首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
On the basis of the data Comext from Eurostat, this paper presents 2001 data on the main exchanges (flows) intra-European Union (EU) and with the rest of the world (extra-EU), by countries (for the main countries which are concerned), tonnage and value, by categories of recovered materials and products. A synoptic table is established, the results are summarized, and initial comments are provided. Moreover the evolution from 1995 to 2001 is discussed.The second part of the paper examines what these data tell us:
* whether they are consistent with the main theories of international trade, and which factors explain these exchanges,
* what is the extent of foreign trade of recovered products and materials,
* to what extent the EU appears as ‘an economic entity’,
* and possible effects of the enlargement of the EU.
Keywords: International trade; European Union; Recovery; Recycling  相似文献   

2.
With increasing environmental challenges confronting our planet, colleges and universities are trying different approaches for minimizing their adverse environmental impacts. Among the approaches being used to revitalize campus sustainability efforts, new waste management strategies have included attempts to improve campus-recycling programs. This paper presents select findings from a comprehensive study at a large, Tier I university aimed at, among other things, informing university administration and decision makers working on the planning and implementation of a new campus-wide recycling facility and program. The researchers used a mixed-method approach to help them develop an understanding of the campus community's (1) perceived barriers to recycling, (2) recycling knowledge, (3) program preferences, and (4) environmental attitudes. The results from a web-based survey (n = 3896, RR1 = 24.9%) suggest, communication efforts for recycling programming should focus more on messages concerning what, how, and where to recycle rather than messages on why to recycle. Furthermore, the results suggest recycling-related publicity approaches should differentiate their mode and content for different segments of the community.  相似文献   

3.
The Packaging and Packaging Waste Directive has had an undeniable impact on waste management throughout the European Union. Whereas recycling and recovery targets are the same, member states still enjoy a considerable degree of freedom with respect to the practical organization and management strategies adopted. Nevertheless, in all cases, the industry (which brings packaging material onto the market) should be responsible for the costs associated with packaging waste recycling/recovery (following the extended producer responsibility principle). The current paper compares and contrasts the institutional frameworks and financial costs and benefits of waste management operators for Belgium and Portugal. The unit costs of selective collection and sorting of packaging waste are provided for both countries. In Belgium, the costs of recycling seem to be fully supported by the industry (through Fost Plus, the national Green Dot agency). In Portugal the fairness of the recycling system depends on the perspective adopted (economic or strictly financial). Adopting a strictly financial perspective, it seems that Sociedade Ponto Verde (SPV, the Portuguese Green Dot agency) should increase the transfers to local authorities. However, the conclusions differ for this country if the avoided costs with refuse collection and other treatment are taken into account.  相似文献   

4.
In Korea due to rapid economical growth followed by urbanisation, breakage of large traditional families into small nuclear families, continuous changes in equipment features and capabilities causes tremendous increase in sale of new electrical and electronic equipment (EEE) and decrease in sale of used EEE. Subsequently, the ever-increasing quantity of waste electrical and electronic equipment (WEEE) has become a serious social problem and threat to the environment. Therefore, the gradual increase in the generation of WEEE intensifies the interest for recycling to conserve the resources and protect the environment. In view of the above, a review has been made related to the present status of the recycling of waste electrical and electronic equipment in Korea. This paper describes the present status of generation and recycling of waste electrical and electronic equipment, namely TVs, refrigerators, washing machines, air conditioners, personal computers and mobile phones in Korea. The commercial processes and the status of developing new technologies for the recycling of metallic values from waste printed circuit boards (PCBs) is also described briefly. Since 1998, three recycling centers are in full operation to recycle WEEE such as refrigerators, washing machines and air conditioners, having the total capacity of 880,000 units/year. All waste TVs are recently recycled on commission basis by several private recycling plants. The recycling of waste personal computers and mobile phones is insignificant in comparison with the amount of estimated obsolete those. Korea has adopted and enforced the extended producer responsibility (EPR) system. Korea is making consistent efforts to improve the recycling rate to the standards indicated in the EU directives for WEEE. Especially environmentally friendly and energy-saving technologies are being developed to recycle metal values from PCBs of WEEE.  相似文献   

5.
Local authorities are generally in charge of household packaging waste management operations, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the packaging industry and the local authorities (regarding the costs involved in selective collection and sorting). In the present study, the costs and benefits of recycling, from the perspective of local authorities, are compared for Portugal, Belgium and Italy (in Lombardia region), adopting the same economic–financial methodology. The results show that the industry is not paying the net cost of packaging waste management. If the savings attained by diverting packaging waste from other treatment operations are not considered, it seems that the industry should increase the financial support to local authorities. However, if the avoided costs with other treatments are considered as a benefit for local authorities, the costs are generally outweighed by the benefits, and the financial support could, therefore, be reduced.  相似文献   

6.
In Brazil most Construction and Demolition Waste (C&D waste) is not recycled. This situation is expected to change significantly, since new federal regulations oblige municipalities to create and implement sustainable C&D waste management plans which assign an important role to recycling activities. The recycling organizational network and its flows and components are fundamental to C&D waste recycling feasibility. Organizational networks, flows and components involve reverse logistics. The aim of this work is to introduce the concepts of reverse logistics and reverse distribution channel networks and to study the Brazilian C&D waste case.  相似文献   

7.
Changes in the trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling in the United States. In response to these challenges, new and innovative approaches to automobile recycling are being developed. This paper presents the findings of a recent study to examine the impacts of these changes on the life cycle energy consumption of automobiles and on the quantity of waste that must be disposed of. Given the recycle status quo, trends in material composition and the viability of recycling the non-metallic components of the typical automobile are of secondary importance when compared to the energy consumed during the life of the automobile. The energy savings resulting from small changes in the fuel efficiency of a vehicle overshadow potential energy losses associated with the adoption of new and possibly non-recyclable materials. Under status quo conditions, the life cycle energy consumed by the typical automobile is projected to decrease from 599 million Btus in 1992 to 565 million Btus in 2000. Energy consumed during the manufacture of the typical car will increase from about 120 to 140 million Btus between 1992 and 2000, while energy used during vehicle operation will decrease from 520 to 480 million Btus. This study projects that energy saved at the recycle step will increase from 41 million Btus in 1992 to 55 million Btus in 2000. This study also investigated the energy impacts of several potential changes to the recycle status quo, including the adoption of technologies to retrieve the heat value of ASR by incineration and the recycle of some or all thermoplastics in the typical automobile. The study estimates that under optimistic conditions —i.e., the recycling of all thermoplastics and the incineration with heat recovery of all remaining ASR —about 8 million Btus could be saved per automobile —i.e., an increase from about 55 to 63 million Btus. In the more realistic scenario —i.e., the recycling of easy-to-remove thermoplastic components (bumper covers and dash-boards) —the potential energy savings are about 1 million Btus per vehicle. It is estimated that the annual quantity of ASR in the United States could be reduced from about 5 billion pounds to as little as 1 billion pounds of ash if all ASR is incinerated. Alternatively, ASR quantity could be reduced to about 4 billion pounds if all thermoplastics in automobiles are recycled. However, in the case of recycling only thermoplastic bumper covers and dashboards, the quantity of ASR would be reduced by only 0.2 billion pounds. A significant reduction or increase in the size of the ASR waste stream will not in itself have a large impact on the solid waste stream in the United States.  相似文献   

8.
Without public contributions, recycling from domestic waste would not be possible. In order to support recycling projects it is important to try to understand who recycles, how they recycle, and why they recycle. This paper presents the results of a structured survey of 500 members of the public served by schemes to collect plastics waste for recycling. Data were gathered on the characteristics, behaviours and motivations of recyclers. The authors also sought to discover how the public perceive plastics compared to other materials, and as a recyclable material. Responses were collected in such a way that the awareness of the recyclability of materials could be compared with the recycling behaviour of respondents. An element of comparison was introduced between those served by a system of bottle banks (bring scheme) and those covered by a household collection (collect scheme). The survey results are reported and their implications for the management of post-consumer plastics waste collection schemes are discussed.  相似文献   

9.
EU's long-term objective is to become a recycling and resource effective society, where waste is utilized as a resource and waste generation is prevented. A system dynamics model was developed to analyze the policy mechanisms that promote packaging material efficiency in products through increased recycling rates. The model includes economic incentives such as packaging and landfill taxes combined with market mechanisms, behavioral aspects and ecological considerations in terms of material efficiency (the packaging material per product unit, recycled fraction in products). The paper presents the results of application of various policy instruments for increasing packaging material efficiency and recovery rate and reducing landfilled fraction. The results show that a packaging tax is an effective policy instrument for increasing the material efficiency. It ensures the decrease of the total consumption of materials and subsequent waste generation. The tax helps to counteract a rebound effect, which, as identified by the analysis, can be caused by reduced material costs due to eco-design. The model is applied to the case of Latvia. Yet, the elements and structure of the model developed are similar to waste management systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze policy mechanisms in other countries.  相似文献   

10.
诸暨市山下湖镇通过建设循环经济工业园,合理规划剖蚌点,充分利用废弃的蚌壳和蚌肉,及时回收利用废料、废水、废液等措施,使珍珠循环块状经济得到迅速发展。发展循环经济是企业对环境、社会发展的责任和义务,要加快研究制定循环经济发展的规划和思路,努力将循环经济的发展理念贯穿在块状经济发展之中,培育新的产业形态,形成新的增长潜力。  相似文献   

11.
The ability for small islands to meet sustainability goals is exacerbated by the costs of transporting goods on, and then, wastes off the islands. At small scales, recycling can be prohibitive and complicated by labor costs; the need to profitably recycle and manage solid waste output from tourism is complicated by scale and available technologies. A multi-year study documents the amount of solid waste generated on Great Exuma (Exuma), The Commonwealth of The Bahamas since 2010 with one year of benchmarking, then limited recycling of food waste generation by an all-inclusive resort, Sandals Emerald Bay (SEB). For the island of Exuma, the rapid increase in the rate of accumulation of solid waste associated with a large destination resort has led to an increase in pests such as rats and flies, along with an increased occurrence of fires associated with unburied solid waste. Solid waste has accumulated faster than the island solid waste management can absorb. SEB kitchen and hotel operations contributes an estimated 36% of all solid waste generated on the island, about 1752 t1 out of a total of 4841 t generated on the island in 2013 (exclusive of vegetation waste). Based on 4 weeks of benchmarking, 48.5% of all the waste coming out of the SEB resort is compostable, organic waste, but waste composition varies widely over time. Exuma Waste Management (EWM) and Recycle Exuma (RE), both privately-held Bahamian businesses, worked for one year (2012–2013) with SEB resort to implement a benchmarking and pilot recycling project to meet Earth Check green resort certification requirements. This paper outlines the costs and resources required for food waste recycling and some barriers to implementing more effective solid waste management for the tourism industry on small islands.  相似文献   

12.
More than 50,000 tons of hazardous waste are imported and exported worldwide each year. Over 50% of hazardous waste is exported to Southeast Asia, of which leather waste is the major component. The exportation quantities of hazardous waste to Organization of Economic Cooperation and Development (OECD) countries are decreasing while they are on the increase to non-OECD countries. Some of these wastes are intended for recycling purposes but the usage of some others is not stipulated. The hazardous waste importation quantity kept fairly steady from 1997 to 2000, of which ash or residues containing copper or copper compounds were the major component. Under existing regulations and measures, the transboundary movement of hazardous waste cannot be effectively controlled and monitored. In order to ensure environmentally sound hazardous waste management, EPA-Taiwan revised the Waste Disposal Act in 2001 and cooperated with the Industrial Development Bureau (IDB) to promote industrial waste reduction and recycling projects. Strategies were proposed based on evaluation according to the 3Es Principles and the site investigation in this study.  相似文献   

13.
Disposal of more than 300 tonnes waste glass daily derived from post-consumer beverage bottles is one of the major environmental challenges for Hong Kong, and this challenge continues to escalate as limited recycling channels can be identified and the capacity of valuable landfill space is going to be saturated at an alarming rate. For this reason, in the past ten years, a major research effort has been carried out at The Hong Kong Polytechnic University to find practical ways to recycle waste glass for the production of different concrete products such as concrete blocks, self-compacting concrete and architectural mortar. Some of these specialty glass-concrete products have been successfully commercialized and are gaining wider acceptance. This paper gives an overview of the current management and recycling situation of waste glass and the experience of using recycled waste glass in concrete products in Hong Kong.  相似文献   

14.
This paper considers two alternative feedstocks for bioethanol production, both derived from household waste—Refuse Derived Fuel (RDF) and Biodegradable Municipal Waste (BMW). Life Cycle Assessment (LCA) has been carried out to estimate the GHG emissions from bioethanol using these two feedstocks. An integrated waste management system has been considered, taking into account recycling of materials and production of bioethanol in a combined gasification/bio-catalytic process. For the functional unit defined as the ‘total amount of waste treated in the integrated waste management system’, the best option is to produce bioethanol from RDF—this saves up to 196 kg CO2 equiv. per tonne of MSW, compared to the current waste management practice in the UK.However, if the functional unit is defined as ‘MJ of fuel equiv.’ and bioethanol is compared with petrol on an equivalent energy basis, the results show that bioethanol from RDF offers no saving of GHG emissions compared to petrol. For example, for a typical biogenic carbon content in RDF of around 60%, the life cycle GHG emissions from bioethanol are 87 g CO2 equiv./MJ while for petrol they are 85 g CO2 equiv./MJ. On the other hand, bioethanol from BMW offers a significant GHG saving potential over petrol. For a biogenic carbon content of 95%, the life cycle GHG emissions from bioethanol are 6.1 g CO2 equiv./MJ which represents a saving of 92.5% compared to petrol. In comparison, bioethanol from UK wheat saves 28% of GHG while that from Brazilian sugar cane – the best performing bioethanol with respect to GHG emissions – saves 70%. If the biogenic carbon of the BMW feedstock exceeds 97%, the bioethanol system becomes a carbon sequester. For instance, if waste paper with the biogenic carbon content of almost 100% and a calorific value of 18 MJ/kg is converted into bioethanol, a saving of 107% compared to petrol could be achieved. Compared to paper recycling, converting waste paper into bioethanol saves 460 kg CO2 equiv./t waste paper or eight times more than recycling.  相似文献   

15.
Whether to recycle the recyclable fraction in the MSW (municipal solid waste) or to incinerate it for energy recovery is a debating issue. In this paper we present a simple criterion to judge what type of waste components should be recycled or incinerated with energy recovery. According to the R1 formula presented by the waste framework directive (Directive 2008/98/EC of the European Parliament), this paper calculates the energy performances of MSW waste-to-energy plants currently operated in Taiwan firstly. By using the assumed value of energy recovery efficiency and carbon emission costs, we compare the treatment methods between recycling (material recovery) and energy recovery by the cost and benefit analysis, and examine the suitability of recycling for waste fractions of paper, food waste, PET, PVC, and plastic bags/films under a variety of scenarios. The results show that food waste is more appropriate to be treated by recycling while plastic bags/films are suggested to be incinerated with energy recovery.  相似文献   

16.
The impact of the management of packaging waste on the environment, economic growth and job creation is analyzed in this paper. This integrated assessment intends to cover a gap in the literature for this type of studies, using the specific case study of the Portuguese packaging waste management system (SIGRE).The net environmental benefits associated with the management of packaging waste, are calculated using the Life Cycle Assessment methodology. The results show that, for the categories studied, the impacts associated to SIGRE's various activities are surpassed by the benefits associated to material and energy recovery, with special focus on recycling. For example, in 2011 SIGRE avoided the emission of 116 kt CO2 equiv. – the equivalent carbon emission of the electricity consumption of 124.000 households in Portugal.The economic impact of SIGRE is evaluated through Input–Output Analysis. It was found that SIGRE's activities also have a significant economic impact. For example, their added value are ranked amongst the upper third of the economic activities with highest multiplier effect at national level: this means that for each Euro of value added generated within SIGRE, 1.25 additional € are added to the rest of the economy (multiplier effect of 2.25).Regarding the social impacts of SIGRE, the number of direct jobs associated with the system is estimated to be more than two thousand and three hundred workers. Out of these, 83% are connected to the management of municipal waste packaging (selective collection and sorting), 15% are connected to the management of non-municipal packaging waste and only 2% are connected to the Sociedade Ponto Verde (SPV, green dot society in English) – the management entity responsible for SIGRE.In general terms, the results obtained provide quantitative support to the EEA (2011) suggestion that moving up the waste hierarchy – from landfilling to recycling – creates jobs and boosts the economy.  相似文献   

17.

Waste management has at least five types of impacts on climate change, attributable to: (1) landfill methane emissions; (2) reduction in industrial energy use and emissions due to recycling and waste reduction; (3) energy recovery from waste; (4) carbon sequestration in forests due to decreased demand for virgin paper; and (5) energy used in long-distance transport of waste: A recent USEPA study provides estimates of overall per-tonne greenhouse gas reductions due to recycling. Plausible calculations using these estimates suggest that countries such as the US or Australia could realise substantial greenhouse gas reductions through increased recycling, particularly of paper.  相似文献   

18.
Higher economic growth in developing countries has caused higher amounts of wastes. Local government authorities in these countries usually fail to provide adequate services to dispose the increasing amounts of waste, resulting in threats for both the population and environment health. There is therefore an urgent need for recycling as a form of waste management in order to stop the devastating effects of solid waste in developing countries. Using a qualitative method of analysis, this study presents a model to measure and rank the sustainability of recycling programs in India and Tanzania. The model consists of six main constructs including “production, economic, governmental, social, technological, and international factors”. The results showed that India outperforms Tanzania in sustainable recycling programs: per capita waste generated per day in Delhi is higher than in Dar es Salaam; the government of India focuses more on developing recycling plans and techniques as compared to the government of Tanzania where the country is not actively involved in the recycling process; and the solid waste management planning in India is being performed better than Tanzania.  相似文献   

19.
Management of flame retarded plastics from waste electrical and electronic equipment (WEEE) has been posing a major challenge to waste management experts because of the potential environmental contamination issues especially the formation of polybrominated-dioxins and -furans (PBDD/F) during processing. In Nigeria, large quantities of electronic waste (e-waste) are currently being managed—a significant quantity of which is imported illegally as secondhand electronics. As much as 75% of these illegal imports are never reused but are rather discarded. These waste electronic devices are mostly older equipment that contains brominated flame retardants (BFRs) such as penta-brominated diphenyl ethers (PBDEs), and polybrominated biphenyls (PBBs) which are presently banned in Europe under the EU WEEE and RoHS Directives. Risk assessment studies found both to be persistent, bio-accumulative and toxic. The present management practices for waste plastics from WEEE in Nigeria, such as open burning and disposal at open dumps, creates potential for serious environmental pollution. This paper reviews the options in the environmentally sound management of waste plastics from electronic wastes. Options available include mechanical recycling, reprocessing into chemicals (chemical feedstock recycling) and energy recovery. The Creasolv® and Centrevap® processes, which are the outcome of the extensive research at achieving sound management of waste plastics from WEEE in Europe, are also reviewed. These are solvent-based methods of removing BFRs and they presently offer the best commercial and environmental option in the sound management of waste BFR-containing plastics. Because these developments have not been commercialized, WEEE and WEEE plastics are still being exported to developing countries. The industrial application of these processes and the development of eco-friendlier alternative flame retardants will help assure sound management of WEEE plastics.  相似文献   

20.
This Special Issue provides several different perspectives on the complex issue of packaging waste recycling. It comprises a diverse and rich set of contributions with insights from very different disciplines that range from economics to engineering. All types of “costs and benefits” are addressed in this collection of articles. In addition to the economic and strictly financial impacts of selective collection and sorting of packaging waste, several authors discuss other types of impacts, such as the environmental and social ones. The reader will find articles that address recycling systems as a whole, pieces that focus on specific impacts and detailed discussions of particular material streams or waste management strategies. The Special Issue represents an indispensable resource for academics, policy-makers and practitioners with interests in recycling and packaging waste management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号