首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
广西武鸣河流域非点源氮磷污染特征及源解析   总被引:1,自引:0,他引:1  
分析了广西武鸣河流域不同种植作物的土壤氮磷形态特点,并使用主成分分析对河流水体和沉积物中的氮磷进行了源解析.不同种植作物土壤统计和单因素方差分析结果表明,流域周边农田土壤总氮(TN)和总磷(TP)含量范围分别为802.60~2740.42和109.01~784.59mg/kg.种植玉米土壤氨氮(NH4+-N)和硝酸盐氮(NO3--N)显著高于其他土壤(P<0.05);甘蔗土壤NO3--N显著高于其他土壤(P<0.05);种植柑橘土壤交换态磷(Ex-P)和铁/铝态结合磷(Fe/Al-P)显著高于其他土壤(P<0.05).主成分分析结果表明,武鸣河水体中TN可能主要来源于种植玉米和甘蔗土壤的养分流失.沉积物中Fe/Al-P、钙结合磷(Ca-P)和NH4+-N可能分别主要来源于柑橘、桉树和玉米土壤.种植玉米和甘蔗土壤的氮流失可能造成了武鸣河最主要的非点源污染问题,说明土地作物类型是影响流域非点源污染的重要因素.  相似文献   

2.
甘肃省作物布局演变及其对区域气候变暖的响应   总被引:2,自引:1,他引:1  
根据甘肃省1985-2005年的气候资料和同时期主要作物播种面积等统计资料,利用快速聚类分析方法分析了气候变暖背景下甘肃省主要作物的种植格局和种植界限演变情况。结果表明:过去20 a里特别是进入20世纪90年代,在河西地区,玉米和棉花播种范围扩张趋势明显,种植面积比重显著增加,春小麦种植面积比重快速降低,种植范围大幅向祁连山浅山区退缩,种植结构的这种调整使玉米和棉花逐渐取代小麦成为河西主要作物,并最终导致该区主要作物种植格局从以小麦为主转变为以玉米和棉花为主;在中部地区,春小麦面积逐年缩小,冬小麦和杂粮种植扩张,玉米的种植比例逐年上升,马铃薯种植逐渐形成规模,形成了以小麦和玉米为主的种植格局;在东南部地区,春小麦和冬小麦面积逐年缩小,玉米、冬油菜和其他喜温的经济作物种植比例逐年上升。相关分析表明,上述作物种植格局的变化与气候变暖带来的积温增加及积温带北移东扩密切相关。  相似文献   

3.
黑河中游是我国西北干旱区重要的粮食基地,研究其农业结构变化及其驱动因素对农户种植决策及推动当地农业发展具有一定参考意义。论文以位于黑河中游地区的张掖市为例,基于统计年鉴和农户问卷调查数据,从地块尺度分析了研究区2001—2014年期间农业结构变化,并在定性分析的基础上,从地块与农户两个层面,运用二元Logistic模型及投入-产出法定量分析农业结构变化驱动因素。结果表明:1)研究区作物种植类型趋于多样化。2001年,研究区主要种植作物为小麦、玉米、大麦及“小麦和玉米套作”,其种植地块数占所调查总地块数的81%,2014年种植作物种类增多,且蔬菜、马铃薯、油菜等经济作物种植数量较2001年有所上升。2)由种植小麦为主(占总地块数的31%)转变为种植制种玉米为主(占总地块数的38.7%);套作转单作。2001年,共有58个套作种植地块,占调查总地块数的22%,其中“小麦和玉米套作”最多,有47个地块;而在2014年,作物套作地块数锐减为2个,“小麦和玉米套作”全部转换为其他单作,其中51%转为制种玉米;水稻种植消失,主要转为普通玉米。3)地块层面上,种植地区的海拔、灌溉定额、河源来水量对农业结构变化影响非常显著(显著水平达到1%),地下水对农业结构变化影响较为显著(显著水平达到5%)。4)农户层面上,农户作为理性经济人,“收益”是影响其种植行为的最关键因素,其次是政策因素(在5%的水平上显著),务农劳动力与劳均耕地面积也有一定的驱动作用。  相似文献   

4.
哈尼梯田地区农户粮食作物种植结构及驱动力分析   总被引:8,自引:1,他引:7  
哈尼稻作梯田系统作为全球重要农业文化遗产(GIAHS),具有极高的生态、经济、文化价值。近年来,以粮食产量增长为导向的农耕技术和作物品种单一化趋势,给哈尼梯田地区带来了严重的生态和食品安全问题。论文以农户生产行为作为切入点,从主要粮食作物的经济效益、耕地资源特征、村落发展类型、农户的家庭特征与资源禀赋进行实证研究,分析了哈尼梯田地区农户粮食作物种植结构现状及驱动因素。结果表明:1)调查涉及的41.23 hm2有效耕地中,按种植总面积排序,杂交稻、玉米、水果类作物位居前三。2)本地传统粮食作物--梯田红米,种植总面积和户均种植面积远小于经济效益较高的杂交稻和兼有饲料用途的玉米。同时,农户倾向于将其种植在质量较差、海拔较高的耕地上。3)作物的经济效益和耕地海拔及质量对替代性作物(如杂交稻和红米)的种植选择影响较大;个体农户层面上,农户特征与资源禀赋在不同程度上对不同作物的种植选择产生影响。  相似文献   

5.
不同种植模式土壤有机碳和含水量变化特征研究   总被引:1,自引:0,他引:1  
对昆明松华坝地区不同种植模式下土地的土壤剖面土壤有机碳含量和含水量进行测定研究,发现农田的有机碳含量明显高于河滩荒地,花卉大棚种植的土壤比普通大田的土壤有机碳含量高;不同种植模式下,土壤在不同剖面的有机碳年含量变化趋势和分布规律总体是一致的,土壤有机碳含量随土壤的深度呈递减趋势;在同一种植模式下,土壤的有机碳含量有明显的时间变化趋势,有机碳含量有明显的递减趋势;不同种植模式下土壤含碳量和含水量的分布有密切联系;在农业种植生产中,人为活动对土壤的有机碳含量影响显著。  相似文献   

6.
西北干旱区作物灌溉技术效率及影响因素   总被引:1,自引:1,他引:0  
水资源短缺是制约西北干旱区可持续发展的硬约束,提高作物灌溉技术效率、压缩农业灌溉用水是缓解水资源供需矛盾的可能途径之一。基于2014年张掖市农户调研数据,采用DEA-Tobit模型,分析了黑河流域中段不同类型灌区作物灌溉技术效率及其影响因素。结果表明:(1)典型灌区主要作物灌溉技术效率均存在改进空间,节水潜力较大。在其他投入保持不变的情况下,如果典型灌区主要作物灌溉技术效率达到目前的最高水平,平原灌区生产同样产量的制种玉米和大田玉米,灌溉用水可分别减少34.47%和38.15%;北部荒漠灌区生产同样产量的棉花、制种西瓜和玉米套小麦,灌溉用水可分别减少48.42%、34.82%和22.99%;沿山灌区生产同样产量的小麦、马铃薯、大麦和大田玉米,灌溉用水可分别减少14.48%、30.75%、25.50%和35.96%。(2)不同灌区之间作物灌溉技术效率的变异系数与作物种植面积占比呈负向关系,同一灌区内部种植相同作物的农户生产管理水平存在明显差异。(3)农地细碎化程度和农户耕地面积扩大会降低作物灌溉技术效率,改善耕地质量能提高北部荒漠灌区作物灌溉技术效率,增加井水灌溉会提高平原灌区大田玉米和沿山灌区作物灌溉技术效率,灌溉次数与多数作物灌溉技术效率呈“倒U型”关系,而农户耕作需求及其对风险态度的影响需结合具体情况进行判断。合理确定种植规模、加快农地空间优化,因地制宜地改善耕地质量,完善水利设施、合理使用井灌、增强河水灌溉放水的灵活性,是提升黑河流域作物灌溉技术效率的主要途径。  相似文献   

7.
旱作垅种(小麦)沟盖(玉米)地膜带田优于目前推广的沟种(小麦)垅盖(玉米)带田种植形式。在作物共生期相互调水作用更趋合理,平衡了小麦、玉米不同生育阶段对水分的供需矛盾,作物的生态条件更加适宜,群体结构更加协调,提高了作物的生产量,前者比后者增产90%~125%。  相似文献   

8.
为探索岩溶山区农村不同用地类型土壤肥力及微生物活性状况,对青木关地区五种土地利用类型的土壤肥力、微生物数量及其相关性进行了分析.结果表明:(1)岩溶山区土壤微生物数量的变化受人为影响较大,在总体数量上均以细菌为主,且与一般土壤微生物数量分布情况相吻合;(2)不同用地类型土壤中微生物总量与土壤微生物多样性指数二者的变化趋势不一致,但玉米地例外;(3)通过Pearson相关性分析得出,土壤中有机质、全钾、有效钾和有效磷的含量与土壤微生物之间的相互关系显著。  相似文献   

9.
旱作垅种(小麦)沟盖(玉米)地膜带田优于目前推广的沟种(小麦)垅盖(玉米)带田种植形式。在作物共生期相互调水作用更趋合理,平衡了小麦、玉米不同生育阶段对水分的供需矛盾,作物的生态条件更加适宜,群体结构更加协调,提高了作物的生产量,前者比后者增产90%~125%。  相似文献   

10.
刘婉玉  李珺  王森  袁琪 《环境科学研究》2022,35(11):2578-2587
城市污泥施用农田能够改善土壤性状及促进作物生长,但也会使农田存在重金属和有机污染物等污染风险. 多氯联苯(polychlorinated biphenyls, PCBs)作为一类持久性有机污染物,被作物吸收、累积后经食物链传递,潜在威胁着人体健康. 为探究城市污泥施用农田后PCBs在土壤和作物(玉米和小麦)中的分布特征,解析玉米和小麦对土壤PCBs的吸收和传输规律与差异,以关中地区城市污泥施用土壤为研究对象,设置不同植物种属、污泥施用量和污泥类型的土壤盆栽培养试验. 结果表明:①城市污泥施用后造成土壤、玉米和小麦的PCBs污染,土壤、植物根和地上部分以低氯代PCBs〔一氯代PCBs(mono-PCBs)~五氯代PCBs(penta-PCBs)〕为主,且百分含量呈依次增加趋势. ②与种植前相比,种植植物后土壤中更低氯代的PCBs占主导;且土壤∑PCBs消减了20.00%~79.30%,各处理对∑PCBs的消减差异表现为玉米高于小麦、单倍污泥施用量高于双倍污泥施用量、有机质含量最高的污泥施用处理∑PCBs的消减率最高. ③植物根可以吸收土壤PCBs并向地上部分传输,且吸收和传输能力与植物种属、污泥施用量和污泥类型有关,小麦对污染土壤∑PCBs及各PCBs同系物的吸收能力均强于玉米,而传输能力较弱;双倍污泥量施用下植物根对∑PCBs、一氯代PCBs(mono-PCBs)~四氯代PCBs(tetra-PCBs)和六氯代PCBs(hexa-PCBs)的吸收减弱;有机质含量最低的污泥施用下植物根对∑PCBs的吸收能力最强. 研究显示,城市污泥施用会引起土壤和作物PCBs污染,种植作物能消减污染土壤PCBs,而小麦和玉米对土壤∑PCBs及各PCBs同系物的消减和吸收传输存在种属差异.   相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

16.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

17.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

18.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

19.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

20.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号