首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
基于遥感卫星(OMI)反演数据,对2005—2019年粤港澳大湾区近地层的O3浓度数据进行提取及分析,探讨其时空变化特征和影响因素,同时利用后向轨迹(HYSPLIT)模型对O3来源进行解析.结果表明:①在空间分布上,臭氧浓度自北向南逐渐降低,高值区集中分布在肇庆、广州、佛山等地;低值区集中在东莞、深圳、香港等地.②在时间变化上,15年来,该区域O3浓度整体呈先上升后下降的趋势,2005—2010年O3浓度持续升高,2010—2019年O3浓度呈下降趋势,在2018年有小幅增长.季节变化表现为:春夏季O3浓度高于秋冬季,高值区在春夏季交替出现,且秋季略高于冬季;每年11月—次年2月出现低值区,4—7月出现高值区.③自然因素中,风向和风速对O3扩散和传输起重要作用;后向轨迹聚类分析表明:O3长距离的输送受到来自西伯利亚的寒冷气流影响,短距离的输送则受到来自太平洋的暖湿气流的影响.气温与O3浓度呈正相关;降水与O3浓度基本呈负相关.④人为因素中,O3浓度与GDP、人口密度的空间分布表现出显著相关性;NOx的影响中,电力源、交通源和工业源是主导因素,居民源的影响较弱;而VOCs的影响中,工业源是主控因素,交通源和居民源次之,电力源的影响最弱.⑤O3浓度与HCHO浓度的空间分布保持高度的一致性;NOx等污染物参与光化学反应,对O3浓度的变化起着一定作用;气溶胶对太阳辐射产生消光作用,使得O3浓度降低.  相似文献   

2.
利用保定市2015—2019年近地面O3和气象观测数据,统计分析了该地区O3变化特征及其与地面气温、相对湿度、风速和风向的关系,并确定了O3的周边源区.结果表明,2015—2019年保定市O3污染呈加重趋势,O3污染超标天数从2015年的63 d增加至2019年的95 d.由于秋冬季昼夜温差较大,导致其O3日变化相对扰动高于春夏季节.O3浓度与近地面气温呈非线性正相关关系,随相对湿度(RH)的增加呈阶段性的先增后减的变化趋势,其中当RH为40%~50%时,O3浓度及其污染超标率均达到最大.此外,风场对O3分布有重要影响,盛行偏南风时易发生O3重污染,表明影响该地区O3污染源区主要位于保定南部.潜在源贡献因子分析方法(PSCF)和浓度权重轨迹分析法(CWT)的分析结果表明,保定市春夏O3源区分布范围最大,其中贡献高值区主要分布在保定以南的河南东部、山东西部,周边源区对保定市O3污染具有重要影响作用.  相似文献   

3.
陈菁  彭金龙  徐彦森 《环境科学》2021,42(9):4071-4082
细颗粒物(PM2.5)和臭氧(O3)是我国的主要大气污染物,严重危害人群健康.北京市自2013年以来大力开展大气污染治理工作,现已取得显著成效.通过分析2014~2020年北京市34个大气环境监测站的PM2.5和O3浓度变化特征并评估大气污染防治的健康效应,对推进大气污染防治具有重要意义.结果表明,2014年北京市PM2.5年均值和4~9月平均O3日最大小时(O3_max)值分别为92.0 μg·m-3和81.9 nmol·mol-1.2014~2020年PM2.5平均每年降低7.5 μg·m-3,但是O3_max持续偏高.在季节尺度,冬季的12月和1月PM2.5浓度最高,夏季的8月浓度最低.相反地,O3_max在每年6月浓度最高.PM2.5浓度日变化规律为,夜间22:00至次日00:00最高,14:00~16:00最低.而O3浓度在07:00最低,随后逐步升高并在午后达到最高.在空间分布上,PM2.5在2014和2019年都呈现南高北低的趋势,O3_max在全市范围内均较高,仅在道路区域偏低.大气污染对人群健康影响的评估结果表明,2014年北京市与PM2.5相关的心血管和呼吸道疾病超额死亡人数分别为1580人和821人,与O3相关的呼吸道疾病超额死亡人数为2180人.2019年与PM2.5相关的超额死亡人数仅为2014年的50%,而与O3相关的超额死亡人数与2014年持平.北京市细颗粒物治理成效显著,但是O3污染问题凸显,O3已经成为危害北京市居民健康的首要大气污染物.未来需要加强PM2.5和O3协同治理.  相似文献   

4.
长三角地区近15年大气臭氧柱浓度时空变化及影响因素   总被引:5,自引:0,他引:5  
基于OMI遥感数据,分析了2005-2019年长三角地区O3柱浓度的时空分布特征及影响因素,同时采用后向轨迹(HYSPLIT)模型进行对流层O3来源的解析.结果表明:1从时间分布来看,15年间O3柱浓度年际变化呈先上升后下降的变化趋势,其中,2005-2010年呈上升趋势,2010-2019年呈下降趋势,2010年和2016年分别达到最大值和最小值,分别为327.79 DU和276.43 DU;季节方面,每年季均浓度值均为春季最大,冬季最小.2在空间分布上,O3柱浓度高值区在长三角中部及以北地区,且由北向南逐渐降低;四季分布有明显变化,15年的平均季均浓度为春季>夏季>秋季>冬季,高值主要出现在春季,低值出现在冬季.3气象因子上,O3柱浓度与气温、降水、风速、日照时间呈正相关(p<0.05),与气压呈负相关(p<0.05).人为因素上,O3柱浓度与人口、第二产业及煤炭消费总量呈正相关.4通过不同高度模拟受点气流输送轨迹发现,上海市不同高度的气流轨迹与输送路径相差不大,均能反映O3的来源与扩散方向.来自华北、黄海地区与西南方向及东海上空的气流汇聚是造成春季O3柱浓度升高的主要原因,冬季O3柱浓度低主要是因为来自华北地区高压气流对O3的扩散作用.5O3柱浓度与其他物质的空间对比分析显示,NO2柱浓度、AOD指数、HCHO柱浓度均是影响O3柱浓度空间分布的重要原因;该地区O3前体物氮氧化物(NOx)是引起O3柱浓度增长的主要原因,两者之间呈显著正相关(p<0.01);机动车尾气排放对O3柱浓度水平的贡献不可忽视.长三角地区挥发性有机物(VOCs)是造成O3柱浓度升高的又一重要原因,其中,人为源是主控原因,占总贡献量的96.9%,植物源占3.1%;人为源中,工业源和生活源贡献较大.  相似文献   

5.
李沈鑫  邹滨  张凤英  刘宁  薛琛昊  刘婧 《环境科学》2022,43(10):4293-4304
针对地面站点监测数据难以支撑大气PM2.5与O3污染防控区边界划定的问题,融合大气污染浓度遥感估算建模与GIS统计分析模型,提出了一种基于PM2.5和O3浓度遥感估算结果的协同防控区精细划定方法,开展了2015~2020年月和年尺度的全国PM2.5与O3污染协同防控成效定量分析与防控区精细划定研究.结果表明,2015~2020年,我国PM2.5浓度总体下降显著但O3浓度基本持平,PM2.5污染在秋冬超标严重,O3污染则在春夏;同时PM2.5与O3浓度变化在空间上的不一致性显著,其中PM2.5下降且O3上升、PM2.5与O3均下降、PM2.5与O3均上升和PM2.5上升O3下降的面积占比分别为38.34%、35.12%、15.24%和10.89%.遥感精细划定范围显示,PM2.5和O3协同防控区域的边界具有显著动态变化特征,在时间变化上呈现先扩大后缩小的趋势,主体范围集中在"2+26"城市、汾渭平原、长三角北部和山东半岛.以PM2.5或O3单一防控为主的区域范围较为稳定,辽吉、鄂湘赣、成渝和塔克拉玛干沙漠-河西走廊区域需以PM2.5防控为主,珠三角、长三角和环渤海湾部分区域则应以O3防控为主.基于卫星遥感手段的PM2.5和O3协同防控区域边界精细划定方法可更好辅助国家PM2.5和O3协同防控策略制定需求.  相似文献   

6.
王晓雯  刘旻霞  王扬  宋宜凯 《环境科学》2023,44(9):4809-4818
通过OMI遥感卫星数据分析华东地区2005~2021年大气对流层臭氧(O3)、二氧化氮(NO2)和甲醛(HCHO)柱浓度的时空特征,利用后向轨迹模型(HYSPLIT)探究其来源.结果表明:① 17年间,对流层O3柱浓度平稳增加,2010年上升到最大值,之后呈现一种波动起伏的状态;NO2在2005~2012年呈增加趋势,2012~2021年缓慢下降;HCHO柱浓度由2005年的1.15×1016 molec ·cm-2呈现增长趋势,上升到2021年的1.8×1016 molec ·cm-2.②在空间上,3种污染物柱浓度总体上呈现北高南低的空间格局,北部为高高聚集区域,中部为无特征区域,南部为低低聚集区域.③ O3的敏感性呈现为:春季η<2.3,属于VOCs控制区;夏季η<4.2,表现为大部分地区是NOx-VOCs协同控制区,少部分地区是VOCs控制区;秋季η<4.2,主要为VOCs控制,极少部分为NOx-VOCs协同控制区;冬季η<2.3,为VOCs控制区,山东省以VOCs控制为主.④因2005~2021年O3在山东省呈现为高高聚集,所以选取2021年山东省的省会城市济南市进行O3来源解析,2021年济南市的O3浓度增加有两个方面,一是通过远距离的气团输送主要来自于江苏省的连云港市和河北省的沧州市;二是近距离的气团输送来自于济南市附近城市的污染和黄海、渤海经济区,且聚集性分析与潜在源贡献因子算法(PSCF)和权重轨迹分析法(CWT)有相同的结果.  相似文献   

7.
乌海市是我国典型的煤焦化工业基地,大气污染物排放总量较大且近年来夏季O3污染问题逐渐突出,明确大气污染物排放特征,探究O3污染形成机制是客观认识其O3污染现状,科学制定污染控制措施的基础.基于"系数法"采用自下而上的方式构建了2018年乌海市高分辨率大气污染源排放清单(HEI-WH18),利用WRF-Chem对HEI-WH18的适用性和准确性进行评估,并结合模式诊断模块探究了乌海市夏季O3污染形成的原因.排放清单结果表明,2018年乌海市SO2、NOx、CO、PM10、PM2.5、VOCs、NH3、BC和OC的排放总量分别为65943、40934、172867、159771、47469、69191、1407、1491和1648 t ·a-1.与MEIC清单相比,利用HEI-WH18能更好地捕捉到O3及其前体物的排放变化规律和量级,适用于乌海市夏季O3的模拟及其来源分析研究.从O3及前体物的空间分布来看,乌海市海勃湾城区白天为O3高值区,3个工业园区无论白天和夜间均为O3低值区和NO2高值区,CO的空间分布特征与煤层及矸石堆自燃源一致.根据对O3污染过程的诊断分析,边界层中高层O3浓度的升高主要是平流输送和化学过程共同作用的结果,低层O3浓度的升高是垂直混合和平流输送导致的,化学过程在低层的贡献较为复杂,其正贡献起到了维持高O3浓度的作用,负贡献结合平流输送造成了O3污染的最终消散.  相似文献   

8.
高冉  李琴  车飞  张艳平  祖永刚  刘芬 《环境科学》2024,45(5):2525-2536
为评估京津冀地区臭氧(O3)时空分布特征及其产生的健康效益,采用土地利用回归模型和随机森林模型,模拟2015~2020年京津冀地区O3浓度并在此基础上估算归因于O3暴露导致的全因死亡、心血管系统疾病死亡和呼吸系统疾病死亡的人数及相应的健康损失经济价值.结果表明,京津冀地区O3浓度、归因于O3暴露的死亡人数和健康损失经济价值在2015~2020年间的变化趋势相似,整体呈现波动性上升趋势;O3浓度较高的地区以及变化较大的地区集中于中部和西南部,北部地区浓度较低且变化程度较小;2015~2020年归因于O3暴露的死亡人数空间分布与O3浓度的分布相似;2015~2020年,13个市的全因死亡和心血管系统疾病死亡健康损失经济价值均增加,4个市的呼吸系统疾病死亡健康损失经济价值下降.研究结果提示京津冀地区O3污染防治重点关注地区不尽相同,综合考虑建议以北京市、天津市、衡水市和邢台市作为京津冀地区O3污染防治重点地区,根据重点地区类型和特点采取差异化防治措施改善O3浓度、减少归因于O3暴露的死亡人数和健康损失经济价值.  相似文献   

9.
赵伟  王硕  庞晓蝶  高博  卢清  刘明  陈来国  范绍佳 《环境科学》2022,43(12):5399-5406
基于2015~2021年环境监测数据和气象再分析资料,利用Mann-Kendall检验法和Sen斜率法等统计手段揭示了陕西关中城市群臭氧(O3)浓度时空变化特征和年际变化趋势,并从气象、排放源和区域传输等方面分析了趋势形成的原因.结果表明:①2015~2021年,关中城市群O3浓度评价值(MDA8第90百分位数)最高的城市是咸阳市,浓度评价值多年平均值为162 μg·m-3,O3浓度平均值(MDA8年均值)和O3浓度背景值(MDA8第5百分位数)最高的城市是铜川市.②关中城市群O3浓度表现为单峰型日变化特征,并呈现夏季>春季>秋季>冬季的年变化特征.夏季咸阳O3浓度平均值最高,其他季节铜川O3浓度平均值最高.③2015~2021年,陕西关中城市群O3浓度背景值呈现出上升趋势,区域浓度背景值平均上升速率为2.20 μg·(m3·a)-1,但是O3浓度评价值并未表现出有统计显著性的变化趋势.此外,关中城市群O3浓度变化趋势与季节密切相关,其中冬季O3浓度上升趋势显著,其他季节大部分城市O3浓度无明显变化趋势.④关中城市群及周边地区挥发性有机物(VOCs)减排幅度普遍小于氮氧化物(NOx)的不合理减排结构、滴定效应减弱以及区域传输等因素共同作用,导致关中城市群冬季O3浓度升高.  相似文献   

10.
符传博  丹利  佟金鹤  徐文帅 《环境科学》2023,44(9):4799-4808
基于环境空气质量数据、气象观测数据和卫星遥感资料,研究了2015~2020年海南岛臭氧(O3)污染的时空分布、变化趋势、O3生成敏感性及其与气象因子的关系.结果表明,海南岛O3-8h (日最大8 h滑动平均值)表现为西部和北部偏高,中部、东部和南部偏低的分布特征,2015年O3-8h浓度最高,2019年O3-8h浓度超标占比最大.O3-8h浓度与平均气温(P<0.1)、日照时数(P<0.01)、太阳总辐射(P<0.01)、大气压和平均风速呈正相关关系,与降雨量(P<0.05)和相对湿度呈负相关关系.卫星遥感数据显示,2015~2020年海南岛对流层NO2柱浓度(NO2-OMI)和HCHO柱浓度(HCHO-OMI)呈相反的变化趋势,2020年NO2-OMI较2015年上升了7.74%,HCHO-OMI下降了10.2%.海南岛属于NOx控制区,近6年FNR值(O3生成敏感性)呈波动式地下降趋势,其趋势系数和气候倾向率分别为-0.514和-0.123 a-1.气象因子与海南岛FNR值有较好的相关关系.  相似文献   

11.
近10年海南岛大气NO2的时空变化及污染物来源解析   总被引:4,自引:0,他引:4  
利用OMI卫星反演的NO2柱浓度数据,分析了近10年海南岛对流层NO2柱浓度(Tro NO2)和总NO2柱浓度(Tot NO2)的时空变化,同时结合地面风向、SO2排放资料,以及HYSPLIT模式等探究其大气污染物来源.结果表明,海南岛地区大气NO2呈北半部高于南半部、中部山区低于四周沿海的分布特征,其季节变化表现为冬季高、夏季低的特点,其中夏季浓度偏低和雨水的冲刷作用有关,而冬季浓度偏高与珠江三角洲地区的外源输送作用有密切联系.近10年海南岛大气NO2冬夏季有相反的变化趋势,冬季逐年下降,夏季则有弱的上升趋势.其原因可能是夏季大气污染物以本地排放为主,冬季外源输送起主要贡献作用.海口市Tro NO2与珠江三角洲地区的有利风向日数相关系数为0.84,通过了99%的信度检验.后向轨迹分析表明,2013年12月影响海口市的3条气流移动路径,均不同程度的经过珠江三角洲地区,进一步表明海南岛冬季大气污染物主要以珠江三角洲地区的外源输送为主.  相似文献   

12.
为研究水稻成熟衰老期叶际及根际NOGs(nitrogen oxides gases, 氮氧化物)排放的光控机制,在同步测定条件下,采用密闭箱法,研究了不同光质(黄、绿、白、红、蓝光)、光强〔0.00、(50.00±2.35)(75.00±2.32)(100.00±3.89) μmol/(m2·s)〕对水稻成熟衰老期叶际及根际NOGs排放的影响. 结果表明:在相同氮源〔NH4NO3-N,ρ(N)为90 mg/L〕下,日间光强为(75.00±2.32) μmol/(m2·s)时,水稻成熟衰老期叶际N2O和NO的平均排放速率分别为18.09、0.39 μg/(pot·h),二者排放量分别占各自总排放量的28.88%、30.78%;在(100.00±3.89)μmol/(m2·s)光强条件下,叶际N2O和NO的平均排放速率则分别为23.27、0.50 μg/(pot·h),二者排放量分别占各自总排放量的36.74%、27.92%. 在0.00~(100.00±3.89)μmol/(m2·s)日间光强下,水稻叶际及根际N2O和NO排放随随光强增加而增强,但不同光照条件下水稻叶际及根际均无明显的NO2净排放作用. 在光强一致〔(20.00±0.48)μmol/(m2·s)〕条件下,同期黄、绿、白、红、蓝光处理的水稻叶际N2O平均排放速率分别为24.90、15.46、13.85、16.40和19.77 μg/(pot·h),红、蓝光在抑制水稻叶际N2O及根际NO排放的同时,也促进了水稻根际N2O的排放. 研究显示,水稻成熟衰老期叶际及根际NOGs排放均以N2O为主,叶际N2O的排放可以反映根际N2O的排放情况. 光照越强,NOGs排放就越明显. 适度控制日间光强并增加红、蓝光比例,可抑制N2O和NO排放.   相似文献   

13.
农垦与放牧对内蒙古草原N2O、CO2排放和CH4吸收的影响   总被引:19,自引:3,他引:16  
利用优选静态箱/气相色谱法(GC),首次对我国内蒙古草原典型地区进行了人类活动对N2O、CO2和CH4交换通量影响的实验观测结果表明,农垦麦田N2O平均排放通量比原始草原高出3倍,并改变了草甸草原为CO2汇的性质,使其季节排放净通量以C计增加14.3 mg·(m2·h).随放牧强度的增加CO2排放通量呈线性增长,轻牧会引起草原对CH4吸收的大幅增加,而随着放牧压力的增大,增加值迅速回落.农垦麦田与草甸草原相比地-气间CH4交换无显著变化,放牧强度对N2O排放影响无显著规律.土壤湿度和温度是影响草原排放N2O和CO2、吸收CH4季节变化形式的关键因子,而人类活动仅影响排放强度.排放和吸收量年际间差异很大,但主要受降水的影响.N2O和CO2排放与CH4吸收峰值相反现象普遍存在.  相似文献   

14.
浮游植物最大光合作用效率(F_v/F_m)可以判断水生生态环境状况,是探究梯级筑坝对河流生态环境影响的重要参数。本研究对三岔河梯级水库的浮游植物F_v/F_m及相关的水化学参数进行了季节性调查,探讨F_v/F_m的时空变化及其环境影响因素。结果表明,F_v/F_m具有明显的时空差异性,在空间分布上为库区下泄水河流;F_v/F_m和浮游植物总细胞丰度呈现显著正相关,库区总细胞丰度大,F_v/F_m比其它区域高。在时间分布上为冬季夏季≈秋季春季,表明浮游植物在水温较低时,会提高光合作用效率,F_v/F_m增高。  相似文献   

15.
李航  封磊  宋萍  游凯  苏丹  刘洁  黄楠 《环境科学学报》2020,40(5):1692-1702
通过热聚合法制备不同比例Cu掺杂g-C3N4复合光催化材料,利用XRD、SEM/EDX、FT-IR、UV-Vis DRS、PL、XPS等技术对复合材料的形貌结构和光学性能进行表征,研究了复合材料对藻细胞的光催化灭活效果.结果表明,Cu掺杂改性可有效促进g-C3N4材料表面光生电子-空穴的分离,增强其对可见光的利用率,进而提升其光催化效率;随着Cu掺杂比例的增大,Cu-C3N4对藻细胞的灭活效果则越好.进一步研究发现,H2O2和·O2-是Cu-C3N4光催化灭藻过程中起主要作用的活性物质,会损伤藻细胞的形态结构、抗氧化酶系统和光合系统,导致藻细胞大量死亡.  相似文献   

16.
采用浸渍法制备了一系列不同钒和钨负载量的V2O5-WO3/TiO2催化剂样品,对样品NH3选择性催化还原NO性能进行了评价,并用BET、XRD、XPS等手段对催化剂样品的表面形态进行了表征.研究发现,钒的负载量对催化剂的比表面积和催化活性有显著影响,当钒负载量从1%升高到8%时,催化剂比表面积下降了16 m2/g,最高活性温度降低了约100℃.钨起到稳定剂和助剂的双重作用,当钒负载量为1%时,钨负载量从0升高到6%,催化剂比表面积仅下降了3 m2/g,而活性温度窗口向高温和低温各拓宽了约50℃.研究表明钒和钨负载量都能影响催化剂表面的VOx物种,但对催化剂的表面晶型没有明显影响.  相似文献   

17.
长春市大气SO2、O3和NOx的变化特征及来源   总被引:2,自引:0,他引:2  
为研究长春市采暖期大气污染物的污染水平及其随时间的变化特征,于2012年1—6月通过在线监测仪获取了大气中ρ(SO2)、ρ(O3)和ρ(NOx),利用HYSPLIT(混合型单粒子拉格朗日综合轨迹模式)后向轨迹模型结合地面气象资料,初步分析了该市大气污染物的可能来源及传输过程. 结果表明:观测期间ρ(SO2)和ρ(NOx)的日均值分别为(25.0±21.6)和(54.4±34.0)μg/m3,ρ(O3)最大8 h平均值为(85.0±26.2)μg/m3,ρ(SO2)、ρ(NOx)和ρ(O3)的变化范围分别为2.3~131.0、17.6~183.7和31.0~173.3 μg/m3;其中ρ(O3)日均值超过GB 3095—2012《环境空气质量标准》二级标准限值的时间为2 d,ρ(SO2)和ρ(NOx)均未超过二级标准限值,但ρ(SO2)日均值在采暖期超过GB 3095—2012一级标准限值的时间为23 d,占采暖期的24%. 采暖期ρ(SO2)日变化为双峰型,峰值出现在06:00和20:00左右,而在非采暖期表现为单峰型,峰值出现在08:00左右;ρ(O3)表现为单峰型,峰值出现在13:00─15:00;ρ(NOx)在采暖期表现为双峰型,而在非采暖期表现为单峰型. 对观测期间72 h内HYSPLIT后向轨迹模拟结果和气象数据的分析表明,长春市大气污染主要受本地源的影响,偏西气流易对污染物造成积累,而偏东气流有利于污染物扩散.   相似文献   

18.
河北张家口市大气污染观测研究   总被引:5,自引:1,他引:4  
冀北重镇张家口,全年干旱少雨风沙大,自然生态环境极其脆弱,但近年来工业发展极为迅速.为了解张家口市大气污染物浓度水平及季节变化,2009年12月1日~2010年11月30日,利用自动在线仪器对张家口市区大气典型污染物NOx、SO2、O3和PM10进行了连续观测研究.结果表明,张家口市首要污染物为可吸入颗粒物(PM10),年均质量浓度达(137±105)μg.m-3.NO、NO2、SO2和O3年均质量浓度分别为:(8±13)、(30±15)、(19±26)和(54±35)μg.m-3.NOx和SO2质量浓度冬季最高,分别达(51±35)μg.m-3和(42±29)μg.m-3;夏季最低,分别为(28±8)μg.m-3和(4±3)μg.m-3.O3质量浓度夏季最高,达(92±40)μg.m-3,最高小时均值可达271μg.m-3;冬季最低,为(34±20)μg.m-3.PM10质量浓度春季最高,达(144±131)μg.m-3;冬季最低,为(130±129)μg.m-3,但季节变化不明显.依照国家二级标准PM10日均值超标率为28%.季节统计日变化显示NOx和PM10为早晚双峰型,SO2为午间单峰型,O3为午后单峰型.张家口市区大气污染日变化受到交通源显著影响,气态污染物冬季受取暖燃煤显著影响.夏季东南气流对张家口O3有输送作用,自西北的沙尘及局地扬尘(浮尘)对张家口PM10影响显著,并对华北平原区域造成一定影响.  相似文献   

19.
采用共沉淀法制备了一种新型铁钇氧化物(Fe3O4/Y2O3)磁性吸附剂,并对其表面特性及磷吸附行为进行了初步研究.扫描电镜(SEM)与X-射线衍射仪(XRD)表征结果表明,此吸附剂具有纳米结构,初级粒子平均粒径为15.2nm.振动样品磁强计(VSM)测得比饱和磁化强度为38.7emu·g-1,磁性较强,可方便地实现固液分离.吸附剂的等电点为6.8.磷吸附实验表明,25℃时,Langmuir吸附等温线可较好地拟合Fe3O4/Y2O3对溶液中磷的吸附(R2=0.989),最大吸附量(pH=5.0)为60.6mg·g-1(以P计);吸附速率较快,在120min内可完成吸附容量的80%以上,符合准二级动力学模型(R2=0.997);溶液pH对Fe3O4/Y2O3吸附磷的影响较为明显,离子强度则影响不大;共存阴离子对吸附影响的大小顺序为Cl-相似文献   

20.
谭叶玲  邹长伟  黄虹  魏宸 《环境科学研究》2019,32(12):2098-2107
为定量云水和云下冲刷分别对降水中SO42-、NO3-的贡献,并进一步解析云下冲刷颗粒相和气相物质分别对降水样品中SO42-、NO3-的贡献,于2016年4月-2017年2月采用APS-3A型降水自动采样仪对降水进行分段采集.采用离子色谱检测分段降水样品的ρ(SO42-)、ρ(NO3-),分析其变化规律;在降水前、降水中及降水后同步采集并检测大气颗粒相ρ(SO42-)、ρ(NO3-)和气相ρ(SO2)、ρ(NO2),分析颗粒相中ρ(SO42-)、ρ(NO3-)和气相中ρ(SO2)、ρ(NO2)的变化与分布.结果表明:①ρ(SO42-)、ρ(NO3-)在同一场降水的分段样品中呈逐渐降低至后期趋于平稳的趋势,说明降水对空气中污染物的冲刷使空气逐渐清洁,后期冲刷作用有限使得降水中离子质量浓度趋稳.②颗粒相中ρ(SO42-)、ρ(NO3-)与气相中ρ(SO2)、ρ(NO2)在降水前较高,在降水中减小,并在降水后回升,说明降水对颗粒相SO42-、NO3-和气相SO2、NO2均有清除作用,降水结束后无云下冲刷作用,污染物质量浓度逐步回升.③云水对降水中ρ(SO42-)、ρ(NO3-)的贡献率分别为22%~56%(平均值为35%)、9%~49%(平均值为29%),云下冲刷颗粒相SO42-、NO3-对降水中ρ(SO42-)、ρ(NO3-)的贡献率分别为39%~69%(平均值为55%)、43%~73%(平均值为56%),云下冲刷气相SO2、NO2对降水中ρ(SO42-)、ρ(NO3-)的贡献率分别为5%~17%(平均值为10%)、5%~19%(平均值为15%).研究显示,降水中SO42-、NO3-主要来源于云水和云下冲刷颗粒相SO42-、NO3-,而来源于云下冲刷气相SO2、NO2较少.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号