首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
为探究游离亚硝酸(FNA)侧流处理絮体污泥抑制亚硝酸盐氧化菌(NOB)活性启动全程自养脱氮(CANON)工艺的可行性,考察了FNA处理对氨氧化菌(AOB)和NOB活性的影响,探究在颗粒-絮体污泥SBR反应器中水力筛分的絮状污泥经侧流FNA处理的运行效果. 结果表明:0.6mg/L FNA处理后的R1经过30d运行,NH4+-N去除率恢复到处理前的水平,并且短程硝化稳定,系统平均出水总氮为13.84mg/L,且△NO3--N/△NH4+-N比值接近CANON反应方程式理论比值0.11,成功启动CANON工艺. 而0mg/L FNA处理的R2由于NOB大量增殖导致启动失败. 批次试验结果证实,经过0.6mg/L FNA处理后,6h内NOB活性仅为对照组(FNA=0mg/L)的16.39%,并且在随后的运行中并未发现NOB活性的恢复,NOB得到了有效的抑制. 但与此同时,AOB的活性也受到了影响,反应器中NH4+-N去除率仅为处理前的69.69%,AOB活性6h仅恢复68.06%.  相似文献   

2.
郑照明  李军  马静  杜佳  赵白航 《中国环境科学》2016,36(10):2957-2963
通过批试实验研究了氨氮浓度对SNAD生物膜厌氧氨氧化性能的影响.SNAD生物膜反应器以生活污水为进水.进水NH4+-N和COD浓度平均值分别为70mg/L和180mg/L,出水NH4+-N,NO2--N,NO3--N和COD浓度平均值分别为2mg/L,2mg/L,7mg/L和50mg/L.SNAD生物膜具有良好的厌氧氨氧化活性.初始NH4+-N和NO2--N浓度都为70mg/L时,厌氧氨氧化批试NH4+-N、NO2--N和TIN去除速率分别为0.121kg N/(kg VSS·d),0.180kg N/(kg VSS·d)和0.267kg N/(kg VSS·d).采用Haldane模型可以很好的拟合氨氮浓度对厌氧氨氧化活性的影响.在高FA和低FA工况下氨氮浓度对厌氧氨氧化活性的抑制动力学常数相差不大.M1(FA浓度为0.7~20.4mg/L)和M2(FA浓度为6.3~190.5mg/L)的最大NO2--N理论去除速率rmax分别为0.209kg N/(kg VSS·d)和0.221kg N/(kg VSS·d),氨氮半饱和常数Ks分别为9.5mg/L和6.1mg/L,氨氮自身抑制常数KI分别为422mg/L和597mg/L.氨氮(而不是游离氨)对SNAD生物膜的厌氧氨氧化活性起主要抑制作用.  相似文献   

3.
以处理实际低C/N生活污水的前置A2NSBR系统为研究对象,考察系统内生物膜的硝化特性和活性污泥的反硝化除磷特性.试验研究了有机物和NO2--N浓度对生物膜硝化性能的影响,以及不同电子受体浓度对反硝化吸磷速率的影响.结果测得硝化速率为11.3mgNH4+-N/(L·h),在填充率40%的条件下容积负荷为0.27kgNH4+-N/(m3·d),有机物的存在会对硝化有抑制,但是系统表现出了良好的抗有机负荷冲击能力,硝化速率为9.72mg NH4+-N/(L·h).NO2--N处理对AOB活性几乎无影响,对NOB活性抑制作用明显,当NO2--N浓度为400mg/L时,NOB活性仅为1.63%,几乎接近完全被抑制.根据本次不同电子受体条件下除磷批次试验的结果,好氧吸磷速率为17.62mg P/(g VSS·h),以NO3--N为电子受体的缺氧吸磷速率是12.94mg P/(g VSS·h),从而可知缺氧聚磷菌占总聚磷菌的比例大约是73.4%,其中在NO2--N浓度为30mg/L出现吸磷抑制,当NO2--N和NO3--N共存时,NO2--N在初始浓度为15mg/L便出现吸磷抑制.  相似文献   

4.
向厌氧氨氧化(anammox)膜生物反应器(MBR)投加悬浮填料,考察其对反应器脱氮性能和膜污染的影响特性,并探究了相关机理.试验结果表明,投加填料后,反应器脱氮性能良好.当进水氨氮(NH4+-N)160mg/L、亚硝态氮(NO2--N)180mg/L时,出水NH4+-N和NO2--N均在15mg/L以下,硝态氮(NO3--N)在30mg/L以下,总氮去除率可达90%.投加填料显著减轻了膜污染,跨膜压差(TMP)稳定在8kPa左右.混合液中溶解性微生物产物(SMP)和胞外聚合物(EPS)成分分析结果表明,在第67~149d,蛋白质总量、多糖总量和总有机碳总量分别下降了49%、43%和61%,它们浓度的下降有利于延缓膜污染;此外,悬浮填料对膜组件的机械碰撞也起到了物理清洗作用.高通量测序结果显示,悬浮填料生物膜在anammox菌相对丰度方面显著高于混合液污泥,说明anammox菌更适宜于附着生长,投加填料可以为其提供更加稳定的生长环境.  相似文献   

5.
实验采用生物膜-活性污泥复合工艺(IFAS),探究了不同进水NH4+-N负荷以及游离氨(FA)浓度下的好氧氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的动力学特性,考察了不同微生物聚集体(悬浮污泥和载体生物膜)对于NH4+-N去除的贡献,同时对其中的生物吸附和生物降解进行定量分析.利用荧光原位杂交(FISH)技术观察了总菌、AOB和NOB的数量以及空间结构的变化.结果表明,随着进水NH4+-N浓度逐渐升高,出水NO3--N浓度逐渐下降,NO2--N得到大量积累,当进水NH4+-N浓度为480mg/L时,NH4+-N去除率和亚硝酸盐氮积累率(NAR)分别稳定在95%和80%以上,而FA由(2.77±0.07)mg/L增加至(16.35±0.3)mg/L时,NAR由9.42%增加至83.31%,实现了对NOB的抑制.在NH4+-N的去除过程中生物吸附和微生物降解分别占NH4+-N去除量的3.4%和88.1%,悬浮污泥和生物膜中AOB占比分别由27.4%和10.3%增加至41.3%和18.1%,表明悬浮污泥比生物膜更有利实现对于AOB的富集.  相似文献   

6.
通过批式实验,得到超声波强化Anammox菌活性的最优工作参数,超声频率25kHz、超声时间3min、超声强度0.2 W/cm2,而后在此最优超声强化条件下采用固定床反应器接种传统活性污泥启动Anammox工艺.整个试验过程,温度维持在35℃.在启动阶段,水力停留时间(HRT)为2d,控制进水NH4+-N和NO2--N浓度为70mg/L.反应器运行至第38d,首次表现Anammox活性.运行至53d时,NH4+-N、NO2--N去除速率和去除率分别为30.81,34.97mgN/(L·d)和88.03%、99.91%,总氮去除速率和去除率达60.34mgN/(L·d)和86.20%.R1和R2分别稳定在1.14和0.18.在负荷提升阶段(53~135d),当进水NH4+-N和NO2--N负荷维持在最高值380mg/(L·d)时,NH4+-N和NO2--N平均去除效率分别为82.74%和97.89%.NH4+-N和NO2--N最大去除速率分别为320.67和379.85mgN/(L·d),最大总氮去除速率和去除率为698.00mgN/(L·d)和91.84%.负荷提高阶段末,R1稳定在1.18左右,R2接近于0.反应器内Anammox菌占主导,存在少量反硝化菌强化总氮去除.  相似文献   

7.
为研究同步短程硝化内源反硝化除磷(SPNED-PR)系统的脱氮除磷特性及系统内聚磷菌(PAOs)和聚糖菌(GAOs)在氮磷去除的贡献和竞争关系,本研究以实际低C/N比(4左右)生活污水为处理对象,考察了不同浓度的溶解氧(DO)(0.5~2.0mg/L)、NO2--N(4.7~39.9mg/L)和NO3--N(5.0~40.0mg/L)对延时厌氧(150min)/低氧(180min,溶解氧0.5~0.7mg/L)运行的SPNED-PR系统氮磷去除特性和底物转化特性的影响.结果表明,DO浓度均不影响PAOs和GAOs的好氧代谢活性,且两者之间几乎不存在DO竞争.不同NO2--N浓度条件下,GAOs较PAOs更具竞争优势,NO2--N主要是通过GAOs去除的(约占58%);且GAOs所具有的高内源反硝化活性和亚硝耐受力,减弱了高NO2--N浓度(26.2~39.9mg/L)对PAOs反硝化吸磷的抑制,保证了系统的脱氮除磷性能.不同NO3--N浓度条件下,PAOs较GAOs处于竞争优势,其在NO3--N去除中的贡献比例达61.2%.此外,SPNED-PR系统的PURDO > PURnitrate > PURnitrite,PAOs对DO的优先利用保证了低氧条件下系统的高效除磷,且GAOs的内源短程反硝化特性保证了系统的高效脱氮.  相似文献   

8.
采用ASBR厌氧氨氧化反应器,在全海水条件下,通过固定进水NH4+-N 110mg/L,逐渐提高进水NO2--N的方式研究了NO2--N对厌氧氨氧化脱氮的影响及抑制动力学和脱氮过程动力学.结果表明:进水NO2--N浓度达到170mg/L时,厌氧氨氧化反应开始受到明显抑制, NH4+-N的去除率下降8.41%;修正的Logistic过程动力学研究结果显示,进水NO2--N低于151.49mg/L会促进厌氧氨氧化反应的进行,进水NO2--N高于170mg/L时开始抑制厌氧氨氧化反应的进行;Luong模型适合描述全海水条件下高浓度NO2--N对厌氧氨氧化脱氮效能的抑制动力学.Luong模型得到的最大基质转化速率(NRRmax)为0.53kg N/(m3·d),出水NO2--N半饱和常数(KS)为0.10mg/L,净生长停止的出水NO2--N浓度(Sm)为338.22mg/L,Luong动力学常数(n)为0.41,相关系数为0.97801.  相似文献   

9.
为明确温度对一体式厌氧氨氧化工艺的影响,本研究通过降温实现了一体式厌氧氨氧化工艺22℃下的常温运行,探究了微生物活性和群落结构随温度的变化.反应器采用自配进水、间歇曝气方式运行,进水NH4+-N浓度约254mgN/L,试验过程出水NO2--N浓度稳定在在10mg/L以下,但NO3--N随着降温有升高的趋势;总氮容积负荷在1.0~1.2g/(L·d)之间,总氮去除负荷在0.7~0.9g/(L·d);总氮去除率在62%~88%.反应器颗粒污泥中AOB活性始终最高,NOB活性远低于AOB和AnAOB;温度降低NOB活性增加;AnAOB到22℃时活性明显下降,因此需特别关注该温度下反应器的运行工况.Ca.Brocadia是反应器内丰度最高的AnAOB,相对丰度为2.7%~15.1%;Nitrosomonas是反应器内丰度最高的AOB,相对丰度为2.8%~11.5%.研究发现降温使AnAOB的优势属从Ca.Jettenia变为Ca.Brocadia;即后者较前者在低温条件下更具优势.  相似文献   

10.
周边土地利用类型对川西平原西河氮素的影响   总被引:1,自引:0,他引:1  
以四川盆地西部典型农业小流域为研究区,于2015年3月~2016年2月持续监测河流氮素(NH4+-N、NO3--N、TN)和pH,结合遥感解译、地理信息系统和相关性分析等技术,探讨了监测断面周边流域土地利用类型与河流氮素及pH值的关系.结果表明,研究区河流氮素浓度的季节变化均表现为冬季最高(2.063mg/L)、春秋次之(1.536mg/L;1.432mg/L)、夏季最低(1.085mg/L),同时月均NO3--N浓度(0.891mg/L)显著高于NH4+-N(0.425mg/L)(P<0.01),且NO3--N受到典型土地利用类型的显著影响.随着缓冲区半径的增加,耕地、城乡建设用地和水域的面积与NO3--N和TN浓度相关性逐渐降低,且在250m缓冲区内,城乡建设用地面积与NO3--N浓度呈显著正相关(P<0.05);交通运输用地面积与所有氮组分的相关性均增大,且在750m缓冲区内,交通运输用地面积与NO3--N和TN浓度呈极显著正相关(P<0.01).城乡建设用地和交通运输用地可能是河流NO3--N的"源".  相似文献   

11.
2014年5~6月在东海海域采集PM2.5和PM10气溶胶样品,通过离子色谱法对样品中主要水溶性阳离子(Na+、K+、NH4+、Mg2+、Ca2+)和阴离子(Cl-、NO3-、SO42-、MSA)的浓度进行测定,并结合相关数理统计方法探讨了其主要来源.结果表明,PM2.5和PM10样品中主要水溶性离子的总浓度范围分别为7.9~23.7μg/m3和10.4~47.9μg/m3,平均值分别为(14.9±5.8)μg/m3和(21.3±10.7)μg/m3.二次离子(nss-SO42-、NO3-和NH4+)浓度最高,分别占测定离子总浓度的80.8%和73.3%,其中SO42-和NH4+主要富集在细颗粒物(PM2.5)中,NO3-主要富集在粗颗粒物(PM10)中.富集因子及相关性分析表明K+主要来自陆源,Mg2+受海源和陆源双重输入影响.阴阳离子浓度平衡计算结果表明,细颗粒物样品呈弱碱性;粗颗粒物样品酸碱基本中和.两种样品中NH4+的主要结合方式均为(NH42SO4和NH4NO3.来源分析结果表明,PM2.5和PM10样品中生源硫化物对nss-SO42-的贡献率分别为13.7%和8.7%.根据估算的干沉降通量结果,NH4+对氮沉降的贡献程度小于NO3-.  相似文献   

12.
采用序批式反应器-厌氧序批式反应器(SBR-ASBR)组合工艺处理常温低C/N比实际生活污水,通过调控SBR缺氧:好氧时间分别为80min:60min、120min:60min和150min:60min时,实现半亚硝化,将其出水直接泵入ASBR反应器中,考察不同进水NO2--N/NH4+-N和COD/NH4+-N对厌氧氨氧化耦合反硝化同步脱氮除碳的影响,并采用响应面法设计正交批次试验.结果表明:在NO2--N/NH4+-N为1.55,COD/NH4+-N为4.22时,出水NH4+-N、NO2--N和COD的浓度分别为2.79,0.47,38.37mg/L,其去除率分别高达87.56%,98.45%和62.69%.ΔNO2--N/ΔNH4+-N为2.23,生成的NO3--N的量比理论值小2.47mg/L,厌氧氨氧化和异养反硝化共同完成氮素去除,系统脱氮除碳性能最佳.当NO2--N/NH4+-N和COD/NH4+-N分别由0.84增加到1.55和3.24增加到4.22时,厌氧氨氧化和异养反硝化对脱氮贡献率分别由80.40%降至53.33%和19.60%增加到46.67%.NO2--N/NH4+-N和COD/NH4+-N对TN和COD去除的正交影响显著,均呈现正相关,R2分别为0.9243和0.9700.  相似文献   

13.
选取北京、石家庄和唐山作为京津冀区域典型城市,基于实地样品采集和组分分析结果,探讨PM2.5组分中二次无机水溶性离子(SNA)浓度变化特征,并利用空气质量模型模拟结果分析重污染前后京津冀地区各类污染源大气污染物排放对PM2.5和SNA质量浓度的贡献.结果显示:3个城市PM2.5质量浓度整体呈现逐年下降的趋势,多数情况下SO42-、NO3-和NH4+浓度极大值同时出现在冬季,PM2.5化学组分较为稳定.相对于常规时段,重污染期间SO42-、NO3-和NH4+质量浓度明显增加,重污染前一天SNA浓度占PM2.5比值达到最高.重污染的形成是本地源排放和外来区域传输共同作用的结果,外来源对NO3-的贡献整体高于SO42-和NH4+.交通源、居民源和工业源对PM2.5、SO42-和NO3-浓度贡献最高,NH4+主要来自居民源的排放.  相似文献   

14.
采用傅里叶变换衰减全反射红外光谱法(ATR-FTIR)研究北京西北城区灰霾天气下PM_(2.5)中有机官能团(R-OH羟基、R-CH脂肪族碳氢基、R-CO-羰基、R-NO2硝基官能团)和无机离子(NH_4~+、SO_4~(2-)、NO_3~-)的变化规律.结果表明,PM_(2.5)中无机离子(NH_4~+、SO_4~(2-)、NO_3~-)的ATR-FTIR吸收峰值高于有机官能团(R-CH,R-CO-,R-NO_2,R-OH)的峰值;有机官能团R-CH的吸收峰峰值高于R-CO-和R-NO_2官能团的吸收峰,R-OH官能团的吸收峰峰值最低.灰霾天PM_(2.5)中各有机官能团和无机离子的ATR-FTIR吸收峰值明显高于非灰霾天.说明灰霾天气下PM_(2.5)中这些官能团及无机离子的质量浓度均高于非灰霾天.灰霾天PM_(2.5)中无机离子(NH_4~+、SO_4~(2-)、NO_3~-)质量浓度高于有机官能团(R-CH,R-CO-,R-NO_2,R-OH)的质量浓度,且有机官能团以R-CH为主,R-CO-,R-NO_2次之,R-OH最少.  相似文献   

15.
为研究邢台市秋季PM2.5污染特征,于2017年10月15日~11月14日在邢台市区对PM2.5样品进行了采集,并对其中水溶性离子(包括Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示,观测期间邢台市ρ(PM2.5)平均值为(130.0±74.9)μg/m3,其中水溶性离子质量浓度为(69.8±11.4)μg/m3,占ρ(PM2.5)的53.3%,NO3-、SO42-和NH4+为主要离子,占水溶性离子比例达到了89.7%. 当污染加重,水溶性离子质量浓度随ρ(PM2.5)增大而升高,且NO3-、NH4+及SO42-占比亦逐渐升高,但其他离子占比随之下降,Ca2+尤为明显,表明ρ(PM2.5)升高时主要受二次无机转化影响;观测期间SOR(硫转化率)与NOR(氮转化率)的平均值分别为0.36和0.25,表明秋季SO2与NO2转化速率较强,二次无机污染严重,另外SOR及NOR与温度及相对湿度呈正相关,且SOR对二者更为敏感;邢台市秋季PM2.5呈弱碱性,NH4+主要以(NH42SO4和NH4NO3的形式存在;ρ(NO3-)/ρ(SO42-)平均值为2.13,表明移动源对秋季大气颗粒物的来源贡献较大;PMF分析结果表明,二次转化源、燃烧源及扬尘源为邢台市秋季PM2.5中水溶性离子的主要来源.  相似文献   

16.
研究了模拟太阳光照射下水环境中不同形态氮(NO3-、NO2-和NH4+)对酮洛芬(KET)光解的影响.结果表明,KET在平均波长(200~450nm)下量子产率Φo为0.14. NO3-浓度从0.01mmol/L-增至1.0mmol/L时, KET光解速率常数从0.0109降至0.0085; NO2-浓度从0.01mmol/L增至1.0mmol/L时, KET光解速率常数从0.0095降至0.0069, NH4+对KET的光解基本无影响. NO3-的光掩蔽现象对KET光解的影响起主要作用; NO2-则通过光掩蔽现象和羟基自由基猝灭来抑制KET的光解.同时研究了当水环境中pE值发生变化而引起水中无机氮形态转化时,不同形态氮共存对KET光解的复合影响,随着pE值的增大,KET的光解速率先减小后增大;当NO2-和NH4+共存时,两者对KET光解的影响存在拮抗作用,这一拮抗作用也存在于NO2-和NO3-之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号