首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为了解南宁市冬季期间挥发性有机物(VOCs)污染特征及来源,采用在线连续监测系统于2020年12月9日~2021年2月22日在南宁市区对116种VOCs进行了在线连续观测.结果显示,观测期间VOCs体积分数为37.57x10-9,烷烃、烯烃、芳香烃、OVOCs及卤代烃体积分数占VOCs比例分别为44%、15%、8%、19%和11%.VOCs体积分数白天低,夜晚高;采用OH消耗速率(LOH)和臭氧生成潜势(OFP)估算了观测期间VOCs大气化学反应活性,结果表明醛酮类、芳香烃和烯烃是主要的活性物质;使用气溶胶生成系数法(FAC)估算了VOCs对二次有机气溶胶(SOA)的贡献,发现芳香烃对SOA生成贡献最大,占比为98%,其中苯、间/对二甲苯和甲苯为优势物种;正交矩阵因子(PMF)解析结果表明,冬季期间南宁市VOCs主要来源于:机动车尾气排放源(30.1%)>固定燃烧及生物质燃烧源(22.2%)>工业工艺排放源(16.8%),而OFP贡献较高的源分别为溶剂使用源(23.9%)、固定燃烧及生物质燃烧源(22%)、机动车尾气排放源(21.8%).因此,机动车尾气排放源和固定燃烧及生物质燃烧源应为南宁市冬季的优先管控源类,其次为工业工艺排放源、溶剂使用源.  相似文献   

2.
王楠  马淼  石金辉  高会旺  姚小红 《环境科学》2018,39(9):4034-4041
利用2016年6~7月在青岛采集的总悬浮颗粒物(TSP)样品,分析了其中不同形态磷的浓度,讨论了夏季气溶胶中总磷(TP)、溶解态磷(DP)、溶解态无机磷(DIP)和溶解态有机磷(DOP)的分布特征及来源,并估算了大气P的沉降通量.结果表明,夏季青岛大气气溶胶中TP的浓度为(49.3±30.6)ng·m~(-3),其中DP浓度为(15.5±10.4)ng·m~(-3),对TP的贡献为30.9%±11.0%.DP中以DIP占主导,其贡献平均约为60%.气溶胶中不同形态P的来源分析结果显示,夏季青岛气溶胶中P的来源复杂,受地壳源、人为源、生物质燃烧、农业施肥等多种源的共同影响.其中TP的38%来自土壤源的贡献,农业活动源和工业源的贡献分别为20%左右;DP中DIP主要受到农业活动源及燃烧源的影响,其贡献分别为51%和24%;DOP主要来源于土壤源及农业活动源,其贡献分别为41%和27%.观测期间,大气TP的干沉降通量为(51.7±31.7)μg·(m~2·d)~(-1),其中DP对TP干沉降通量的贡献为23.2%±8.2%.DP中DOP有重要贡献,约为DP干沉降通量的40%.DP的干沉降通量可支持黄海(0.5±0.3)mg·(m~2·d)~(-1)浮游植物碳的生产,对新生产力的贡献约为1%.  相似文献   

3.
为精准识别深圳市典型商业、居住与工业混合功能区的PM2.5污染来源,选取深圳市北部地区5个点位于2017年9月~2018年8月全年进行PM2.5的样品采集和组分分析,利用优化的多元线性引擎模型(ME-2)对其主要来源及其时空变化特征进行探索.结果显示,研究区域研究时段的大气PM2.5年均浓度为29.0μg/m3,解析出了SO2二次转化(19.9%)、机动车(15.1%)、生物质燃烧(11.2%)等10种来源,其中SO2二次转化、生物质燃烧、NOx二次转化、VOCs二次转化、工业排放、老化海盐和远洋船舶源具有显著的区域传输特征,而机动车源、燃煤和扬尘具有本地源特征,受到局地排放的影响较大.重污染天气下机动车源、NOx二次转化、工业排放及生物质燃烧源的增加最为显著,加强这些源的控制是此类混合功能区PM2.5污染精细化防治的关键.  相似文献   

4.
柳州市春季大气挥发性有机物污染特征及源解析   总被引:8,自引:8,他引:0  
刘齐  卢星林  曾鹏  于奭 《环境科学》2021,42(1):65-74
为了解我国西南岩溶工业地区VOCs污染特征及其来源,2019年3月用GC955挥发性有机物在线监测系统对柳州市大气VOCs进行监测并对其污染特征、臭氧生成潜势(OFP)、气溶胶生成潜势(AFP)和正交矩阵因子模型(PMF)进行分析.结果表明:①研究区春季监测期间共检出50种VOCs组分,日平均摩尔分数为25.52×10-9 mol·mol-1.其中,烷烃、烯烃、炔烃及芳香烃分布占比为56.08%、19.63%、14.25%和10.04%.②VOCs摩尔分数呈现白天低,夜间高的特征.VOCs日变化中的峰值与早晚交通高峰出现的时间有一定的相关性,同时可能受到多方面因素的影响.③烯烃、芳香烃及烷烃对OFP贡献分布为44.30%、33.03%及19.96%,指示对于芳香烃和烯烃的控制应优先于烷烃.此外柳州市O3生成处于VOCs敏感区,消减VOCs对O3生成具有控制作用.④芳香烃对AFP的贡献高达95.27%,因此对于机动车尾气排放、溶剂的使用、汽车产业和化工产业这几个行业工艺上的改进及控制可同时有效地抑制臭氧及霾污染.⑤柳州春季VOCs排放源及其对总VOCs的贡献分别为:工业排放源(28.34%)、机动车源(25.47%)、燃烧源(24.37%)、溶剂使用源(13.28%)和植物排放源(8.54%),表明控制工业排放源、机动车源和燃烧源是目前控制柳州市环境空气中VOCs污染的主要途径,同时,重点考虑控制这些排放源排放的烯烃和芳香烃.  相似文献   

5.
仇帅  张爱滨  刘明 《环境科学学报》2015,35(6):1667-1675
利用2012年12月在青岛连续采集的31个总悬浮颗粒物样品(TSP),分析了其中13种微量元素的浓度,讨论了微量元素的浓度特征,并运用正矩阵因子分析法(PMF)定量解析了气溶胶中元素的来源.结果表明,青岛气溶胶中微量元素的总浓度为(7.37±4.19)μg·m-3,以Al和Fe的浓度最高,对总浓度的贡献约为92%,其次为Zn和Pb,分别贡献了3.7%和1.6%,Mn、Ba、Cu、Sr、As、V、Cd、Co和Cs的浓度依次降低,其贡献均低于1%.依据富集因子这些微量元素可以分为3类,Al、Fe、Mn、Co、V、Sr和Ba主要来自地壳源的贡献,Cs和Cu受地壳源和人为源的共同影响,Zn、As、Pb和Cd则主要受人为源的影响.雾霾天时主要来自人为源的元素相比地壳源的元素更多的在大气中累积,雨雪天时降雨/雪对地壳元素的湿清除作用明显高于人为源的元素.12月青岛气溶胶中Fe和Mn主要来自土壤源的贡献,其次为生物质燃烧和机动车一次排放源;Co主要来自土壤源、生物质燃烧和燃煤源的贡献;Zn主要来自机动车一次排放源、土壤源和生物质燃烧源的贡献;Cu则主要来自冶金工业源的贡献;As主要来自燃煤源的贡献;Pb和Cd主要来自机动车一次排放源和冶金工业源的贡献.  相似文献   

6.
徐晨曦  陈军辉  姜涛  韩丽  王波  李英杰  王成辉  刘政  钱骏 《环境科学》2020,41(12):5316-5324
2019年6~9月在成都市区对挥发性有机物(VOCs)进行在线观测,研究夏季VOCs浓度水平、变化特征、臭氧生成贡献(OFP)及来源贡献.结果表明,成都市区夏季TVOCs(总挥发性有机物)平均质量浓度为112.66 μg·m-3,烷烃(29.51%)和卤代烃(23.23%)为主要组分;VOCs日变化峰值主要出现在上午10:00~11:00,受城市机动车、油气挥发和工业排放影响;夏季VOCs的OFP贡献中芳香烃贡献率(42.7%)最高,其次为烯烃(27.4%),关键活性物种为间/对-二甲苯、乙烯、丙烯、邻-二甲苯、异戊烷、环戊烷和丙烯醛等;使用PMF受体模型进行来源解析表明,移动源为成都市区夏季VOCs的主要贡献源,贡献率为34%,其次为工业源(17%)和油气挥发(14%),溶剂使用源和天然源分别贡献11%和13%.因此,机动车和工业排放为成都市区VOCs的重点控制源,同时溶剂使用及油气挥发等污染源的管控也不可忽视.  相似文献   

7.
为研究关中地区远郊背景点位大气PM2.5污染来源,于2014年12月-2015年10月在西安市区西南方向约34 km的背景点位(农村区域,108°44'13"E、34°00'53"N)开展样品采集,共获得218个有效样品,对29种化学组分进行了分析,并运用ME2和PMF模型进行同步解析、相互验证.结果表明:ME2和PMF模型各解析出5类因子,分别为二次无机盐、机动车尾气排放、生物质燃烧、煤烟尘和土壤尘.其中,二次无机盐分担率为42.23%~42.74%,是首要贡献源类,机动车尾气排放(22.40%~24.53%)、煤烟尘(14.57%~14.73%)、生物质燃烧(11.88%~13.42%)是另外3种主要贡献源,而土壤尘(6.28%~7.22%)分担率相对较小. 2种模型同步解析大气颗粒物来源对比表明,ME2和PMF模型同步解析结果一致,各源类的日贡献浓度均呈正相关,其中二次无机盐、机动车尾气排放、土壤尘的相关性较强,R2在0.876~0.960之间,表明解析结果可信.   相似文献   

8.
采用排放系数法与“自下而上”的活动水平数据收集方法,建立了鹤壁市化石燃料固定燃烧源、工艺过程源、溶剂使用源、储存运输源、废弃物处理源等固定源、移动源、餐饮油烟和生物质燃烧等面源的VOCs排放清单.结果表明:鹤壁市2017年VOCs排放总量为8829.7t.其中,工艺过程源排放量最大(3052.5t),占VOCs总排放量的32%;其次是移动源(2712.8t)和溶剂使用源(1447.1t),分别占总排放量的29%和15%;从空间分布看,浚县的VOCs排放量最大(3444.0t),其次为淇滨区(1519.4t)、山城区(1516.0t)、淇县(1103.8t)和鹤山区(1041.9t);其中,机动车(1932.0t)、建材冶金(903.6t)、化学制品制造(829.6t)、橡塑(646.8t)等VOCs排放量较大.对比河南省省会郑州市、同为煤炭资源型城市焦作市,鹤壁市的VOCs排放总量是郑州市的1/11,焦作市的1/3.但鹤壁市单位面积的VOCs排放量较大,是郑州市的1/3,焦作市的1/2,且鹤壁市单位GDP的VOCs排放量与郑州市和焦作市非常接近.说明鹤壁市VOCs排放总量低,但排放强度较高,仍需要加大减排力度.根据本清单的研究结果,建议鹤壁市可着重加强工艺过程源和移动源的减排,重点减排区域为浚县、鹤山区和淇滨区的交汇地带,重点减排机动车、建材冶金、化学制品制造等;此外,还应关注橡塑、餐饮油烟、工业生物质锅炉等行业的VOCs排放.  相似文献   

9.
为了解青岛市雾日PM1中金属元素的污染程度及其来源,并评估其对人类健康的危害,依据能见度及湿度数据对雾日进行划分,结合正定矩阵因子分解法(PMF)源解析模型和健康风险评价模型研究青岛市雾日亚微米颗粒物(PM1)中金属元素的来源和健康风险.结果表明,清洁雾日PM1浓度略高于清洁日,而污染雾日PM1浓度是霾日PM1的1.11倍,清洁日的3.07倍.秋冬季雾日金属元素受人为源影响,K元素含量最高;夏季雾日的主要贡献元素是典型的地壳元素Ca、Fe、Al及海盐Na元素.PMF结果表明秋冬季雾日PM1中金属元素主要来自煤/生物质燃烧、机动车源、地壳源、海盐源、船舶源和工业源;夏季雾日PM1中金属元素主要来自煤/生物质燃烧、机动车源、地壳源、海盐源、船舶源和工业源.夏季采样点位临海,海雾频发,海盐源为夏季雾日金属元素的重要贡献.健康风险评估结果表明,成年人与儿童暴露于青岛秋冬季雾日PM1的非致癌风险均低于阈值.成人和儿童呼吸途...  相似文献   

10.
为确定南昌市秋冬季降水中硝酸盐来源及贡献,于2016年9月1日至2017年2月28日对南昌地区雨水进行采集,分析了其化学组成及NO3-同位素组成并利用贝叶斯混合模型对NO3-四种潜在来源贡献进行计算.结果显示NO3-浓度范围为7.3~99.5μmol/L,平均值为36.1μmol/L;δ15N-NO3-变化范围为-6.0‰~+8.3‰,平均值为-0.8‰,两者均呈现冬季高秋季低的变化趋势.NO3-浓度季节性变化可能是受到降雨量等因素的影响,而δ15N-NO3-变化可能是冬季降水中机动车尾气排放偏高和秋季降水中煤燃烧来源偏高双重因素作用的结果.同位素及贝叶斯混合模型源解析结果表明,南昌市降水中NO3-主要来源于生物质燃烧(32.5%)、机动车尾气排放(30.8%)和煤燃烧(23.1%),三者贡献超过86%;而机动车尾气排放和生物质燃烧释放均超过30%,这可能与近年来机动车快速增加和秋冬季野外生物质大量燃烧有关.煤燃烧虽然也是重要来源,但相对生物质燃烧和机动车尾气排放较小,这可能与近年我国减排措施有关.  相似文献   

11.
采集太原市城区夏季VOCs样品并分析其浓度特征,使用参数修正法得到VOCs初始浓度,分析其来源及对O3生成的贡献.结果显示:太原市城区总VOCs平均浓度为48.13 μg/m3,烷烃(25.52 μg/m3)为主要组分.VOCs浓度呈明显日变化特征,在日间(10:00~14:00)光化学产生O3的关键时段浓度最低.油品挥发、机动车排放、燃煤、植物排放与液化石油气/天燃气(LPG/NG)使用源对修正后环境VOCs的贡献分别为26.89%、25.55%、21.14%、14.99%、11.44%,对O3生成的贡献分别为21.44%、33.10%、24.07%、13.77%、7.62%.机动车为新鲜排放气团VOCs的重要来源,而油品挥发、燃煤的输送与本地积累是其他(混合、夜间与反应)气团VOCs的重要来源.机动车排放、油品挥发与燃煤为VOCs与O3生成的重要贡献源,控制此类源排放可减少太原市城区环境VOCs浓度并有效降低O3生成.  相似文献   

12.
Volatile organic compounds (VOCs) are major precursors for ozone and secondary organic aerosol (SOA), both of which greatly harm human health and significantly affect the Earth''s climate. We simultaneously estimated ozone and SOA formation from anthropogenic VOCs emissions in China by employing photochemical ozone creation potential (POCP) values and SOA yields. We gave special attention to large molecular species and adopted the SOA yield curves from latest smog chamber experiments. The estimation shows that alkylbenzenes are greatest contributors to both ozone and SOA formation (36.0% and 51.6%, respectively), while toluene and xylenes are largest contributing individual VOCs. Industry solvent use, industry process and domestic combustion are three sectors with the largest contributions to both ozone (24.7%, 23.0% and 17.8%, respectively) and SOA (22.9%, 34.6% and 19.6%, respectively) formation. In terms of the formation potential per unit VOCs emission, ozone is sensitive to open biomass burning, transportation, and domestic solvent use, and SOA is sensitive to industry process, domestic solvent use, and domestic combustion. Biomass stoves, paint application in industrial protection and buildings, adhesives application are key individual sources to ozone and SOA formation, whether measured by total contribution or contribution per unit VOCs emission. The results imply that current VOCs control policies should be extended to cover most important industrial sources, and the control measures for biomass stoves should be tightened. Finally, discrepant VOCs control policies should be implemented in different regions based on their ozone/aerosol concentration levels and dominant emission sources for ozone and SOA formation potential.  相似文献   

13.
为识别和量化深圳市大气PM2.5的污染来源,2014年3,6,9,12月分别在5个站点采集PM2.5的膜样品并进行质量浓度及组分分析,利用正向矩阵因子解析(PMF)模型对其主要来源和时空变化规律进行了解析.结果表明,2014年深圳市PM2.5年均浓度为35.7 μg/m3,其中机动车源、二次硫酸盐生成、二次有机物生成和二次硝酸盐生成是最主要的来源,质量浓度贡献比例分别为27%、21%、12%和10%;地面扬尘、生物质燃烧源、远洋船舶源、工业源、海洋源、建筑尘和燃煤源贡献比例达2%~6%.各个源贡献的时空变化特征表明,二次硫酸盐生成、生物质燃烧源、二次有机物生成、工业源、远洋船舶源和海洋源显示出明显的区域源特征,机动车源、二次硝酸盐生成、燃煤源、地面扬尘和建筑尘具有显著的本地源特征.  相似文献   

14.
臭氧污染在全国呈加剧态势,在非重点区域和非重点城市其相关研究薄弱.在湛江市选取3个采样点,使用苏玛罐和2,4-二硝基苯肼(DNPH)吸附管采样,并利用气相色谱-质谱/氢离子火焰检测器(GC-MS/FID)和高效液相色谱(HPLC)分析了101种挥发性有机物(VOCs),分析其主要组分和变化特点,计算VOCs的臭氧生成潜势(OFP),并利用正定矩阵因子分解模型(PMF)进行源解析.结果表明,采样期间湛江市φ(TVOCs)平均值为1.28×10-7,其中OVOCs占比最高,为52%,其次为烷烃(36%)、烯烃(7%)、卤代烃(2.42%)、芳香烃(1.61%)和炔烃(0.78%).VOCs组分日变化特征表明,芳香烃和烷烃早晚体积分数高而中午低,受光化学反应影响大;而OVOCs在光化学反应强烈的中午体积分数低而傍晚高,表明傍晚采样点附近OVOCs直接排放增多或受到上风向污染源输送的影响.湛江市TVOCs的OFP为3.28×10-7,优势物种为甲醛、1-丁烯、正丁烷、2-丁酮和乙醛.表征气团老化程度的X/E值和气团后向轨迹分析表明,采样期间,当受来自...  相似文献   

15.
南京市北郊夏季挥发性有机物的源解析   总被引:20,自引:15,他引:5  
杨辉  朱彬  高晋徽  李用宇  夏丽 《环境科学》2013,34(12):4519-4528
2012年8月利用在线气相色谱仪对南京市北郊大气环境中的挥发性有机物(VOCs)进行连续监测,分析VOCs时间变化规律,并利用PMF(positive matrix factorization)受体模型和CPF(conditional probability function)方法对其来源进行解析.结果表明,南京市北郊夏季VOCs日变化呈双峰分布,小时平均体积分数为(33.84±27.77)×10-9,夜间高于昼间.其中含量最高的是烷烃,其次是烯烃和芳烃,分别占到总挥发性有机物(TVOCs)的49.3%、24.4%和18.5%,乙炔占7.8%.南京市北郊夏季VOCs主要来源有5个,分别是交通尾气、燃料挥发、工业排放、有机溶剂挥发和植物排放源,各自对TVOCs贡献为33.1%、25.8%、23.2%、8.1%和9.7%.烷烃主要来源于汽车尾气排放、工业排放和燃料挥发,贡献百分比分别为23.7%、35.3%和31.3%;烯烃主要来源于燃料挥发、工业排放和汽车尾气排放,分别占41.1%、18.4%和24.3%;对芳烃贡献最大的为汽车尾气排放,占到49.2%,其次是有机溶剂挥发排放占30.8%.  相似文献   

16.
南京江北新区大气单颗粒来源解析及混合状态   总被引:4,自引:4,他引:0  
于兴娜  时政  马佳  李梅  龚克坚 《环境科学》2019,40(4):1521-1528
利用单颗粒气溶胶飞行时间质谱(SPAMS)于2015年12月1~31日对南京江北新区大气单颗粒进行了测量,共采集到同时含有正负离子谱图的颗粒747.8万个.结果表明,监测期间南京江北新区总体空气质量较差,污染天气占比为49.2%,SPAMS所捕获的颗粒数与PM2.5质量浓度的相关性达到0.83,因此颗粒物数浓度在一定程度上能够用来反映大气污染状况,监测点主要污染源包括燃煤源以及机动车尾气源,工业工艺源污染占比居第3位,3种源的总贡献率达到63.5%.从整体上看,PM2.5质量浓度的升高大多伴随着燃煤及机动车尾气占比的升高,EC、混合碳(ECOC)与OC在生物质燃烧、扬尘、汽车尾气排放、燃煤燃烧以及工业源中均与NO2-、NO3-以及SO4-有较高的混合程度.  相似文献   

17.
有机物是大气细颗粒物(PM_(2.5))的重要组成部分,其来源和组分非常复杂,是大气科学研究的难点和热点.本研究定量表征了上海地区夏季3个不同功能站点PM_(2.5)中78种有机组分,分析了其组成特征及空间差异,并采用后向轨迹、指示物、特征比值等方法对其来源进行了探讨.结果表明,上海西部郊区青浦和徐汇的有机组分检出浓度相近,约为(317±129)ng·m~(-3),高于东部沿海.78种有机组分中,脂肪酸类物质的占比最高,之后依次为左旋葡聚糖、正构烷烃和多环芳烃,藿烷的占比最低.基于示踪物比值法初步分析结果表明,上海地区的颗粒有机物主要来源于汽油车尾气排放,此外中心城区和西部郊区在观测期间受到了一定程度的生物质燃烧污染,可能与西北方向的污染输送有关.就具体组分而言,在西部郊区青浦,脂肪酸主要来自于陆生植物排放,而在东部沿海地区临港,其还会受到海洋浮游植物和微生物的影响;PAH特征比值的分析表明煤燃烧和机动车尾气对多环芳烃具有重要贡献.相关研究结果有助于对上海有机气溶胶的污染特征及来源的深入认识,为开展颗粒有机物的防治提供一定的基础支撑.  相似文献   

18.
郑州市某城区冬季不同污染水平大气VOCs特征及源解析   总被引:6,自引:6,他引:0  
于2019年1月3~23日,在郑州市某城市站点对挥发性有机物(VOCs)进行观测,研究不同污染水平下VOCs组成、变化特征、来源及其对二次有机气溶胶(SOA)生成的影响.结果表明,观测期间含氧VOCs和烷烃为VOCs的主要组分,乙酸乙酯和丙酮为最丰富的物种.清洁天演变至重度污染过程中,VOCs体积分数增高约1倍,大部分物种体积分数随污染程度加重而增高.基于正交矩阵因子模型(PMF),观测期间VOCs主要来源于机动车排放、工业排放、燃烧源、溶剂使用和液化石油气(LPG)使用,且不同污染水平下来源贡献差异明显,重污染期间工业排放和溶剂使用的源贡献分别增高至约清洁天的9倍和3倍.芳香烃为SOA生成潜势(SOA_p)贡献最大的组分,甲苯和间/对-二甲苯为贡献最大的物种,溶剂使用源为贡献最大的来源,重度污染期间总SOA_p增大至约清洁天的2.6倍.加强管控芳香烃类化合物及溶剂使用等相关源的排放对改善郑州市冬季霾污染具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号