首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
李锦超  曹春  方锋  唐千惠  梁膑月 《环境科学》2023,44(9):4785-4798
基于2005~2020年OMI遥感卫星O3柱浓度数据,结合河西走廊地区10个国控点环境自动监测站大气污染物数据和全球资料同化系统(GDAS)气象资料,利用克里金插值法、相关性分析和后向轨迹(HYSPLIT)模型,探讨河西走廊近地面O3时空分布特征、气象因素、传输路径和潜在来源.结果表明:①从时间变化来看,O3柱浓度在2005~2010年和2014~2020年呈上升趋势,2010~2014年呈下降趋势,2010年和2014年分别达到最大值和最小值,分别为332.31 DU和301.00 DU,季节变化表现为春季和冬季明显大于夏季和秋季.②在空间分布上,O3柱浓度大体呈现由西南向东北递增的纬向带状分布特征,高值区主要分布在地势低平的城市区域,中值区呈纬向带状与祁连山山麓走向基本一致.③气象条件分析发现,温度、风速和日照时数与O3呈现正相关,相对湿度与O3呈现负相关.④通过对武威市模拟受点气流输送轨迹发现,O3输送路径方向较为单一,各季节的主导气流均以西部和西北部为主,所占比例分别为71.62%、66.85%、61.22%和77.78%;O3潜在贡献源区存在一定的季节差异:春季、夏季和秋季的O3潜在源高值区域均分布于白银市和兰州市等地,为东南风源,冬季高值区分布于巴丹吉林沙漠和腾格里沙漠之间,为北风源.  相似文献   

2.
王晓雯  刘旻霞  王扬  宋宜凯 《环境科学》2023,44(9):4809-4818
通过OMI遥感卫星数据分析华东地区2005~2021年大气对流层臭氧(O3)、二氧化氮(NO2)和甲醛(HCHO)柱浓度的时空特征,利用后向轨迹模型(HYSPLIT)探究其来源.结果表明:① 17年间,对流层O3柱浓度平稳增加,2010年上升到最大值,之后呈现一种波动起伏的状态;NO2在2005~2012年呈增加趋势,2012~2021年缓慢下降;HCHO柱浓度由2005年的1.15×1016 molec ·cm-2呈现增长趋势,上升到2021年的1.8×1016 molec ·cm-2.②在空间上,3种污染物柱浓度总体上呈现北高南低的空间格局,北部为高高聚集区域,中部为无特征区域,南部为低低聚集区域.③ O3的敏感性呈现为:春季η<2.3,属于VOCs控制区;夏季η<4.2,表现为大部分地区是NOx-VOCs协同控制区,少部分地区是VOCs控制区;秋季η<4.2,主要为VOCs控制,极少部分为NOx-VOCs协同控制区;冬季η<2.3,为VOCs控制区,山东省以VOCs控制为主.④因2005~2021年O3在山东省呈现为高高聚集,所以选取2021年山东省的省会城市济南市进行O3来源解析,2021年济南市的O3浓度增加有两个方面,一是通过远距离的气团输送主要来自于江苏省的连云港市和河北省的沧州市;二是近距离的气团输送来自于济南市附近城市的污染和黄海、渤海经济区,且聚集性分析与潜在源贡献因子算法(PSCF)和权重轨迹分析法(CWT)有相同的结果.  相似文献   

3.
基于遥感卫星(OMI)反演数据,对2005—2019年粤港澳大湾区近地层的O3浓度数据进行提取及分析,探讨其时空变化特征和影响因素,同时利用后向轨迹(HYSPLIT)模型对O3来源进行解析.结果表明:①在空间分布上,臭氧浓度自北向南逐渐降低,高值区集中分布在肇庆、广州、佛山等地;低值区集中在东莞、深圳、香港等地.②在时间变化上,15年来,该区域O3浓度整体呈先上升后下降的趋势,2005—2010年O3浓度持续升高,2010—2019年O3浓度呈下降趋势,在2018年有小幅增长.季节变化表现为:春夏季O3浓度高于秋冬季,高值区在春夏季交替出现,且秋季略高于冬季;每年11月—次年2月出现低值区,4—7月出现高值区.③自然因素中,风向和风速对O3扩散和传输起重要作用;后向轨迹聚类分析表明:O3长距离的输送受到来自西伯利亚的寒冷气流影响,短距离的输送则受到来自太平洋的暖湿气流的影响.气温与O3浓度呈正相关;降水与O3浓度基本呈负相关.④人为因素中,O3浓度与GDP、人口密度的空间分布表现出显著相关性;NOx的影响中,电力源、交通源和工业源是主导因素,居民源的影响较弱;而VOCs的影响中,工业源是主控因素,交通源和居民源次之,电力源的影响最弱.⑤O3浓度与HCHO浓度的空间分布保持高度的一致性;NOx等污染物参与光化学反应,对O3浓度的变化起着一定作用;气溶胶对太阳辐射产生消光作用,使得O3浓度降低.  相似文献   

4.
北京大气中NO、NO2和O3浓度变化的相关性分析   总被引:26,自引:8,他引:18  
臭氧(O3)是城市污染大气中的首要光化学污染物,其变化规律与氮氧化物(NOx=NO+NO2)关系密切.采用49C臭氧分析仪和42CTL氮氧化物分析仪对北京城区O3和NOx浓度进行了连续观测,时间为2004-08~2005-07.结果显示,O3和OX(O3+NO2)浓度在午后15:00左右出现峰值,NOx呈双峰态日变化,在07:00和23:00左右出现峰值.不同季节污染物的浓度变化存在差异,O3和NOx浓度分别在夏季和冬季达到最大.NOx浓度存在100×10-9(体积分数)的“分界点”,NOx低浓度时以NO2为主,NOx高浓度时NO占大部分.OX区域贡献和局地贡献存在明显的季节变化,前者主要受区域背景O3的影响,在春季最大,后者主要受局地NOx光化学反应的制约,在夏季最强,同时OX组分呈现显著的昼夜差异.  相似文献   

5.
长三角地区大气污染物对新冠肺炎封城的时空响应特征   总被引:3,自引:0,他引:3  
利用2020年1月1日—2月29日上海、南京、合肥和杭州4个城市常规污染物的逐时监测资料,结合卫星反演的NO2垂直柱浓度信息,探讨了新冠肺炎封城的前、中、后期长三角地区城市大气污染物的污染水平及响应特征.结果显示:除O3外,其余大气污染物的平均浓度在时间上的整体变化趋势均表现为封城前>封城中(1月24日—2月10日)>封城后,表明空气质量并非完全受封城导致的污染减排控制.封城期间的PM2.5/PM10比值高于封城前和封城后,表明气溶胶二次生成对封城期间仍出现的颗粒物污染可能有重要贡献.Ox浓度在封城期间也有显著上升(p<0.01),表明大气氧化性可能在NO2减少的背景下得到强化,从而促进二次气溶胶的生成.从空间看,O3分布呈以城市为中心的包围式往内聚集分布,表明以局地生成为主.PM2.5、PM10、CO、SO2和NO2分布特征为北高南低,表明冬季自北向南的区域传输对封城期间的空气污染有重要贡献.卫星反演结果进一步证实华北平原是污染的主要源区,这也得到轨迹来源分析的佐证.  相似文献   

6.
符传博  丹利  佟金鹤  徐文帅 《环境科学》2023,44(9):4799-4808
基于环境空气质量数据、气象观测数据和卫星遥感资料,研究了2015~2020年海南岛臭氧(O3)污染的时空分布、变化趋势、O3生成敏感性及其与气象因子的关系.结果表明,海南岛O3-8h (日最大8 h滑动平均值)表现为西部和北部偏高,中部、东部和南部偏低的分布特征,2015年O3-8h浓度最高,2019年O3-8h浓度超标占比最大.O3-8h浓度与平均气温(P<0.1)、日照时数(P<0.01)、太阳总辐射(P<0.01)、大气压和平均风速呈正相关关系,与降雨量(P<0.05)和相对湿度呈负相关关系.卫星遥感数据显示,2015~2020年海南岛对流层NO2柱浓度(NO2-OMI)和HCHO柱浓度(HCHO-OMI)呈相反的变化趋势,2020年NO2-OMI较2015年上升了7.74%,HCHO-OMI下降了10.2%.海南岛属于NOx控制区,近6年FNR值(O3生成敏感性)呈波动式地下降趋势,其趋势系数和气候倾向率分别为-0.514和-0.123 a-1.气象因子与海南岛FNR值有较好的相关关系.  相似文献   

7.
南京北郊O3、NO2和SO2浓度变化及长/近距离输送的影响   总被引:11,自引:4,他引:7  
利用2008年1月—2010年12月南京北郊O3、NO2和SO2质量浓度连续观测资料结合后向轨迹模式,采用聚类分析对轨迹进行分类和KZ滤波器对数据组分进行分离的方法,讨论了南京北郊气体污染物(O3、NO2和SO2)的质量浓度变化规律及长/近距离输送对该地区污染气体的影响.结果表明,南京北郊春末夏初(5、6月)O3月均浓度出现最大值,12月出现最小值;NO2在春季(3—5月)月平均浓度相对较高,8月份浓度全年最低,而SO2浓度在6、7月出现最低值.不同季节气体污染物浓度日变化各有特点,O3呈单峰分布,12:00—15:00出现浓度最大值;NO2浓度高值则出现在夜间;SO2在清晨出现最大值,另外,春秋冬季SO2呈双峰型分布.长/近距离输送对南京北郊污染气体影响的分析表明,在西南方向的近距离输送影响下,该地区O3浓度将会出现明显的高值;传输速度较慢的西北气流则会促使该地区形成高浓度的NO2;长距离输送对O3和NO2的贡献与气团输送距离有关,说明该地区O3和NO2是区域性问题.另外,当在传输速度较慢的偏东气流的控制下,SO2的浓度较高,说明SO2的高浓度事件与偏东方向的近距离输送有关.  相似文献   

8.
吴也正  张鑫  顾钧  缪青  魏恒  熊宇  杨倩  吴斌  沈文渊  马强 《环境科学》2024,45(3):1392-1401
以2017~2021年的5~6月苏州市城区站点的大气污染物浓度为研究对象,分析了臭氧(O3)、氮氧化物(NOx)、总氧化剂(Ox)、一氧化碳(CO)和挥发性有机物(VOCs)等污染物的变化特征,利用基于观测的模型(OBM)研究了O3污染成因及其年际变化,解析了环境空气VOCs的主要来源及其变化趋势.结果表明:①近年来苏州Ox平均体积分数以及NOx和CO平均浓度整体呈下降趋势,但VOCs的体积分数整体呈上升趋势;O3污染天光化学反应前体物浓度水平仍较高,且显著高于优良天.②近年来苏州O3生成处于VOCs控制区;苏州市VOCs和NOx长期减排比例应不低于5∶1,在VOCs控制方面应注重对芳香烃和烯烃的减排.③源解析结果显示,工业排放、汽油车尾气和柴油机尾气是苏州市VOCs的主要排放源;近年来工业排放源和溶剂使用源有所下降,但汽油车尾气源和油气挥发源贡献率上升明显,且上述两类污染源排放VOCs的O3生成潜势较高.④综合分析各排放源对O3生成潜势的贡献发现,溶剂使用源和汽油车尾气源的VOCs排放是影响苏州市O3生成的关键因素.  相似文献   

9.
河南省大气污染严重且与周边区域污染传输及交互影响明显,以2017年1、4、7和10月为研究对象,将河南省内18个地市的排放源分别标记,并应用于WRF-CMAQ溯源模型进行模拟.污染物分布结果表明,由于排放和气象的共同影响,河南省PM2.5、NO2和SO2浓度表现为冬季最高,夏季最低.O3-8h浓度的季节变化则为夏季最高,春季次之,冬季最低.不同季节间污染物浓度差距较大,河南省PM2.5、NO2和SO2冬季浓度平均值分别是夏季的4.17、4.12和6.24倍,而O3-8h在夏季的浓度是冬季的2.24倍.由于PM2.5、NO2和SO2与一次排放关系密切且具有一定的同源性,这3种污染物的高值分布为北高南低,季节趋势较为一致.而O3-8h季节分布差异较大,夏季气象条件有助于O3的生成,O3-8h高值主要分布于河南省东北区域;冬春秋季由于气象条件的抑制和NOx的消耗O3-8h高值主要分布在河南省的南部.传输结果表明,冬季省外传输和天然源对河南省PM2.5、O3-8h、NO2和SO2浓度的贡献率都是最大的,分别为36.20%~72.32%、77.96%~96.08%、49.45%~78.80%和59.05%~88.85%.在仅考虑本地排放和省内传输时,夏季河南省内各市的排放对本地4种污染物浓度的贡献率均为最高;春季省内传输对各市PM2.5和O3-8h浓度的贡献率较大,分别为25.63%~74.69%和30.21%~80.01%,冬季省内传输对各市NO2和SO2浓度的贡献率较大,分别为26.02%~76.96%和20.30%~82.34%.河南省内PM2.5、NO2和SO2的传输路径相似,冬季多由北向南传输,春季多由西向东,西南向东北传输,夏季多由西南向东北传输,秋季多由北向南传输,但PM2.5的传输更加复杂.而O3-8h传输路径与其他3种较为不同,特别是在秋季O3-8h由西南向东北的传输路径明显.  相似文献   

10.
阿克达拉大气本底站NO2输送路径及潜在源分析   总被引:1,自引:0,他引:1  
基于HYSPLIT模式和全球资料同化系统气象数据(GDAS),计算了2015年12月-2016年11月阿克达拉国家大气本底站48 h气流后向轨迹,并结合同期NO2小时监测数据,综合运用聚类分析、潜在源贡献因子法(PSCF)和浓度权重轨迹法(CWT),分析不同季节气流轨迹对阿克达拉NO2污染物浓度的影响,并揭示不同季节NO2潜在污染源区分布及其贡献水平.结果表明:冬季来自东南方向的气流轨迹占比最高,春、夏、秋季气流轨迹主要来自西北方向,来自西北的长距离气流轨迹NO2质量浓度较低;WPSCF表明重度污染网格出现在冬季的风口区如阿拉山口、达坂城谷地,四季中度污染网格出现在准噶尔盆地及周边地区、额尔齐斯河谷、哈萨克斯坦东部和俄罗斯南部;WCWT和WPSCF潜在源区分布较为一致,WCWT分析表明春、冬两季的NO2贡献高值区污染程度大于夏、秋两季,春、冬两季NO2污染网格贡献值为6~9 μg·m-3,夏、秋两季污染网格贡献值集中在5~7 μg·m-3.对于阿克达拉背景站点而言,NO2污染物总体浓度水平较低,揭示其NO2输送轨迹和污染源区,为区域大气污染联防联控提供重要参考.  相似文献   

11.
Atmospheric pollutants including SO2, NO2, CO, O3 and inhalable particulate matter (PM2.5 and PM10) were monitored continuously from March 2014 to February 2015 to investigate characteristics of air pollution at Lhasa, Tibetan Plateau. Species exhibited similar seasonal variations except O3, with the peaks in winter but low valleys in summer. The maximum O3 concentration was observed in spring, followed by summer, autumn, and winter. The positive correlation between O3 and PM10 in spring indicated similar sources of them, and was assumed to be turbulent transport. Temperature was the dominant meteorological factor for most species in spring. High temperature accelerates O3 photochemistry, and favors air disturbance which is conductive to dust resuspension in spring. Relative humidity (RH) and atmospheric pressure were the main meteorological factors in summer. RH showed negative correlations with species, while atmospheric pressure posed opposite situation. Wind speed (WS) was the dominant meteorological factor in autumn, the negative correlations between WS and species indicated diffusion by wind. Most species showed non-significant correlations with meteorological factors in winter, indicating the dependence of pollution on source emission rather than restriction by meteorology. Pollution weather character indicated that emissions were from biomass burning and dust suspension, and meteorological factors also played an important role. Air stream injection from the stratosphere was observed during O3 pollution period. Air parcels from Southwest Asia were observed during air pollution period in winter. An enhancement in air pollutants such as O3 would be expected in the future, more attention should be given to countermeasures for prevention of air pollution in the future.  相似文献   

12.
李沈鑫  邹滨  张凤英  刘宁  薛琛昊  刘婧 《环境科学》2022,43(10):4293-4304
针对地面站点监测数据难以支撑大气PM2.5与O3污染防控区边界划定的问题,融合大气污染浓度遥感估算建模与GIS统计分析模型,提出了一种基于PM2.5和O3浓度遥感估算结果的协同防控区精细划定方法,开展了2015~2020年月和年尺度的全国PM2.5与O3污染协同防控成效定量分析与防控区精细划定研究.结果表明,2015~2020年,我国PM2.5浓度总体下降显著但O3浓度基本持平,PM2.5污染在秋冬超标严重,O3污染则在春夏;同时PM2.5与O3浓度变化在空间上的不一致性显著,其中PM2.5下降且O3上升、PM2.5与O3均下降、PM2.5与O3均上升和PM2.5上升O3下降的面积占比分别为38.34%、35.12%、15.24%和10.89%.遥感精细划定范围显示,PM2.5和O3协同防控区域的边界具有显著动态变化特征,在时间变化上呈现先扩大后缩小的趋势,主体范围集中在"2+26"城市、汾渭平原、长三角北部和山东半岛.以PM2.5或O3单一防控为主的区域范围较为稳定,辽吉、鄂湘赣、成渝和塔克拉玛干沙漠-河西走廊区域需以PM2.5防控为主,珠三角、长三角和环渤海湾部分区域则应以O3防控为主.基于卫星遥感手段的PM2.5和O3协同防控区域边界精细划定方法可更好辅助国家PM2.5和O3协同防控策略制定需求.  相似文献   

13.
为了了解金属元素的污染特征和潜在来源,以及重金属元素的风险水平,本研究于2015年4月至2016年1月采集了厦门海沧区不同类型站点四季大气PM_(2.5)样品348份,用X射线荧光分析仪(XRF)测定了其中K、Ca、Na、Mg、Al、Zn、Cu、Fe、Ti、As、V、Mn、Ba、Co等14种金属元素的质量浓度.本研究分析了码头、生活区、工业区和背景区这4个类型站点PM_(2.5)中金属元素的时空分布特征,综合利用富集因子法和健康风险评价模型进行了金属元素的污染评价,并采用相关性分析、主成分分析和后向气团轨迹初步探讨了金属元素的来源.结果表明,采样期间厦门海沧区PM_(2.5)中14种金属元素总质量浓度在PM_(2.5)中的占比为5.4%~10.6%.金属元素总质量浓度的时空变化特征与PM_(2.5)的较为一致,均表现为春冬季浓度高于夏秋季,海润码头和新阳工业区高于海沧分局和市委党校.而夏季海润码头和海沧分局PM_(2.5)日均值超标率较高的现象,与海润码头作业以及风向有关.新阳工业区Zn的质量浓度最高,市委党校次之;海润码头V的质量浓度最高,夏季海沧分局易出现V的浓度高值;均说明污染源站点(新阳工业区和海润码头)排放的污染物对其附近站点的金属元素质量浓度产生了影响.K质量浓度冬季最高,As超标现象出现在冬季和春季,说明冬季生物质燃烧以及燃煤等燃烧排放对大气污染的影响较为严重.Cu、Zn、As、Co、Na和Mn在各站点的富集因子范围为67~8449,富集均较严重.非致癌重金属Zn、Cu、Mn风险值之和低于一般可接受的风险水平(1×10~(-6)a~(-1)),其中Mn对总风险值的贡献范围为74%~88%.综合相关性分析和主成分分析结果表明,厦门海沧区PM_(2.5)中金属元素主要来源于地面扬尘、机动车排放、燃煤和工业排放以及船舶排放,各来源分别可以解释变量的34.5%、12.5%、10.6%、7.8%.后向气团轨迹表明春、秋和冬季均受到局地气团的影响,而夏季气团运动相对较强;春冬季途经长三角内陆的气团可能导致PM_(2.5)浓度偏高.  相似文献   

14.
为了解我国不同气候背景城市O3污染及其与前体物的关系,选取北京市、沈阳市、银川市、成都市、南京市和广州市作为典型代表城市,基于这6个城市2014-2016年ρ(O3)、ρ(NO2)和ρ(CO)资料对O3与其前体物质量浓度变化特征及二者相关性进行研究.结果表明:①2014-2016年6个城市ρ(O3)年均值大小顺序依次为南京市>沈阳市>北京市>银川市>成都市>广州市,ρ(NO2)年均值大小顺序依次为北京市>成都市>南京市>沈阳市>广州市>银川市,ρ(CO)年均值大小顺序依次为北京市>银川市>成都市>沈阳市>南京市>广州市.2014-2016年除广州市ρ(O3)下降、沈阳市变化不明显外,其他城市ρ(O3)总体呈上升趋势;各城市ρ(NO2)和ρ(CO)普遍呈下降趋势.②广州市ρ(O3)夏季最高、春季最低,其他城市四季ρ(O3)大小顺序依次为夏季>春季>秋季>冬季;北京市、沈阳市和银川市四季ρ(NO2)和ρ(CO)大小顺序依次为冬季>秋季>春季>夏季,成都市、广州市和南京市为冬季>春季>秋季>夏季.各城市ρ(O3)和ρ(Ox)日变化呈单峰型,ρ(NO2)和ρ(CO)日变化呈双峰型.③6个城市城区ρ(O3)均低于清洁对照点,城区ρ(NO2)和ρ(CO)均高于清洁对照点,并且城区与清洁对照点O3及其前体物质量浓度差值随城市和月份变化存在一定的差异.④各城市ρ(O3)与ρ(NO2)和ρ(CO)均呈负相关,与ρ(Ox)呈显著正相关;城区ρ(O3)与ρ(NO2)和ρ(CO)的相关性均好于清洁对照点,清洁对照点ρ(O3)与ρ(Ox)的相关性则好于城区.⑤各城市ρ(O3)超标率随ρ(NO2)和ρ(CO)的增加均呈先迅速上升再快速减小,之后缓慢变化的特征,但ρ(O3)超标率峰值对应的ρ(NO2)和ρ(CO)有所差异.研究显示,日照条件较好的银川市、北京市和沈阳市O3与其前体物相关性较成都市、南京市和广州市强.   相似文献   

15.
2015—2016年中国城市臭氧浓度时空变化规律研究   总被引:4,自引:3,他引:1  
为探究中国大陆城市O3污染状况时空变化的总体特征,运用时空统计分析和GIS技术对2015—2016年全国开展O3常规监测的336个城市进行分析,揭示近两年O3浓度及不同等级污染天数的时空变化格局,并着重对比分析"三区十群"区域内外O3浓度的变化差异.结果表明:2015—2016年期间,全国336个城市中,有258个城市2016年年均O3浓度值较2015年升高,形成了新的O3污染空间格局;京津冀及周边地区、长三角地区、中部的河南、武汉污染较重,东南沿海和西南地区的云南、西藏污染相对较轻;长三角地区和山东城市群是中国O3核心污染区域,陕西、山西及安徽三省O3浓度较2015年有大幅升高.O3的空间分布与NOx排放量、生成控制型等因素密切相关.已有的研究区域中除华北平原和四川盆地等地区的郊区点位以外,我国大多数地区的O3生成控制型属于VOCs控制型.研究结果有利于从宏观上直接对比评估国家大气污染重点防控区内外O3污染特征变化的差异,从而针对性地开展环境污染防控.  相似文献   

16.
中国中东部地区的空气污染主要集中在京津冀、长三角、珠三角、东北地区及汾渭平原等区域,各区域的污染排放特征各异.本文应用基于CMAQ(The Community Multiscale Air Quality)模式的自适应"nudging"源反演方法,反演中国中东部地区2016年12月—2017年1月逐日NOx污染源,分析上述主要污染区的污染物排放强度空间分布特征,并与2016年MEIC(The Multi-resolution emission inventory for China)排放源进行比较,检验反演源的可靠性.结果表明,2016年冬季各个区域反演源NOx排放强度空间分布特征与2016年MEIC排放源基本一致.京津冀地区高强度排放区域形成沿山前区域东北-西南走向的NOx高强度排放带;长三角地区NOx高强度排放区域位于常州、苏州、上海和湖州等城市构成的城市群;珠三角地区NOx高强度排放区域位于以广州为中心的大范围城市群且排放强度呈现向四周逐渐降低的放射状分布;东北地区NOx高强度排放区域空间分布特征呈现以城市为中心且稀疏分布;汾渭平原排放区域呈现以城市为中心且向峡谷中间集中分布,排放区域轮廓与汾渭平原狭长的新月状相符.  相似文献   

17.
廊坊市大气污染特征与污染物排放源研究   总被引:2,自引:0,他引:2       下载免费PDF全文
通过廊坊市2014年12个监测站点的大气污染物监测数据,分析了廊坊市大气污染的主要特征,包括空气质量水平、大气污染的季节与空间分布.结果发现,虽然与2013年相比2014年空气质量有所改善,但12个站点空气质量超标均十分严重.秋季、冬季与春季PM_(2.5)为主要的空气污染物,夏季O3日最大8 h平均浓度频繁超标,需要引起重视.为实现廊坊市空气质量模拟,制定最优空气质量改善政策,基于污染源普查、环境统计数据,编制了廊坊市主要大气污染物排放清单.工业部门中,电力、热力生产和供应业、黑色金属冶炼及压延加工业是SO_2、NO_x和PM_(2.5)的重要来源.VOCs则主要来自于化学原料和化学制品制造业、黑色金属冶炼及压延加工业、食品制造业.另外,廊坊全市道路扬尘和建筑施工扬尘污染贡献了PM2.5的38.6%,但扬尘的管理十分薄弱.同时结果表明,廊坊市黄标车排放在交通源排放中比重较高.因此,需要对上述重点排放源进行有效控制,从而改善廊坊市空气质量.  相似文献   

18.
短期减排是我国城市应对大气污染事件的重要应急管控手段,但短期减排的效益尚未得到完善分析.2022年3月14~20日,广东省深圳市为抑制新冠疫情传播实施了全市管控,为评估短期减排对华南城市春季空气质量的影响提供独特机会.结合深圳市高精度环境空气质量监测与气象观测等多源数据,分析了深圳市管控期间前后的空气质量变化.此次管控前和管控期中均有部分日期天气形势静稳,局地污染水平主要反映本地排放,有利于分析本地减排的影响.观测与WRF-GC区域化学模拟都表明,与珠三角周边城市相比,深圳市管控期间由于市内交通源排放显著减少,深圳市二氧化氮(NO2)浓度降低(-26±9.5)%,可吸入颗粒物(PM10)浓度降低(-28±6.4)%,细颗粒物(PM2.5)浓度降低(-20±8.2)%,但臭氧(O3)浓度无显著变化[(-1.0±6.5)%].TROPOMI卫星观测的甲醛和二氧化氮柱浓度数据对比表明,2022年春季珠三角臭氧光化学主要受挥发性有机物(VOCs)浓度控制,对氮氧化物浓度降低不敏感,反而可能因氮氧化物对臭氧滴...  相似文献   

19.
一年内分季节对重庆市不同功能区大气中二英(PCDD/Fs)污染情况进行了监测研究.结果表明,重庆市大气中PCDD/Fs浓度范围和平均值(以TEQ计)分别为0.017~0.21 pg·m-3和(0.094±0.054)pg·m-3.PCDD/Fs污染水平区域分布和季节变化明显,分别为:商住区>郊区>对照点,冬季>春季>秋季>夏季.其中,冬季时大气中的二英浓度约为夏季时的2.2~4.6倍.主成分分析结果显示,PCDD/Fs同系物分布特征季节变化明显:冬、春季时主要表现为颗粒相中的分布特征,夏、秋季节则主要表现为气相中的.相关性分析表明,PCDD/Fs异构体质量浓度与SO2、NO2、PM10和TSP等常规参数含量大都呈显著正相关,与O3则呈负相关,但未达显著性水平.这表明,重庆大气PCDD/Fs的空间分布和季节变化与SO2、NO2、PM10和TSP等环境空气质量常规指标的分布情况基本一致,重庆大气PCDD/Fs污染与常规污染物的排放源密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号