首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
于2020年秋季对台州不同功能区大气中挥发性有机物(VOCs)进行在线监测,分析了VOCs浓度水平和组成特征;利用O3生成潜势(OFP)评估了VOCs对O3污染的影响;运用正定矩阵因子分解模型(PMF)解析VOCs的主要来源。结果表明,台州5个监测站点总挥发性有机物(TVOC)体积分数日均值在30.0×10-9~52.9×10-9,均以烷烃和含氧挥发性有机物(OVOCs)为主;VOCs来源主要包括机动车尾气源、工业排放源、燃烧源、油品挥发源、溶剂使用源和植物源,其对VOCs的贡献率分别为27.42%、19.37%、17.36%、17.25%、11.18%、7.41%,其中城区和郊区机动车尾气源的贡献最大,而工业园区则是工业排放源贡献最大;对OFP贡献最大的源类是溶剂使用源(贡献率31.12%),其次是工业排放源、机动车尾气源、油品挥发源、燃烧源,贡献率分别为20.69%、16.37%、15.70%、10.99%,植物源对OFP贡献率最低,仅为5.13%。台州城区和郊区需重点关注溶剂使用源管控,工业园...  相似文献   

2.
为探究珠三角典型地区挥发性有机化合物(VOCs)及其化学反应活性的季节变化特征,于2016年在广东大气超级监测站,开展四季VOCs、NO x、O3和PM2.5的连续观测,共获得2142组有效数据.结果表明:(1)VOCs、羟基自由基消耗速率(LOH)、O3生成潜势(OFP)和二次气溶胶生成潜势(SOAFP)均具有明显季...  相似文献   

3.
为了解上海城郊大气中挥发性有机物(VOCs)的时空污染特征及其对人体潜在健康风险,选取上海某城郊10个点位进行连续6年(2012—2017年)的采样分析。结果表明,上海该城郊大气VOCs平均质量浓度为(243.80±151.52)μg/m3,其中烷烃、卤代烃、芳香烃、含氧VOCs和不饱和脂肪烃依次占VOCs总浓度的45.72%、20.04%、18.84%、11.19%、4.21%。上海郊区不同功能区VOCs总浓度年际变化趋势较为一致,总体呈下降趋势;在空间上,化工区主干道路附近的两采样点VOCs质量浓度最高,分别为307.81、340.97μg/m~3。O3生成潜势和等效丙烯浓度计算结果显示,芳香烃为上海城郊大气中最主要的活性物种,且关键活性组分为甲苯、间/对-二甲苯和异丁烷等。上海城郊大气中27种风险VOCs的总致癌风险值为3.02×10~(-4),高于可接受限值(1.00×10~(-4)),长期暴露可能有致癌风险。  相似文献   

4.
对天津市滨海新区夏季挥发性有机物(VOCs)进行在线观测,分析其夏季污染特征。结果表明:83种检出VOCs平均质量浓度为288.14μg/m3,各类化合物浓度贡献排序为烷烃(39.8%)卤代链烃(26.5%)芳香烃(13.9%)烯烃(13.1%)炔烃(4.4%)卤代芳香烃(2.3%),各组分中浓度最高的为正丁烷和正戊烷,占VOCs比例高达8.1%和7.0%;苯和甲苯也有相当含量,平均质量浓度均超过7μg/m3,分别占VOCs的2.5%和2.4%。天津市滨海新区VOCs日变化呈单谷型,与交通早晚高峰关系不大,苯/甲苯(体积比)为1.32,说明化石工业排放等对天津市滨海新区大气中VOCs影响较机动车尾气显著。聚类分析发现,天津市滨海新区VOCs来源分为3类,一类是汽油挥发和液化石油气、天然气泄漏,一类是化石工业和其他工业生产过程排放,一类是机动车尾气及植物排放,其中前两类为主要来源。  相似文献   

5.
对青岛市重点工业行业橡胶制造业、塑料制造业、化学品制造业、涂料制造业、石油加工业、金属制品业、制鞋业、包装印刷业、铁路船舶制造业、汽车制造业的挥发性有机物(VOCs)排放浓度开展了调研,探讨了其对二次污染物O3和二次有机气溶胶生成的贡献,并评价了非致癌风险。结果表明,青岛市各重点工业行业排放VOCs浓度总体较低,石油加工业和化学品制造业VOCs排放浓度占比较大,而金属制品业、铁路船舶制造业、汽车制造业等行业排放的废气VOCs对二次污染物生成的贡献较高。化学品制造业、包装印刷业和汽车制造业排放的废气VOCs的非致癌风险总和略超过了风险阈值1,主要是由芳香烃类引起的,普通人群不会直接接触工业行业排放的废气,基本处于安全水平,一线工人可能存在一定潜在危害,应加强防护。对工业企业进行VOCs治理,除控制排放总量外,更应该针对行业类型、VOCs来源及组分进行有的放矢的管控。  相似文献   

6.
对嘉兴市2013—2017年的大气污染特征进行了分析,同时研究了区域传输对其PM_(2.5)、PM_(10)、NO_2和SO_2的影响和嘉兴市O_3生成的主要原因。结果表明,自2013年以来嘉兴市PM2.5逐年下降,重度污染及以上天数逐年减少,环境空气质量总体呈逐年好转趋势。截至2017年,PM_(10)、NO_2、SO_2和CO均已达到《环境空气质量标准》(GB 3095—2012)二级标准,但PM_(2.5)和O_3仍未达标。2017年,周边地区(苏州市、湖州市、上海市、杭州市、绍兴市和宁波市)对嘉兴市PM_(2.5)、PM_(10)、NO_2和SO_2的传输贡献分别为36.2%、31.9%、25.6%、26.7%,季节差异较大,建议根据区域传输的季节性变化,制定针对性的联防联控措施。嘉兴市O3污染主要受挥发性有机物(VOCs)控制,应重点控制VOCs排放,辅以控制NO_x排放。  相似文献   

7.
利用2015—2017年西安城区4个环境空气质量监测自动站的O_3和NO_x观测数据及2015年夏秋季挥发性有机物(VOCs)的观测数据,分析了O_3和NO_x周末效应的季节差异及其产生原因。结果表明,西安城区春季、夏季和秋季存在O_3周末大于工作日而NO_x周末小于工作日的周末效应,且夏季和秋季在p0.05的水平下差异显著;冬季出现了O_3工作日大于周末而NO_x工作日小于周末的周末效应,但在p0.05的水平下差异并不显著。在不考虑平流层垂直输送的情况下,近地面O_3的产生取决于NO_x和VOCs前体物的共同光解速度。西安城区属于VOCs敏感区,周末机动车出行数量下降造成NO_x排放减少使NO对O_3的抑制效应减弱,这是西安城区夏秋季周末效应的主要原因。  相似文献   

8.
利用天津市某交通居民混合区(以下简称混合区)和某废旧机电拆解加工工业区(以下简称工业区)的大气挥发性有机物(VOCs)在线监测数据,分析了天津市不同功能区大气VOCs的浓度水平、组成特征、季节变化和污染来源。结果表明,混合区监测的烷烃、不饱和脂肪烃和芳香烃3类VOCs的质量浓度分别为48.26、15.34、34.45μg/m3,总VOCs质量浓度为98.05μg/m3;工业区监测的烷烃、不饱和脂肪烃、芳香烃、卤代烷烃、卤代烯烃和卤代芳香烃6类VOCs的质量浓度分别为18.79、10.76、9.41、43.24、12.86、2.16μg/m3,总VOCs质量浓度为97.22μg/m3。混合区和工业区的大气VOCs浓度均为夏季最高,但混合区秋季次高,冬季最低,而工业区冬季次高,春季最低。混合区VOCs主要来源于机动车尾气排放和化石燃料的燃烧;工业区VOCs主要来源于有机溶剂和氟利昂等制冷剂、发泡剂的挥发。  相似文献   

9.
天津市秋季臭氧浓度影响因素及相关关系研究   总被引:2,自引:1,他引:2  
选择天津市秋季典型重污染时期2005年11月2~7日近地面大气O3、NO、NO2、CO、紫外线(UV)强度和温度等观测数据,研究O3浓度的时间变化特征及其与相关前体物、气象条件的相关关系.结果表明,在观测期间O3浓度存在明显的日变化周期,在13:00~14:00时浓度最大,夜间变化平缓;O3浓度与NO、NO2、NOx和CO等前体物呈较好的负相关关系;温度和UV与O3浓度密切相关,昼间O3与UV呈相同变化趋势,相关系数达0.71,O3浓度变化滞后于UV变化,将O3浓度与前1小时的UV对比分析,相关系数提高到0.81.  相似文献   

10.
采用O3、H2O2/O3及UV/O3等高级氧化技术(AOPs)对某焦化公司的生化出水进行深度处理,考察了O3与废水的接触时间、溶液pH、反应温度等因素对废水COD去除率的影响,确定出O3氧化反应的最佳工艺参数为:接触时间40min,溶液pH8.5,反应温度25℃,此条件下废水COD及UV254的去除率最高可达47.14%和73.47%;H2O2/O3及UV/O3两种组合工艺对焦化废水COD及UV254的去除率均有一定程度的提高,但H2O2/O3系统的运行效果取决于H2O2的投加量。研究结论表明,单纯采用COD作为评价指标,并不能准确反映出O3系列AOPs对焦化废水中有机污染物的降解作用。  相似文献   

11.
Jo WK  Park JH 《Chemosphere》2005,59(11):1557-1573
The present study performed a roadside data analysis to provide baseline data for exploring associations between environmental exposure to four gaseous pollutants and health effects on residents living near roadways. The yearly roadside concentrations of CO and SO2 showed a well-defined decreasing trend, whereas those of NO2 and O3 exhibited the reverse trend. In most cases, the diurnal trends of the roadside concentrations were well-defined for all seasons, plus the daytime concentrations were higher than the nighttime concentrations. In contrast to the other target pollutants, the daytime O3 concentrations observed at the roadside sites were lower than those observed at the residential site, likely due to high-levels of fresh NO from traffic emissions that rapidly react with O3, thereby reducing the O3 roadside level. The Sunday roadside concentrations of CO, NO2, and SO2 were similar to or somewhat lower than the weekday concentrations. Conversely, for O3, the Sunday roadside concentrations were similar to or somewhat higher than the weekday concentrations. The higher O3 concentrations on Sunday may be due to the reduced titration from a decrease in NOx emissions under VOC-limited conditions (low VOC/NOx conditions). The monthly averages of O3 concentrations exhibited the reverse seasonal variation to the other target compounds, with peak O3 concentrations between April and June, and the second peak between August and October. It is also suggested that for O3, the 8-h standard is more stringent than the 1-h standard, while for NO2 and SO2, the 1-h standard is more stringent than the 24-h standard. The multiple regression equations obtained from the relationship between the concentrations and five meteorological parameters indicated that the number and type of meteorological variables in the equations varied according to the pollutant, monitoring station, or season.  相似文献   

12.
Keiji Abe  Keiichi Tanaka 《Chemosphere》1997,35(12):2837-2847
Mono-, di- and trichlorophenol including different isomers were degraded by O3, O3 + UV and O3 + UV + Fe3+. Disappearance rates are nearly identical among three ozonations. Whereas TOC elimination was not completed by ozone alone. UV illumination accelerated TOC elimination rate and the addition of Fe3+ (O3 + UV + Fe3+) further accelerated it. TOC elimination rates among different chlorophenols were in the order of mono > di > tri. The effect of Fe3+ was largest on the degradation of trichlorophenol. Hydroxylated aromatics, organic acids, formaldehyde and acetone were detected as intermediates.  相似文献   

13.
对使用溶剂型油墨的凹版印刷设备和使用水性油墨的柔版印刷设备无组织排放的挥发性有机物(VOCs)浓度进行了实际监测,并采用计算流体动力学模拟无组织排放VOCs的收集效率。结果表明:(1)使用溶剂型油墨的凹版连续印刷过程非甲烷总烃(NMHC)最高均值达到5 975.67 mg/m3,约为使用水性油墨的柔版印刷(191.67 mg/m3)的31.2倍。虽然使用水性油墨可明显降低NMHC的排放,但其操作空间的浓度依然存在超过《工作场所有害因素职业接触限值第1部分:化学有害因素》(GBZ 2.1—2019)的现象。(2)印刷车间应该设置专门的调墨室,能缓解印刷车间内挥发性污染气体浓度的波动。(3)计算流体动力学模拟显示,设置合理的集气罩可有效降低VOCs的无组织排放,收集效率为70%~75%。  相似文献   

14.
In the present paper we investigated the effects of sub-lethal concentrations of Cu2+ in the growth and metabolism of Scenedesmus incrassatulus. We found that the effect of Cu2+ on growth, photosynthetic pigments (chlorophylls and carotenoids) and metabolism do not follow the same pattern. Photosynthesis was more sensitive than respiration. The analysis of chlorophyll a fluorescence transient shows that the effect of sub-lethal Cu2+ concentration in vivo, causes a reduction of the active PSII reaction centers and the primary charge separation, decreasing the quantum yield of PSII, the electron transport rate and the photosynthetic O2 evolution. The order of sensitivity found was: Growth > photosynthetic pigments content = photosynthetic O2 evolution > photosynthetic electron transport > respiration. The uncoupled relationship between growth and metabolism is discussed.  相似文献   

15.
Haggi E  Bertolotti S  García NA 《Chemosphere》2004,55(11):1501-1507
The aerobic visible-light-photosensitised irradiation of methanolic solutions of either of the phenolic-type contaminants model compounds (ArOH) p-phenylphenol (PP), p-nitrophenol (NP) and phenol (Ph), and for two additional phenolic derivatives, namely p-chlorophenol (ClP) and p-methoxyphenol (MeOP), used in some experiments, was carried out. Employing the natural pigment riboflavin (Rf) as a sensitiser, the degradation of both the ArOH and the very sensitiser was observed. A complex mechanism, common for all the ArOH studied, operates. It involves superoxide radical anion (O2√−) and singlet molecular oxygen (O2(1Δg)) reactions. Maintaining Rf in sensitising concentrations levels (≈0.02 mM), the mechanism is highly dependent on the concentration of the ArOH. Kinetic experiments of oxygen and substrate consumption, static fluorescence, laser flash photolysis and time-resolved phosophorescence detection of O2(1Δg) demonstrate that at ArOH concentrations in the order of 10 mM, no chemical transformation occurs due to the complete quenching of Rf singlet excited state. When ArOH is present in concentrations in the order of mM or lower, O2√− is generated from the corresponding Rf radical anion, which is produced by electron transfer reaction from the ArOH to triplet excited Rf. The determined reaction rate constants for this step show a fairly good correlation with the electron-donor capabilities for Ph, PP, NP, ClP and MeOP. In this context, the main oxidative species is O2√−, since O2(1Δg) is quenched in an exclusive physical fashion by the ArOH. The production of O2√− regenerates Rf impeding the total degradation of the sensitiser. This kinetic scheme could partially model the fate of ArOH in aquatic media containing natural photosensitisers, under environmental conditions.  相似文献   

16.
Continuous on-site measurements of 50 speciated volatile organic compounds (VOCs) were conducted in downtown Guangzhou to characterize the sources and concentration profiles of ambient VOCs. The synchronicity in diurnal variation between the VOCs and NO suggests that traffic emissions were responsible for the observed VOCs in downtown Guangzhou.It was found that the three major constituent species of liquefied petroleum gas (LPG), i.e., propane, iso-butane, and n-butane, together termed LPG alkanes, contributed, on average, 24% of the total VOCs (TVOCs). Their high correlation and synchronized diurnal variations between NO and the LPG alkanes suggest that their origin lies in LPG fueled car exhaust in Guangzhou. LPG buses and taxis were likely to be responsible for the bulk of ambient LPG species. Using propane and 3-methyl pentane (3MC5A) as the indicators for the LPG and gasoline emissions, respectively, the emissions of the LPG fleet were found to increase more than those of the gasoline fleet during the morning and evening rush hours, as well the noontime break in downtown Guangzhou.Although LPG alkanes account for 24% of the TVOC, their contribution to the total ozone forming potential (OFP) is only about 7%. Ethylene and propylene contribute about 26% to the total OFP despite their lower contribution of 16% to the TVOC.  相似文献   

17.
Twenty-five volatile organic compounds (VOCs) up to C10 were measured using Carbotrap multibed thermal adsorption tubes during the morning and afternoon rush hours on four different days in all three traffic tunnels in Kaohsiung, Taiwan. A gas chromatograph (GC) equipped with a flame-ionization detector (FID) was then used to analyze the VOCs. The analytical results show that VOC concentrations increase with traffic flow rate, and emission profiles in the three tunnels are mostly in the range C2-C6. In addition to the traffic conditions and vehicle type, the pattern of emissions in each tunnel was also influenced by other factors, such as vehicle age, nearby pollution sources, and the spatial or temporal variation of VOCs in the urban atmosphere. The ozone formation potential (OFP) in each tunnel was assessed based on the maximum incremental reactivities of the organic species, demonstrating that OFP increases with traffic flow rate. Vehicle distribution influences the contributions of organic group to OFP in a tunnel. Meanwhile, when ranked in descending order of contribution to OFP in all tunnels, the organic groups followed the sequence olefins, aromatics, and paraffins.  相似文献   

18.
VOC concentration characteristics in Southern Taiwan   总被引:7,自引:0,他引:7  
Hsieh CC  Tsai JH 《Chemosphere》2003,50(4):545-556
The field investigations were conducted at four air quality monitoring sites in Southern Taiwan during northeasterly prevailing monsoon to collect 160 data sets on volatile organic compounds (VOCs) to evaluate the ozone formation potential (OFP) of the air mass. The gas chromatograph and high performance liquid chromatography analyzed 58 VOCs and two aldehydes, respectively. Among the four sampling sites, the order of the five VOC classes based on the reactivity approach was different from the concentration-based method. Alkenes as well as aromatics provided a major contribution for the OFP. The relative ranking of the species at the four sites were quite dissimilar. Toluene was the most in abundance at each site. The most abundant species at the windward and leeward sites was different. The reactivity of the air mass at the leeward sites showed a similar pattern and had higher reactivity than the windward sites. Comparisons of the two ratios, xylene/benzene and toluene/benzene were used to assess the relative age of the air parcels and provide evidence of transport.  相似文献   

19.
Sampling and analysis of ambient dioxins in northern Taiwan   总被引:2,自引:0,他引:2  
Chang MB  Weng YM  Lee TY  Chen YW  Chang SH  Chi KH 《Chemosphere》2003,51(10):1103-1110
In this study, ambient air samples were taken concurrently in the vicinity area of a large-scale municipal waste incinerator (MWI) and the background area for measuring polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) concentrations from November 1999 through July 2000 in northern Taiwan. The results obtained from eighteen ambient air samples indicate that the mean PCDD/F concentration of seventeen 2,3,7,8-substituted congeners in wintertime (188–348 fg-I-TEQ/m3) is significantly higher than that measured in summertime (56–166 fg-I-TEQ/m3). In addition, the seasonal PCDD/F concentrations are compared with the ambient air quality data including CO, NO2, PM10 and TSP sampled from Taipei area to gain better insights. It indicates that the variation of ambient air PCDD/F concentrations is closely correlated with that of PM10 concentrations. Besides, the results indicate that the I-TEQ concentration of ambient air in sampling site B (directly downwind of the MWI) is of the highest while the sampling site A (upwind of MWI) is of the lowest among all sampling sites. This implies that existing MWI can be a significant emitter of PCDD/Fs in this area. Furthermore, the patterns of the PCDD/F congener distribution at all sampling sites (including the background site in Taoyuan) are quite similar. OCDD concentration is of the highest among seventeen PCDD/F congeners investigated and accounts for about 35% of the total concentration. As for the I-TEQ concentrations, 2,3,4,7,8-PeCDF is the most significant contributor, generally being responsible for 30–45% of the total I-TEQ values depending on the sampling sites and seasons.  相似文献   

20.
Iturbe R  Flores C  Flores RM  Torres LG 《Chemosphere》2005,61(11):1618-1631
Many oil industry related sites have become contaminated due to the activities characteristic of this industry, such as oil exploration and production, refining, and petro-chemistry. In Mexico, reported hydrocarbon spills for the year 2000 amounted to 185 203, equivalent to 6252 tons (PEMEX, 2000). The first step for the remediation of these polluted sites is to assess the size and intensity of the oil contamination affecting the subsoil and groundwater, followed by a health risk assessment to establish clean up levels. The aim of this work was to characterize the soil and water in a north-central Mexico Oil Storage and Distribution Station (ODSS), in terms of TPHs, gasoline and diesel fractions, BTEX, PAHs, MTBE, and some metals. Besides, measurements of the explosivity index along the ODSS were made and we describe and discuss the risk health assessment analysis performed at the ODSS, as well as the recommendations arising from it. Considering soils with TPH concentrations higher than 2000 mg kg−1, the contaminated areas corresponding to the railway zone is about 12 776.5 m2, to the south of the storage tanks is about 6558 m2, and to the south of the filling tanks is about 783 m2. Total area to be treated is about 20 107 m2 (volume of 20 107 m3), considering 1 m depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号