,呈冬季>春、秋两季>夏季的趋势,全年ρ(PM10)超标天数占比为25.48%,ρ(PM2.5)超标天数占比为36.71%,各季度ρ(PM2.5)超标天数占比均高于ρ(PM10).②受人为活动和边界层高度的影响,ρ(PM2.5)和ρ(PM10)日变化呈双峰双谷形态,一个波峰出现在08:00-10:00,另一个波峰出现在20:00-22:00,并且晚间小时峰值高于早间,最低值出现在15:00.③ρ(PM2.5)/ρ(PM10)年均值为60.3%,在冬季最高达65.1%,相关性分析发现ρ(PM10)与ρ(PM2.5)存在较显著的线性关系,表明二者具有同源性.④ρ(PM10)、ρ(PM2.5)均与ρ(SO2)、ρ(NO2)、ρ(CO)呈显著正相关,并且冬季相关性高于夏、秋两季;而ρ(PM10)、ρ(PM2.5)均与ρ(O3)全年呈显著负相关,并且夏、秋两季相关性高于冬季,说明气态污染物的二次转化对ρ(PM2.5)和ρ(PM10)有较大影响.⑤南昌市秋季PM2.5的最大污染源为道路扬尘/机动车尾气混合污染源,其次分别为施工扬尘源、燃煤源、冶炼尘/生物质燃烧混合污染源,各污染源对PM2.5的贡献率分别为40.9%、35.8%、12.4%、10.9%.研究显示,南昌市PM2.5的污染程度较PM10严重,PM2.5已成为南昌市大气颗粒物污染的主要组分,PM2.5主要来源为城市扬尘和机动车尾气.   相似文献   

20.
2013年夏季嘉兴市一次光化学事件的观测分析   总被引:12,自引:7,他引:5  
沈利娟  李莉  吕升  张孝寒  吴博  章国骏  王翡 《环境科学》2014,35(5):1662-1670
为研究2013年8月5~11日嘉兴地区一次光化学事件形成的高浓度O3污染的变化特征及成因,对8月2~14日的主要污染气体(O3、NO2、NO、CO、SO2)、颗粒物(PM10、PM2.5)以及气象要素进行了观测分析.结果表明,嘉兴污染日的O3平均浓度是正常日的2.4倍,超标率多在29.0%以上,9日超标率高达45.8%,此次污染事件是高温下剧烈的光化学反应以及低湿低风速的稳定天气形势共同作用造成的.污染日和正常日的O3日变化均呈单峰分布,峰值出现在14:00左右,O3在污染日和正常日生成期的增长速率分别为50.3μg·(m3·h)-1和21.6μg·(m3·h)-1,在消耗期的下降速率分别为16.8μg·(m3·h)-1和23.4μg·(m3·h)-1,NO、NO2和CO在污染日的浓度分别是正常日的1.1、1.5和1.5倍,为光化学反应提供了有利的反应条件.污染日PM2.5浓度、PM10浓度、PM2.5/PM10的比值分别是正常日的2.5、2.3、1.1倍,污染日大气光化学反应异常活跃,更有利于细颗粒物的生成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号