首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A field experiment was conducted in a rice–winter wheat rotation agroecosystem to quantify the direct emission of N2O for synthetic N fertilizer and crop residue application in the 2002–2003 annual cycle. There was an increase in N2O emission accompanying synthetic N fertilizer application. Fertilizer-induced emission factor for N2O (FIE) averaged 1.08% for the rice season, 1.49% for the winter wheat season and 1.26% for the whole annual rotation cycle. The annual background emission of N2O totaled 4.81 kg N2O–N ha−1, consisting of 1.24 kg N2O–N ha−1 for rice, 3.11 kg N2O–N ha−1 for wheat seasons. When crop residue and synthetic N fertilizer were both applied in the fields, crop residue-induced emission factor for N2O (RIE) was estimated as well. When crop residue was retained at the rate of 2.25 and 4.50 t ha−1 for each season, the RIE averaged 0.64% and 0.27% for the whole annual rotation cycle, respectively. Based on available multi-year data of N2O emissions over the whole rice–wheat rotation cycle at 3 sites in southeast China, the FIE averaged 1.02% for the rice season, 1.65% for the wheat season. On the whole annual cycle, the FIE for N2O ranged from 1.05% to 1.45%, with an average of 1.25%. Annual background emission of N2O averaged 4.25 kg ha−1, ranging from 3.62 to 4.87 kg ha−1. It is estimated that annual N2O emission in paddy rice-based agroecosystem amounts to 169 Gg N2O–N in China, accounting for 26–60% of the reported estimates of total emission from croplands in China.  相似文献   

2.

Ground-based ambient air monitoring was conducted to assess the contribution of crop residue burning of wheat (Triticum aestivum) and rice (Oriza sativa) at different locations in three districts (Kaithal, Kurukshetra, and Karnal) of the agricultural state of Haryana in India for two successive years (2016 and 2017). The Air Quality Index (AQI) and concentration of primary pollutants (SOx, NOx, and PM2.5) were determined in rice and wheat crop season, for burning and non-burning periods. During crop residue burning periods, concentrations of SOx, NOx, and PM2.5 were exceeded the NAAQS values by 78%, 71%, and 53%, respectively. A significant increase in SOx (4.5 times), NOx (3.8 times), and PM2.5 concentration (3.5 times) was observed in stubble burning periods as compared to pre-burning (p < 0.05). A positive and significant correlation among the three pollutant concentrations was observed (p < 0.01). The AQI of KA site in Karnal district fell in severely polluted category during 2016 for rice as well as wheat residue burning period, and of KK site in Kaithal during wheat residue burning in year 2017. Results of present study indicate a remarkable increase in pollutant concentration (SOx, NOx, and PM2.5) during the crop residue burning periods. To the best of our knowledge, the outcomes of present study in this region have not been reported in earlier reports. Hence, there is an urgent need to curb air pollution by adopting sustainable harvesting technologies and management of residues.

  相似文献   

3.
Agroecosystems,nitrogen-use efficiency,and nitrogen management   总被引:11,自引:0,他引:11  
Cassman KG  Dobermann A  Walters DT 《Ambio》2002,31(2):132-140
The global challenge of meeting increased food demand and protecting environmental quality will be won or lost in cropping systems that produce maize, rice, and wheat. Achieving synchrony between N supply and crop demand without excess or deficiency is the key to optimizing trade-offs amongst yield, profit, and environmental protection in both large-scale systems in developed countries and small-scale systems in developing countries. Setting the research agenda and developing effective policies to meet this challenge requires quantitative understanding of current levels of N-use efficiency and losses in these systems, the biophysical controls on these factors, and the economic returns from adoption of improved management practices. Although advances in basic biology, ecology, and biogeochemistry can provide answers, the magnitude of the scientific challenge should not be underestimated because it becomes increasingly difficult to control the fate of N in cropping systems that must sustain yield increases on the world's limited supply of productive farm land.  相似文献   

4.
This study investigates the effects of residue incorporation coupled with plant growth and soil moisture level on wheat biomasses, soil nutrients, labile organic carbon (LOC), microbial metabolic profiles, and community composition. Four management practices were used in a 180-day pot experiment: (1) control (CON), (2) maize (Zea mays L.) residue incorporation without plants (MR), (3) wheat (Triticum aestivum L.) plants without maize residue (WP), and (4) maize residue incorporation with wheat plants (MRWPs). Each management practice included soil moisture at both 40 and 80% of field capacity. At wheat harvest, soil nutrient contents in the WP and MRWP treatments were significantly lower than in the CON and MR treatments. In comparison with the CON treatment, MR, WP, and MRWP treatments resulted in 35, 23, and 67% increases in dissolved organic carbon content; 17, 12, and 34% increases in hot-water extractable organic carbon content; and 78, 50, and 150% increases in microbial biomass carbon content. Furthermore, microbial utilizations of carboxylic acids and polymer carbon sources in the MR, WP, and MRWP treatments were 261 and 88%, 239 and 105%, and 300 and 126% higher than in the CON treatment. The MR and CON treatments had similar phospholipid fatty acid (PLFA) content but the WP and MRWP treatments had significantly increased gram-negative content and changes to community composition compared with the CON and MR treatments. The wheat biomass, LOC, and PLFA contents significantly increased with greater soil moisture. Overall, these results suggest an additive effect of residue incorporation and plant growth on LOC contents, primarily due to the changes in microbial utilization of carbon sources and community composition.  相似文献   

5.

The agriculture sector is a key driver of economic growth and provides employment opportunities across the globe generally. However, in today’s world, agricultural product demand is more influenced by taste, prices, and nutritional value due to climatic variation. The study has analyzed the current situation grain productivity by using the data of farm inputs and major grain crops of Pakistan from (1960–2020). The study consists of a two-stage analysis in the first stage, the total factor productivity (TFP) variable is obtained by using the parametric Tornqvisit-Theil index output-input-aggregation method separately for each crop; rice, maize, and wheat. After that, the unit root test is used to check the stationarity and trend of the variables in the long run. Subsequently, the autoregressive distributed lag (ARDL) model is applied to check the existence of cointegration in the long run and short run among the variables. The results of the study disclosed that the consumption of rice has a positive relationship with its total factor productivity, but, wheat and maize have a negative long-run cointegration relationship with the respective productivities. The study results have shown that the consumption pattern of staple crops has substantially changed, due to climatic variation, and the current food consumption trend is revealing new dimensions and trends owing to variation in climate change and anthropogenic pressure which demands to adapt climate resilient farm practices.

  相似文献   

6.
Ma W  Ma L  Li J  Wang F  Sisák I  Zhang F 《Chemosphere》2011,84(6):814-821
Increasing fertilizer phosphorus (P) application in agriculture has greatly contributed to the increase of crop yields during the last decades in China but it has also increased P flows in food production and consumption. The relationship between P use efficiency and P flow is not well quantified at national level. In present paper we report on P flows and P use efficiencies in rice, wheat, and maize production in China using the NUFER model. Conservation strategies for P utilization and the impact of these strategies on P use efficiency have been evaluated. Total amounts of P input to wheat, rice, and maize fields were 1095, 1240, and 1128 Gg, respectively, in China, approximately 80% of which was in chemical fertilizers. The accumulation of P annually in the fields of wheat, rice, and maize was 29.4, 13.6, and 21.3 kg ha−1, respectively. Phosphorus recovered in the food products of wheat, rice, and maize accounted for only 12.5%, 13.5%, and 3.8% of the total P input, or 3.2%, 2.6%, and 0.9% of the applied fertilizer P, respectively. The present study shows that optimizing phosphorus flows and decreasing phosphorus losses in crop production and utilization through improved nutrient management must be considered as an important issue in the development of agriculture in China.  相似文献   

7.
Surface ozone is mainly produced by photochemical reactions involving various anthropogenic pollutants, whose emissions are increasing rapidly in India due to fast-growing anthropogenic activities. This study estimates the losses of wheat and rice crop yields using surface ozone observations from a group of 17 sites, for the first time, covering different parts of India. We used the mean ozone for 7 h during the day (M7) and accumulated ozone over a threshold of 40 ppbv (AOT40) metrics for the calculation of crop losses for the northern, eastern, western and southern regions of India. Our estimates show the highest annual loss of wheat (about 9 million ton) in the northern India, one of the most polluted regions in India, and that of rice (about 2.6 million ton) in the eastern region. The total all India annual loss of 4.0–14.2 million ton (4.2–15.0%) for wheat and 0.3–6.7 million ton (0.3–6.3%) for rice are estimated. The results show lower crop loss for rice than that of wheat mainly due to lower surface ozone levels during the cropping season after the Indian summer monsoon. These estimates based on a network of observation sites show lower losses than earlier estimates based on limited observations and much lower losses compared to global model estimates. However, these losses are slightly higher compared to a regional model estimate. Further, the results show large differences in the loss rates of both the two crops using the M7 and AOT40 metrics. This study also confirms that AOT40 cannot be fit with a linear relation over the Indian region and suggests for the need of new metrics that are based on factors suitable for this region.  相似文献   

8.
In this study, we estimate yield losses and economic damage of two major crops (winter wheat and rabi rice) due to surface ozone (O3) exposure using hourly O3 concentrations for the period 2002–2007 in India. This study estimates crop yield losses according to two indices of O3 exposure: 7-h seasonal daytime (0900–1600 hours) mean measured O3 concentration (M7) and AOT40 (accumulation exposure of O3 concentration over a threshold of 40 parts per billion by volume during daylight hours (0700–1800 hours), established by field studies. Our results indicate that relative yield loss from 5 to 11 % (6–30 %) for winter wheat and 3–6 % (9–16 %) for rabi rice using M7 (AOT40) index of the mean total winter wheat 81 million metric tons (Mt) and rabi rice 12 Mt production per year for the period 2002–2007. The estimated mean crop production loss (CPL) for winter wheat are from 9 to 29 Mt, account for economic cost loss was from 1,222 to 4,091 million US$ annually. Similarly, the mean CPL for rabi rice are from 0.64 to 2.1 Mt, worth 86–276 million US$. Our calculated winter wheat and rabi rice losses agree well with previous results, providing the further evidence that large crop yield losses occurring in India due to current O3 concentration and further elevated O3 concentration in future may pose threat to food security.  相似文献   

9.
Agricultural management affects the movement of atrazine in soil and leaching to groundwater. The objective of this study was to determine atrazine adsorption in a soil after 20 years of atrazine application under agronomic management practices differing in tillage practice (conventional and zero tillage), residue management (with and without residue retention) and crop rotation (wheat-maize rotation and maize monoculture). Atrazine sorption was determined using batch and column experiments. In the batch experiment, the highest distribution coefficient Kd (1.1 L kg?1) at 0–10 cm soil depth was observed under zero tillage, crop rotation and residue retention (conservation agriculture). The key factor in adsorption was soil organic matter content and type. This was confirmed in the column experiment, in which the highest Kd values were observed in treatments with residue retention, under either zero or conventional tillage (0.81 and 0.68 L kg?1, respectively). Under zero tillage, the fact that there was no soil movement helped to increase the Kd. The increased soil organic matter content with conservation agriculture may be more important than preferential flow due to higher pore connectivity in the same system. The soil's capacity to adsorb 2-hydroxyatrazine (HA), an important atrazine metabolite, was more important than its capacity to adsorb atrazine, and was similar under all four management practices (Kd ranged from 30 to 40 L kg?1). The HA adsorption was attributed to the type and amount of clay in the soil, which is unaffected by agronomic management. Soils under conservation agriculture had higher atrazine retention potential than soils under conventional tillage, the system that predominates in the study area.  相似文献   

10.
Zhang  Fan  Xu  Nuohan  Zhang  Zhenyan  Zhang  Qi  Yang  Yaohui  Yu  Zhitao  Sun  Liwei  Lu  Tao  Qian  Haifeng 《Environmental science and pollution research international》2023,30(13):35972-35984

The rhizosphere microbiome plays critical roles in plant growth and is an important interface for resource exchange between plants and the soil environment. Crops at various growing stages, especially the seedling stage, have strong shaping effects on the rhizosphere microbial community, and such community reconstruction will positively feed back to the plant growth. In the present study, we analyzed the variations of bacterial and fungal communities in the rhizosphere of four crop species: rice, soybean, maize, and wheat during successive cultivations (three repeats for the seedling stages) using 16S rRNA gene and internal transcribed spacer (ITS) high-throughput sequencing. We found that the relative abundances of specific microorganisms decreased after different cultivation times, e.g., Sphingomonas, Pseudomonas, Rhodanobacter, and Caulobacter, which have been reported as plant-growth beneficial bacteria. The relative abundances of potential plant pathogenic fungi Myrothecium and Ascochyta increased with the successive cultivation times. The co-occurrence network analysis showed that the bacterial and fungal communities under maize were much more stable than those under rice, soybean, and wheat. The present study explored the characteristics of bacteria and fungi in crop seedling rhizosphere and indicated that the characteristics of indigenous soil flora might determine the plant growth status. Further study will focus on the use of the critical microorganisms to control the growth and yield of specific crops.

  相似文献   

11.

In this study, Chlorella vulgaris, Ganoderma lucidum, and endophytic bacteria were co-cultivated with the stimulation of strigolactone analogs GR24 to prepare pellets. During the purification of biogas slurry and biogas, multi-walled carbon nanotubes (MWCNTs) were introduced to enhance the removal efficiencies of nutrients and CO2. The results showed that both GR24 and MWCNTs affected the purification of biogas slurry and biogas. The maximum chemical oxygen demand, total nitrogen, total phosphorus, and CO2 removal efficiencies of the Chlorella vulgaris-Ganoderma lucidum-endophytic bacterial symbionts were 82.57 ± 7.96% (P < 0.05), 82.14 ± 7.87% (P < 0.05), 84.27 ± 7.96% (P < 0.05), and 63.93 ± 6.22% (P < 0.05), respectively, with the induction of 10−9 M GR24 and 1 mg L−1 MWCNTs. Moreover, the growth and photosynthetic performance of the symbionts were consistent with the removal effects. The Chlorella vulgaris-Ganoderma lucidum-endophytic bacterial symbionts obtained high growth rates and enzyme activity with the maximum growth rate of 0.365 ± 0.03 d−1, mean daily productivity of 0.182 ± 0.016 g L−1 d−1, and carbonic anhydrase activity of 31.07 ± 2.75 units, respectively. These results indicated that an appropriate concentration of GR24 and MWCNTs could promote the growth of symbionts, reinforce the purification effects of biogas slurry and biogas, and provide a new idea for the simultaneous purification of wastewater and biogas.

  相似文献   

12.
Modelling-based studies to assess the extent and magnitude of ozone (O3) risk to agriculture in Asia suggest that yield losses of 5–20% for important crops may be common in areas experiencing elevated O3 concentrations. These assessments have relied on European and North American dose–response relationships and hence assumed an equivalent Asian crop response to O3 for local cultivars, pollutant conditions and climate. To test this assumption we collated comparable dose–response data derived from fumigation, filtration and EDU experiments conducted in Asia on wheat, rice and leguminous crop species. These data are pooled and compared with equivalent North American dose–response relationships. The Asian data show that at ambient O3 concentrations found at the study sites (which vary between ~35–75 ppb 4–8 h growing season mean), yield losses for wheat, rice and legumes range between 5–48, 3–47 and 10–65%, respectively. The results indicate that Asian grown wheat and rice cultivars are more sensitive to O3 than the North American dose–response relationships would suggest. For legumes the scatter in the data makes it difficult to reach any equivalent conclusion in relative sensitivities. As such, existing modelling-based risk assessments may have substantially underestimated the scale of the problem in Asia through use of North American derived dose–response relationships.  相似文献   

13.
Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. One component of the biomass burning inventory, crop residue burning, has been poorly characterized in the National Emissions Inventory (NEI). In the 2011 NEI, wildland fires, prescribed fires, and crop residue burning collectively were the largest source of PM2.5. This paper summarizes our 2014 NEI method to estimate crop residue burning emissions and grass/pasture burning emissions using remote sensing data and field information and literature-based, crop-specific emission factors. We focus on both the postharvest and pre-harvest burning that takes place with bluegrass, corn, cotton, rice, soybeans, sugarcane and wheat. Estimates for 2014 indicate that over the continental United States (CONUS), crop residue burning excluding all areas identified as Pasture/Grass, Grassland Herbaceous, and Pasture/Hay occurred over approximately 1.5 million acres of land and produced 19,600 short tons of PM2.5. For areas identified as Pasture/Grass, Grassland Herbaceous, and Pasture/Hay, biomass burning emissions occurred over approximately 1.6 million acres of land and produced 30,000 short tons of PM2.5. This estimate compares with the 2011 NEI and 2008 NEI as follows: 2008: 49,650 short tons and 2011: 141,180 short tons. Note that in the previous two NEIs rangeland burning was not well defined and so the comparison is not exact. The remote sensing data also provided verification of our existing diurnal profile for crop residue burning emissions used in chemical transport modeling. In addition, the entire database used to estimate this sector of emissions is available on EPA’s Clearinghouse for Inventories and Emission Factors (CHIEF, http://www3.epa.gov/ttn/chief/index.html).Implications: Estimates of crop residue burning and rangeland burning emissions can be improved by using satellite detections. Local information is helpful in distinguishing crop residue and rangeland burning from all other types of fires.  相似文献   

14.
Dissipation of simultaneously applied insecticides alpha-cypermethrin and lambda-cyhalothrin was studied in a minor crop, aboveground part of white mustard (Sinapis alba L.). A validated gas chromatographic method (GC-ECD/NPD) was used to determine insecticide residues. Analytical performances were very satisfactory, with expanded uncertainties not higher than 14% (coverage factor k = 2, confidence level 95%). Dissipation of alpha-cypermethrin and lambda-cyhalothrin in white mustard followed first-order kinetics (R2 between 0.953 and 0.995), with half-lives of 3.1–4.6 and 2.9–3.7 days respectively. Based on the results of this two-year study and the relevant residue regulation, alpha-cypermethrin and lambda-cyhalothrin treatments can be considered safe for crop protection, feeding animals and the environment.  相似文献   

15.
Crop residue burning is an extensive agricultural practice in the contiguous United States (CONUS). This analysis presents the results of a remote sensing-based study of crop residue burning emissions in the CONUS for the time period 2003-2007 for the atmospheric species of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrogen dioxide (NO2, sulfur dioxide (SO2), PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter), and PM10 (PM < or = 10 microm in aerodynamic diameter). Cropland burned area and associated crop types were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Emission factors, fuel load, and combustion completeness estimates were derived from the scientific literature, governmental reports, and expert knowledge. Emissions were calculated using the bottom-up approach in which emissions are the product of burned area, fuel load, and combustion completeness for each specific crop type. On average, annual crop residue burning in the CONUS emitted 6.1 Tg of CO2, 8.9 Gg of CH4, 232.4 Gg of CO, 10.6 Gg of NO2, 4.4 Gg of SO2, 20.9 Gg of PM2.5, and 28.5 Gg of PM10. These emissions remained fairly consistent, with an average interannual variability of crop residue burning emissions of +/- 10%. The states with the highest emissions were Arkansas, California, Florida, Idaho, Texas, and Washington. Most emissions were clustered in the southeastern United States, the Great Plains, and the Pacific Northwest. Air quality and carbon emissions were concentrated in the spring, summer, and fall, with an exception because of winter harvesting of sugarcane in Florida, Louisiana, and Texas. Sugarcane, wheat, and rice residues accounted for approximately 70% of all crop residue burning and associated emissions. Estimates of CO and CH4 from agricultural waste burning by the U.S. Environmental Protection Agency were 73 and 78% higher than the CO and CH4 emission estimates from this analysis, respectively. This analysis also showed that crop residue burning emissions are a minor source of CH4 emissions (< 1%) compared with the CH4 emissions from other agricultural sources, specifically enteric fermentation, manure management, and rice cultivation.  相似文献   

16.
Aerosol (total suspended particulate) samples collected at three diverse locations (urban-commercial, semi-urban and rural-agricultural) in Patiala, India were analyzed for loss on ignition (LOI) and organic tarry matter (OTM) content in ambient air during crop residue burning (CRB) episodes and non-crop residue burning (NCRB) months in 2006–2007. Results showed high levels of LOI and OTM during wheat and rice crop residue-burning periods at all the sites. Higher levels were obtained during rice crop residue-burning period as compared to the wheat residue-burning period. At semi-urban site, LOI varied between 53 ± 36 μg m?3 and 257 ± 14 μg m?3 constituting 38–78% (w/w) part of the aerosols whereas levels of OTM varied between 0.98 ± 0.11 μg m?3 and 7.93 ± 2.76 μg m?3 comprising 0.42–3.28% (w/w) fraction. At rural-agricultural area site, levels of LOI varied between 86 ± 40 μg m?3 and 293 ± 70 μg m?3 comprising 27–84% (w/w), whereas OTM levels varied between 1.31 ± 0.64 μg m?3 and 10.09 ± 6.56 μg m?3 constituting 0.83–2.42% (w/w) fraction of the aerosols. At urban-cum-commercial site, levels of LOI and OTM varied between 48 ± 23 μg m?3 and 281 ± 152 μg m?3 and 2.53 ± 1.23 μg m?3 and 17.40 ± 8.50 μg m?3, constituting 24–62% (w/w) part of the aerosols, respectively. Results also indicated that OTM and LOI were integral parts of aerosols and their concentrations were influenced by the crop residue burning practices with incorporated effect of vehicular activities in Patiala.  相似文献   

17.
Abstract

A field trial was carried out in Brazil in March 2002 with the aim to evaluate the effects of different timing and extension of weedy period on maize productivity. The hybrid Pioneer 30K75 was sowed under 7 t ha?1 mulching promoted by glyphosate spraying. The treatments were divided in two groups: In the first group, weeds were maintained since the maize sowing until different periods in the crop cycle: 0, 14, 28, 42, 56, 70, and 150 days (harvesting time). In the second group, the maize crop was kept weed free for the same periods of the first group. Weed control was done through hand hoeing. A complete randomized blocks experimental design with five replications was used for plots distribution in the field. Nonlinear regression model was used to study the effects of weedy or weedfree periods on maize productivity. Weed community included 13 families and 31 species. Asteraceae, Poaceae, and Euphorbiaceae were the most abundant families. Results showed that under no tillage condition with 7 t ha?1 mulching at sowing time, the maize crop could cohabit with weed community for 54 days without any yield lost. On the other hand, if the crop was kept weed free for 27 days, the weed interference was not enable to reduce maize production. According to these results one weed control measure between 27 and 54 days after crop emergence could be enough to avoid any reduction in maize productivity.  相似文献   

18.
Laboratory incubations were performed in order to evaluate the dissipation of the proherbicide isoxaflutole in seedbed layer soil samples from conventional and conservation tillage systems and in maize and oat residues left at the soil surface under conservation tillage. The effects of temperature and water pressure head on radiolabelled isoxaflutole degradation were studied for each sample for 21 d. Mineralisation of isoxaflutole was low for all samples and ranged from 0.0% to 0.9% of applied 14C in soil samples and from 0.0% to 2.4% of applied 14C in residue samples. In soil samples, degradation half-life of isoxaflutole ranged from 9 to 26 h, with significantly higher values under conservation tillage. In residue samples, degradation half-life ranged from 3 to 31 h, with significantly higher values in maize residues, despite a higher mineralisation and bound residue formation than in oat residues. Whatever the sample, most of the applied 14C remained extractable during the experiment and, after 21 d, less than 15% of applied 14C were unextractable. This extractable fraction was composed of diketonitrile, benzoic acid derivative and several unidentified metabolites, with one of them accounting for more than 17% of applied 14C. This study showed that tillage system design, including crop residues management, could help reducing the environmental impacts of isoxaflutole.  相似文献   

19.
Agricultural residue burning is one of the major causes of greenhouse gas emissions and aerosols in the Indo-Ganges region. In this study, we characterize the fire intensity, seasonality, variability, fire radiative energy (FRE) and aerosol optical depth (AOD) variations during the agricultural residue burning season using MODIS data. Fire counts exhibited significant bi-modal activity, with peak occurrences during April-May and October-November corresponding to wheat and rice residue burning episodes. The FRE variations coincided with the amount of residues burnt. The mean AOD (2003-2008) was 0.60 with 0.87 (+1σ) and 0.32 (−1σ). The increased AOD during the winter coincided well with the fire counts during rice residue burning season. In contrast, the AOD-fire signal was weak during the summer wheat residue burning and attributed to dust and fossil fuel combustion. Our results highlight the need for ‘full accounting of GHG’s and aerosols’, for addressing the air quality in the study area.  相似文献   

20.
A simple and efficient residue analysis method for direct determination of ioxynil octanoate in maize and soil was developed and validated with High Performance Liquid Chromatography-Ultra Violet (HPLC-UV). The samples were extracted with mixtures of acetonitrile and deionized water followed by Solid Phase Extraction (SPE) to remove co-extractives prior to analysis by HPLC-UV. The recoveries of ioxynil octanoate extracted from maize and soil samples ranged from 86 %–104 % and 84 %–96 %, respectively, with relative standard deviation (RSD) less than 7.84% and sensitivity of 0.01 mg kg?1. The method was applied to determine the residue of ioxynil octanoate in maize and soil samples from experimental field. Data had shown that the dissipation rate in soil was described as pseudo-first-order kinetics and the half-life (t1/2) was less than 1.78 days. No ioxynil octanoate residue (<0.01 mg kg?1) was detected in maize at harvest time withholding period of 60 days after treatments of the pesticide. Direct confirmation of the analytes in field trial samples was realized by Liquid Chromatography-Mass Spectrometry (LC-MS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号