首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文章通过利用2013年12月和2014年10月在珠三角开展大气边界层观测试验得到的垂直温度探空资料和逐日空气质量资料,从逆温层和低空稳定能量等角度研究了珠三角干季边界层垂直温度结构对空气质量的影响。结果表明:珠三角处于冷空气前影响时,较弱的气团活动有利于低空逆温层的持续存在和贴地逆温的发展,珠三角污染日逆温层高度主要分布在0~1 000 m之间。其中贴地逆温出现频率约为35%,低空逆温层尤其是夜间频繁出现的贴地逆温使得污染物累计在近地面气层内,对珠三角空气质量有重要影响。低空稳定能量(E_w)能够较好地反映珠三角大气垂直扩散能力,珠三角AQI与500~800 m处气层稳定能量相关性较好,说明500~800 m气层是影响珠三角空气质量的关键气层,当珠三角该层稳定能量15 J/cm~2时,大气垂直扩散能力较弱,珠三角空气质量恶化的可能性较高。  相似文献   

2.
低空大气逆温及地面风速是影响空气质量变化的主要气象条件,特别是逆温的频率、强度制约着大气污染物聚积和扩散。定义了1km以下低空大气的温度层结强度。利用昆明L波段探空雷达加密数据,统计了2014—2018年08 h探空数据温度层结特征,分析了逆温的频率、强度和地面风速等气象要素与空气质量的相关性,建立基于Logistic判别方法的昆明空气质量指数和PM_(2.5)浓度的拟合模型。结果显示:基于定义的温度层结强度的统计,昆明1km以下低空大气整层的逆温发生频率10.7%,年平均强度0.13℃·(100m)~(-1),逆温的频率和强度月变化曲线与轻度污染及PM_(2.5)浓度的变化联系密切;温度层结强度和地面风速通过了α=0.05的相关系数显著性检验,与空气质量指数和PM_(2.5)浓度相关性好,最佳的气象要素因子的相关系数可达到0.3660;Logistic判别模型对轻度污染的拟合准确率在66.3%以上,优良空气的拟合准确率在72.5%以上;对PM_(2.5)浓度超标的拟合准确率在59.9%以上,PM_(2.5)一级浓度的拟合准确率在68.8%以上。  相似文献   

3.
雾、霾影响空气质量,特定气象条件有利于雾、霾形成。利用南京大学仙林综合观测基地的近地层湍流资料以及MICAPS气象资料,分析了2011年11月18日南京一次大雾过程的边界层特征。结果表明,大雾发生前后南京处于高空低压槽前,西南暖湿气流向南京地区输送充足的水汽,而近地面主要受到低压倒槽的控制,使得近地层相对湿度一直在90%以上。边界层上空(约300~500 m)存在很强很厚的逆温层,近地层动量通量几乎为0,感热通量也几乎为0,表明大雾期间南京地区大气一直处于稳定的边界层中,近地层湍流很微弱,有利于大雾的形成和维持。能谱分析表明,能谱高频段满足-2/3率,但中低频率部分可能由于非均匀下垫面地形的影响,分布比较杂乱。  相似文献   

4.
研究了广州城区的低空逆温特征,并分析其对空气质量的影响,发现广州城区全年均有低空逆温出现,低空逆温平均时长为4.4 h,干季低空逆温出现天数和平均时长均高湿季约50%,干季低空逆温使温度垂直递减率更小。低空逆温呈现一强一弱的双峰型日变化特征,干季双峰型更为明显,峰值主要集中在午后前后和清晨,湿季低空逆温出现高峰的时间早于干季,且出现的频次更为集中在夜间。干季出现逆温时对大气扩散条件影响更大,污染物浓度更容易累积。广州市AQI超标时有超过50%的天数同时出现了低空逆温,其中干季NO_2和PM_(2.5)浓度变化对低空逆温更为敏感,干季出现低空逆温时,NO_2和PM_(2.5)浓度显著上升。  相似文献   

5.
针对春节期间燃放烟花爆竹易加剧空气污染的现实问题,该文利用2014年1-2月逐日空气质量指数(AQI)和相应时段的基本气象数据以及NCEP/NCAR再分析资料,探析了2014年春节前后陕西关中地区一次重污染天气的气象条件。主要结论如下:该次重污染过程于1月25日开始,2月5日结束,持续12 d,关中地区平均出现重度污染和严重污染各4 d,污染最严重时该区各市的AQI除了铜川外均在400以上,AQI最高值出现在1月31日的渭南,达484。究其气象成因发现,春节前的持续性高空平直纬向气流控制关中地区,地面处于两高压之间过渡区或低压区,形成非常不利于污染物扩散的环流形势场;对应低层925 h Pa存在中心值为-2×10~(-5)s~(-1)的弱辐合区,加之近地面的弱下沉气流,导致大气垂直交换差,是造成污染物堆积的直接边界层动力条件;较低的大气边界层混合高度和最大4.6~℃/100 m的贴地逆温是造成污染物积累的重要层结稳定条件。后向轨迹分析表明,该次重污染过程的污染物来源以本地排放为主,节日期间大量烟花爆竹的燃放起到了雪上加霜的作用,使得空气污染进一步加重。春节后的寒潮过境,最大风速超过10 m/s的冷空气侵入,破坏了边界层静稳天气形势,使得大气扩散能力迅速增强,对当地空气质量迅速转好起到关键性作用。  相似文献   

6.
乌鲁木齐市冬季典型污染事件气象过程分析   总被引:2,自引:0,他引:2  
采用数值模拟与观测资料相结合的方式,对乌鲁木齐市2008年1月10—15日的冬季典型重污染气象过程进行了分析.结果表明:乌鲁木齐市存在严重污染且与当地气象条件密切相关,其ρ(PM10)峰值往往对应近地面风场风向转变和低风速情况.边界层及上层大气持续存在的强稳定层结是影响乌鲁木齐市近地面空气ρ(PM10)变化的重要因素.天山山脉、乌鲁木齐河谷、准噶尔盆地及吐鲁番盆地间形成的山谷风局地环流配合辐射逆温,是形成乌鲁木齐市夜间深厚逆温的重要原因.深厚的夜间逆温在减少污染物向上扩散的同时也大大降低了上下动量的交换,造成地面静风频率的增加,减少了大气污染物平流输送的能力.   相似文献   

7.
北京夏季灰霾天臭氧近地层垂直分布与边界层结构分析   总被引:8,自引:3,他引:5  
后奥运时期首都北京的空气质量被更加关注,尤其是对于灰霾天与光化学复合污染的状况,而近地层数百米高度内的大气污染物与大气物理参数垂直分布观测对于空气质量变化过程评估至关重要.因此,本研究于2009年8月1-16日,在北京市325 m气象塔进行了相应的立体观测,观测平台垂直分布在距离地面高度8、47、120和280 m四层中.同时,在近地面320 m高度以内,分15层分别观测了大气温度、湿度、风速、风向.另外,使用气溶胶后向散射云高仪观测了边界层2.5 km内气溶胶后向散射系数.利用垂直分层的O3数据与边界层物理观测数据并结合天气形势、后向轨迹模式等方法,综合分析了本次观测数据之间的相互关系和内在联系.结果表明:夏季西北部低压槽控制的北京区域不利于低空大气扩散,容易形成光化学污染叠加灰霾污染,污染形成时白天地面小时最大φ(O3)可达120×10-9,280 m高度处可达155×10-9;来自西北偏西的气流一般较为干净,有利于北京污染物的清除,而来自西南和偏南的气流使北京的O3污染加重,导致区域性高浓度O3污染;在稳定天气条件下,夜间残留层与地面的φ(O3)差别越大,次日光化学生成的φ(O3)起点越高,表明残留层O3在次日混合层抬升过程中卷夹到地面,影响地面空气质量;300 m以内的近地层,在50 m高度左右存在φ(O3)变化程度剧烈层,这是城市冠层界面与大气化学反应共同作用的结果.  相似文献   

8.
基于无人机探空和数值模拟天津一次重污染过程分析   总被引:4,自引:4,他引:0  
污染发生在边界层中,边界层热力和动力垂直结构对重污染天气形成有显著影响.本文基于无人机探空、地基遥感观测和数值模式,开展天津地区2019年1月10~15日重污染过程期间边界层垂直结构及污染成因分析,以期加强北方沿海城市边界层过程对重污染影响规律认知,提升重污染天气预报预警准确率.结果表明:大气温度层结对重污染天气形成、持续和消散有显著影响,此次过程伴随逆温层的发展和消散,PM2.5高浓度区白天向大气上层发展,高度可达300 m以上,夜间向近地面压缩,高度在100 m左右;雾天气出现并在白天维持,改变了边界层垂直结构特征,雾顶逆温的持续存在抑制了污染物向大气上层扩散,使得白天湍流垂直混合过程贡献明显下降,导致近地面重污染天气维持和发展;过程期间区域输送贡献率为66.6%,边界层垂直结构与重污染天气区域输送密切相关,区域污染物输送高度主要出现在边界层顶部以及雾顶逆温层以上的大风速层处,且随着边界层和雾顶抬升高度的变化,通过下沉运动影响地面,形成北部弱高压天气控制下静稳天气区域输送;边界层垂直结构影响冷空气对空气质量的改善效果,S3阶段雾顶的强逆温导致冷空气无法通过湍流切应力传导到地面,在高低空存在明显的风速差,冷空气影响地面时间延后,作用减弱,重污染天气无法彻底缓解.  相似文献   

9.
利用常规气象观测资料、空气质量监测资料、再分析资料和数值模式资料,分析了2014年2月20-26日京津冀地区持续重污染天气过程的环流背景、气象要素特征、静稳天气条件和传输条件.结果表明:2月20-26日,亚洲东部受弱高压脊控制,京津冀及周边地区位于地面高压后部,等压线较为稀疏,气压梯度小,造成地面风速较小;与此同时,混合层高度低,通风系数小和逆温存在,构成重污染天气出现和维持的气象条件,均不利于大气中污染物和水汽的垂直和水平扩散.静稳天气指数对于重污染天气有一定的指示意义,高静稳天气指数通常对应高PM2.5浓度,且二者变化趋势一致性高;2月20-26日静稳天气指数总体上大于2014年1-3月其他几次污染过程,且在高位长时间维持,造成此次污染过程更严重.此外,传输条件也是京津冀重污染天气的主要成因:地面高压西侧的偏南或偏东气流有助于污染物和水汽向京津冀地区输送和聚集,使能见度进一步降低、污染物浓度进一步升高.  相似文献   

10.
利用高时空分辨率的ERA-Interim资料,结合环保局空气质量监测数据,分析了1000 m以下低层大气扩散能力和大气层结条件对浙江省大气环境质量的可能影响.结果表明:浙江省700 m以下的大气扩散能力对全省大部地区的空气质量有明显影响,部分地区700~1000 m的大气扩散能力对空气质量也有一定的影响.但位于沿海的舟山,仅300 m以下的大气扩散能力对空气质量有显著的影响.将低层大气扩散能力分别与逆温层高度、空气质量做相关性分析,结果显示通过显著性检验的影响区域和影响高度有很好的一致性,说明三者之间存在密切的联系.逆温层高度越低,低层大气扩散能力越弱,空气质量越差,严重污染天气出现时常常伴随着强度较强或贴近地面的逆温发生.浙江省大气层结大部分时间处于中性状态,当大气层结转为较稳定时,污染物不易扩散稀释,空气污染较易发生.  相似文献   

11.
利用常规地面气象和探空资料、ERA-interim再分析资料、以及全国PM2.5浓度数据,针对2015年3月7~11日一次冷空气南下的锋面天气过程中,我国华北、华东地区出现的大范围空气污染,开展了高空各层天气形势分析,以及本次过程中污染区域由北至南6个城市(北京、章丘、郑州、南阳、武汉、长沙)边界层气象要素的垂直结构及其时空演变特征的研究.结果表明:在污染前期(3月7~8日)中高纬度500hPa平直的纬向环流和地面均压场,为污染天气的发生和维持以及空气污染物的集聚提供了有利的环流场.污染中期(3月8~10日)冷空气南下,地面冷高压向华东地区移动,重污染区域随冷高压前部的弱低压场或均压场由北向南移动.伴随着天气系统移动,六个地面观测站的边界层特征在时空上表现出相似性,由北向南各站在污染期间先后出现多层逆温,风速较小,逆温层下相对湿度较大.此次多层逆温的形成是由于夜间近地面辐射冷却、冷锋移动过程中产生的锋面逆温以及边界层以上的下沉运动造成的.本研究揭示了在天气系统移动中,位于天气系统相同部位站点的边界层结构具有共同的特征,及其与空气污染的关系.  相似文献   

12.
利用常规地面气象和探空资料、ERA-interim再分析资料、以及全国PM2.5浓度数据,针对2015年3月7~11日一次冷空气南下的锋面天气过程中,我国华北、华东地区出现的大范围空气污染,开展了高空各层天气形势分析,以及本次过程中污染区域由北至南6个城市(北京、章丘、郑州、南阳、武汉、长沙)边界层气象要素的垂直结构及其时空演变特征的研究.结果表明:在污染前期(3月7~8日)中高纬度500hPa平直的纬向环流和地面均压场,为污染天气的发生和维持以及空气污染物的集聚提供了有利的环流场.污染中期(3月8~10日)冷空气南下,地面冷高压向华东地区移动,重污染区域随冷高压前部的弱低压场或均压场由北向南移动.伴随着天气系统移动,六个地面观测站的边界层特征在时空上表现出相似性,由北向南各站在污染期间先后出现多层逆温,风速较小,逆温层下相对湿度较大.此次多层逆温的形成是由于夜间近地面辐射冷却、冷锋移动过程中产生的锋面逆温以及边界层以上的下沉运动造成的.本研究揭示了在天气系统移动中,位于天气系统相同部位站点的边界层结构具有共同的特征,及其与空气污染的关系.  相似文献   

13.
2013年1月河北省中南部严重污染的气象条件及成因分析   总被引:24,自引:2,他引:22  
年1月河北省中南部出现了长时间、大范围的雾霾天气,大气污染严重. 利用河北省AQI(逐日空气质量指数)、气象常规观测数据及NCEP(美国国家环境预报中心)1°×1°格距再分析资料,对此次严重污染事件的气象条件、大气环境背景和形成机制进行了研究. 结果表明:①2013年1月河北省中南部地面气象要素表现异常,与历史同期相比,平均气温低1~2℃、相对湿度高15%以上、日照时数少40%以上、降水日数多但量级小. 地面风力较小且多风向、风速的辐合线,地面散度场上河北省中南部为明显的辐合区,致使水汽和污染物汇聚不易扩散,导致雾霾天气异常偏多,大气污染严重. ②边界层高湿区中丰富的水汽与污染物互为载体,强逆温层结、大气低层的干暖盖、边界层下沉运动等均使水汽和污染物存留在近地层且不易向高空扩散;同时,稳定的大气环流形势为雾霾天气和严重污染提供了有利的大气环境场. ③河北省中南部特殊的地理条件也是雾霾和污染持续的一个重要原因. 低空稳定的偏西气流越过太行山后在山麓东侧下沉,在华北平原地区易形成地面辐合线,从而加剧了近地层水汽和污染物的汇聚.   相似文献   

14.
第24届冬季奥运会将于2022年2月4—20日在我国北京市和河北省张家口市联合举办,主要会场有北京奥体中心、北京延庆县和张家口市崇礼县.为了模拟分析冬奥会空气质量情况,利用冬奥会同期(2006—2016年2月)北京市和张家口市空气质量资料及韩国气象厅天气图资料(2013—2016年2月),分析该时段重污染发生的频次,统计不利于污染物扩散的天气形势出现概率及污染传输路径,并结合嵌套网格空气质量预报模式(NAPQMS),评估不同减排方案对ρ(PM2.5)的影响.结果表明:① 2006—2016年冬奥会同期,北京奥体中心和延庆县发生重污染天气的概率分别为17%和9%,污染发生的风险频率为北京奥体中心>延庆县>张家口市,并且北京奥体中心和延庆县在2月13—16日易出现持续的重污染天气过程;② 2013—2016年2月不利于污染扩散的天气形势出现概率较为频繁,尤其在850 hPa高度和地面,不利天气形势出现的概率分别为35%和41%;地面偏南风易将在北京西南方滞留较长时间的污染气团沿太行山输送至北京;③ 冬奥会期间,若于2月2—12日及17—20日将京津冀及周边城市污染物排放量在当前的基础上减排50%、2月13—16日减排75%,将可能不出现重污染日.严格控制北京及周边地区的大气污染物排放是保障冬奥会期间空气质量的必要措施.   相似文献   

15.
本文对广州市2017年9月26-28日的环境空气污染过程的空气质量和气象条件特征进行分析,发现该污染过程具有区域性特征,与天气形势的变化关系密切,过程中925 h Pa和850 h Pa高压中心叠加了暖中心,同时存在贴地气温逆温和露点逆温,逆温与高压南侧的东南气流有关。  相似文献   

16.
我国重污染呈现愈演愈烈态势,重污染事件在供暖季节(污染频发期)尤为频发.本文利用北京2013—2015年采暖期逐小时PM2.5浓度数据、再分析资料、气团后向轨迹、气溶胶雷达数据以及探空数据综合分析了北京地区重污染状况,概括了重污染发生时常见的天气形势,探讨了重污染形成原因与天气形势的关系.研究结果表明:2013—2015年采暖期北京发生重污染(日均PM2.5浓度大于150 μg·m-3)的天数分别为36、28及35 d,即北京采暖期21.9%的天数受重污染天气影响.2月份重污染事件最为频发,发生频次为27.3%.北京发生重污染事件时,地面被高压控制时,高空500 hPa多东移的槽脊,当位于脊后槽前时,为上升运动,西南风,850 hPa多暖平流,西南风输送暖湿气流,湿度较大,地面偏南风,可能会存在污染物的输送;地面为低压控制时,500 hPa一般为稳定的西风气流或西北气流,低空850 hPa可能存在暖平流,地面常伴随弱的风场辐合,导致污染物累积;当地面为均压场时,高空500 hPa多为脊后槽前的形势,低空无明显冷暖平流,地面等压线稀疏或无等压线,静风天气.这3类结构引发的重污染天数分别占总重污染天数的47.3%、18.2%及34.5%.进一步分析重污染成因与天气形势关系表明:北京地面受高压系统控制时,污染时间持续最长,也最为频发(47.3%),PM2.5平均浓度最高可达258.8 μg·m-3,且常伴随来自西南方向的污染物输送,北京上空1 km附近存在逆温和逆湿.对污染传输路径研究发现:主要存在3条输送通道,①天津-廊坊-北京、②沧州-廊坊-北京、③石家庄-保定-北京.鉴于目前数值模式对天气形势的预报较为成熟,本文对区域重污染过程与天气形势之间的关系研究,有助于为北京地区空气质量的精准预报预警提供科学支持.  相似文献   

17.
利用ERA5欧洲中心再分析资料、常规观测资料对比分析了2021年2月7~9日和7月19~21日西双版纳冬夏暴雨天气。结果表明:(1)500hpa南支低压槽加深东移和700hPa低空急流充沛的水汽输送并急剧辐合以及低层切变线或辐合区扰动触发抬升利于冬季暴雨发生;夏季暴雨是在500hPa“东高西低”高压环流间低涡持久稳定和热力抬升低层大量的水汽至暴雨区上空引发强辐合上升运动下产生的;(2)大气边界层弱偏强冷平流利于冬季暴雨发生,近地面极弱的冷平流是夏季暴雨发生的有利条件。  相似文献   

18.
长江三角洲冬季一次低能见度过程的地区差异和气象条件   总被引:1,自引:0,他引:1  
祁妙  朱彬  潘晨  苏继锋 《中国环境科学》2015,35(10):2899-2907
采用NCEP再分析资料、MICAPS地面、高空气象资料以及国家环保部空气质量监测资料,对2014年2月20~22日长江三角洲地区一次低能见度过程地区差异和气象条件进行了分析.天气形势分析表明,长三角地面处在高压的控制下,地面风速较小,使污染物积累,有利于低能见度(雾-霾)的形成和维持.根据不同区域的雾、霾分布和日变化特征,将长江三角洲地区分为3个子区域:I区为江苏大部(雾霾混合型),II区为上海及其周边(霾类型),III区为浙江大部(雾类型),该区域白天能见度较高,夜间能见度较低的特征是由湿度因子造成的.影响I区能见度变化的主要原因是:热力原因:大气对流层低层的层结稳定;湿度原因为:空气较湿润,气溶胶粒子吸湿性增长;动力原因主要是垂直方向和水平方向的大气扩散能力弱;污染因子对能见度变化的影响较小.影响II区能见度变化的主要原因是PM2.5浓度高导致的污染,热力因子、湿度因子和动力因子对能见度的变化影响很小.影响III区能见度变化的热力原因是:大气对流层低层层结稳定、近地面存在逆温;湿度原因是因为:空气较湿润,气溶胶粒子吸湿性增长;动力原因是因为边界层高度较低导致的垂直扩散能力较差.各个区域的气象因子解释方差的计算结果表明:I区湿度因子和动力因子对能见度的影响更大,III区.湿度因子对能见度的影响更大.  相似文献   

19.
为探究雾-霾过程的边界层特征,选取天津市2019年12月7~10日一次严重的雾-霾典型过程,采用常规自动气象站资料、环境小时浓度资料、以及微波辐射计、风廓线雷达、气溶胶激光雷达等多种观测资料及WRF-Chem源追踪方法对此次污染过程进行综合分析. 结果表明,此次雾-霾过程可明显分为雾生成、雾与霾交替、霾、霾消散等4个阶段;雾-霾天气与大气温度层结密切相关,伴随着逆温生成,相对湿度和液态水含量最大增长速率分别达13.44%/h和0.013g/(m3·h),呈爆发性增长,相对湿度快速增至92%,微波辐射资料可较好预报雾的生成;雾与霾交替出现阶段雾天气改变了边界层结构,雾层内大气呈中性状态,相对有利于污染物在雾区内扩散,PM2.5高浓度主要出现在边界层400m以下,雾顶持续逆温抑制了污染物向上层大气扩散,造成雾区内污染物浓度加重,地面PM2.5质量浓度为135~223μg/m3,维持中度-重度污染;雾-霾天气与垂直风场有较好的对应关系,雾与霾交替出现阶段存在低风速和较大风速(西南风带来充沛水汽)两种有利于雾维持的情况,雾顶逆温层以上风速为6~12m/s,雾层内为1~2m/s,雾的存在不利于近地面空气质量的改善;此次雾-霾过程天津本地源排放贡献为36.1%,区域输送贡献为63.9%,整个过程表现出明显的区域输送特征.  相似文献   

20.
利用2015年1月23-27日恩施基准站逐小时常规地面、探空实测资料,恩施州环境保护局环境监测站同时段SO_2、NO_2、O_3、CO、PM_(10)、PM_(2.5)质量浓度监测资料及AQI资料,从中尺度天气形势场、大气层结稳定度、地面气象要素、地形条件四方面分析了恩施市持续3 d重污染天气的原因。结果表明:当地面受暖气团控制,气温高,风速、降水弱,湿度条件适宜时,对空气污染形成有利,特别是当雾霾共存,相对湿度持续超过90%时,发生重污染的可能性大;重污染发生时,具有地面暖倒槽,高空西风气流,中低层维持一致的偏南气流,低层到近地层暖湿舌发展等中尺度天气特点;较长时间稳定大气层结下,由于逆温、低混合层高度持续存在,加上近地面长时间水平风速处于微弱或静风,抑制了污染物垂直(水平)方向湍流扩散,是导致连续重污染天气出现的最重要原因;恩施市地处地形闭塞的凹地,周围高山的屏障作用下,排放到山谷的污染物由于垂直、水平扩散均受阻,稀释扩散速率受到抑制而积聚到谷底形成了"污染池"现象,这也是导致恩施冬季多雾霾的重要原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号