首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
将采集自徒骇河聊城河段沉水植被生长区的DOM分为3个分子量级别:<0.7 μm DOM、<500 kDa DOM、<100 kDa DOM,通过三维荧光结合平行因子分析(EEM-PARAFAC)和荧光滴定法探讨水体中不同分子量DOM的荧光特征及其与重金属(Cu2+和Pb2+)的络合作用.结果表明:草源DOM的有机碳主要储存在分子量<100 kDa组分中.PARAFAC分析得出4个荧光组分,分别为类色氨酸组分C2、C4,以及酪氨酸组分C1和类腐殖质组分C3.草源DOM主要以分子量<100 kDa的类色氨酸组分C2和酪氨酸组分C1为主.二维相关光谱(2D-COS)表明,与类腐殖物质相比,类蛋白物质优先与Cu2+与Pb2+发生猝灭,DOM中不同分子量组分与Cu2+与Pb2+的猝灭顺序未发生改变.在与Cu2+结合的过程中,不同 分子量中类腐殖质组分C3的络合常数(logKa)大于类蛋白组分C1、C2,表明类腐殖质组分的金属结合能力强于类蛋白质组分;随着分子量级别的降低,组分C3的logKa值逐渐增大(3.47<3.59<3.73),表明低分子量(<100 kDa)中的类腐殖质与Cu2+具有更高的结合能力.不同分子量DOM中,类蛋白组分C1、C2、C4在分子量<0.7 μm DOM中的logKa值均最高,表明高分子量(<0.7 μm)的类蛋白质更容易与Cu2+结合,而Pb2+与各组分结合出现了荧光增强或猝灭的现象.DOM-Cu2+与DOM-Pb2+结合表现出不同的结合规律,反映出金属种类与DOM结合的异质性与复杂性.  相似文献   

2.
制药废水二级出水中溶解性有机物混凝去除特性研究   总被引:3,自引:0,他引:3  
制药废水二级出水中溶解性有机物(DOM)由于组成复杂、难去除、具有多异质性和分散性,是污水深度处理与回用的主要去除对象和关键限制因子.本论文以发酵制药废水二级出水的DOM为研究对象,采用投加聚合氯化铝(PAC)混凝剂去除DOM,考察混凝剂投加量和混凝pH值对去除效果的影响,并结合分子量分级、亲疏水性分级以及三维荧光光谱-平行因子分析方法等对DOM进行了系统表征和分析,进一步阐述混凝过程DOM的去除特征.结果表明,PAC投加量为250 mg·L~(-1)、pH=7时,混凝沉淀30 min对DOC、UV_(254)、色度和浊度的去除率分别为13.05%±0.29%、23.65%±0.75%、12.66%±1.34%、63.67%±0.89%;混凝对分子量10 kDa的组分和疏水中性(HON)组分去除效果分别为50.33%±0.98%、21.56%±0.42%,而对分子量1 kDa组分去除率较低为2.26%±0.12%;三维荧光光谱-平行因子分析将制药废水二级出水分为2个类腐殖质组分(C1、C3)和1个类蛋白组分(C2),混凝对类腐殖酸组分(C1)最大荧光强度去除率(F_(max))最高为46.22%,而亲水性的小分子和蛋白类物质混凝去除效果较差.  相似文献   

3.
采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素废水二级生化处理出水进行深度处理,考察了组合工艺对废水污染物的去除效果,通过三维荧光光谱结合平行因子法(EEMs-PARAFAC)分析了废水中有机物的荧光变化特征,并利用Illumina MiSeq高通量测序技术对BAF中微生物菌群结构的变化进行研究.结果表明,在最佳运行条件下,抗生素废水COD平均值由232 mg·L-1降至46 mg·L-1,NH4+-N平均浓度由12 mg·L-1降至4.1 mg·L-1,出水水质可稳定达到《发酵类制药工业水污染物排放标准》(GB21903-2008).EEMs-PARAFAC从废水中解析出3类荧光组分,主要可归为腐殖酸(胡敏酸)、富里酸及其混合物,经组合工艺处理后荧光强度大幅下降甚至消失.Illumina MiSeq测序显示,污泥经抗生素废水驯化后微生物丰富度和均匀度明显降低,Proteobacteria(变形杆菌门)、Chloroflexi(绿屈挠菌门)和Firmicutes(厚壁菌门)是优势菌门,其中,Thiothrix(发硫菌属)、ThermomonasPseudoxanthomonas(假黄单胞菌属)和JG30_KF_CM45是降解抗生素类污染物的主要菌属.  相似文献   

4.
利用三维荧光光谱(EEMs)结合平行因子分析方法(PARAFAC)及紫外-可见光谱技术(UV-vis),对苏州古城区内不同污染状况的景观河道中溶解性有机物(DOM)的光谱特征和来源进行解析.结果表明,苏州古城区内景观河道水体总体上表现为氮、磷营养盐污染.水体中的DOM解析出4种荧光组分,分别为自源类色氨酸C1(λEx/λEm=235(290) nm/349 nm)、陆源类腐殖质C2(λEx/λEm=250(315) nm/403 nm)、类色氨酸和酪氨酸的混合物C3(λEx/λEm=230(275) nm/319 nm)和UVA类腐殖质C4(λEx/λEm=240(350) nm/459 nm).相关性分析表明各个组分之间具有同源性,荧光组分与氮类营养盐和叶绿素a (Chl a)存在显著相关性,说明DOM与氮营养盐迁移转化、藻类活动有关.景观河道DOM中类蛋白类物质含量最多,类蛋白类物质的总荧光强度比例为66.36%~76.84%,类腐殖质荧光强度比例为23.15%~34.74%.在4种污染类型水体中,组分C1和C4含量没有明显差距,组分C2和C3含量差距较大,有机主导型水体中C2含量最大,无机主导型水体C3含量最大.同时分析了水体中DOM的荧光指标和吸收光谱指标,发现各种表观污染类型水体中荧光指数FI、自生源指数BIX均较大,且腐殖化指数HIX小于3.5,腐殖化程度弱,主要为内源;有机主导型水体中吸收系数a254最大,芳香性最强.各种类型水体中吸收系数比值E2/E3均小于3.5,E2/E4较大,光谱斜率比值SR大于1,DOM相对分子量较小,河道水体DOM的来源中内源贡献较大.  相似文献   

5.
宁成武  包妍  黄涛  王杰 《环境科学》2021,42(8):3743-3752
使用紫外-可见光吸收光谱(UV-vis)和三维荧光光谱-平行因子分析法(EEM-PARAFAC),分析了2019年夏季巢湖流域丰乐河、杭埠河、岐阳河、兆河和南淝河水体溶解性有机质(dissolved organic matter,DOM)的来源及其空间变化.结果表明,南淝河DOM吸收特征参数SUVA254显著低于其它河流,而光谱斜率比SR显著高于杭埠河,表明城市污染物径流排入降低了南淝河水体DOM的芳香性,但对其分子量影响较低.南淝河DOM荧光指数(FI)和生物源指数(BIX)大于其它河流,而腐殖化指数(HIX)低于其它河流,指示其DOM自生源高于其它河流.使用EEM-PARAFAC从河流DOM中提取出4种类腐殖质组分(C1~C4)和2种内源类蛋白荧光组分(C5、C6),其中,类腐殖质组分包括陆源有机质(C1、C3和C4)和微生物降解产物(C2).沿河流方向,5条河流河水溶解性有机碳(dissolved organic carbon,DOC)、 a(355)和DOM荧光组分呈不同的空间变化特征,其中丰乐河、杭埠河、岐阳河和兆河DOM受农田土壤径流输入影响明显,而南淝河DOM主要受城市污染物径流和污水处理厂出水影响.  相似文献   

6.
采用活性碳纤维(ACF)活化过硫酸盐(PMS)深度处理焦化废水生化出水,并考察了PMS浓度、ACF投加量、pH值对焦化废水生化出水中COD和色度去除效果的影响.结果表明,ACF/PMS体系比ACF/PS体系更能有效去除焦化废水中的有机物和色度.在PMS浓度为8.0 mmol·L-1、ACF投加量为4.0 g·L-1、pH约为8.0、温度为30 ℃的条件下,反应120 min后焦化废水生化出水中COD和色度的去除率分别达到88.7%和91.2%.ACF表征分析和重复利用实验结果说明,ACF具有较好的吸附和催化性能,且重复使用稳定性较好.自由基鉴定实验表明,SO4-· 和·OH均为反应体系中起主导作用的活性自由基.三维荧光光谱显示,焦化废水生化出水中的类富里酸和类腐殖酸物质可被有效降解转化为小分子物质.  相似文献   

7.
溶解有机物(DOM)是决定水环境中铅(Pb)的形态、环境行为和生态风险的重要因子.然而,落叶DOM与Pb(II)络合作用的调控机制尚不清楚.光和微生物降解是调控DOM含量、组成与活性的两个关键过程.本研究运用降解培养实验、光谱学表征和荧光猝灭滴定,考察光和微生物降解单独作用和共同作用对芦苇落叶DOM的改造及其对DOM与Pb(II)相互作用的影响.激发-发射三维荧光光谱-平行因子分析共识别出4个类腐殖质组分(C1~C4)和1个类蛋白质组分(C5).类腐殖质组分更容易被光降解,类蛋白质组分则被微生物优先利用,光降解在短期的光-微生物降解过程中起主导作用.对于原始落叶DOM,Pb(II)主要与类腐殖质组分C1、C2和C4络合,C3组分只在光-微生物降解后的样品呈现显著荧光猝灭,类蛋白质组分C5在光和光-微生物降解后开始参与络合.类腐殖质C1与Pb(II)络合的条件稳定常数logKM在光降解后升高而在光-微生物降解后下降,C2和C4的logKM值经过各降解过程后均升高.降解后这3个组分参与络合的比例f和络合容量Fmax·f均显著降低,且光降解的影响显著高于微生物降解.这些结果表明,光降解和微生物降解对DOM丰度、组成和结构的改造将显著影响其与金属离子的络合稳定性和络合容量.  相似文献   

8.
辽河保护区水体溶解性有机质空间分布与来源解析   总被引:5,自引:0,他引:5  
以辽河保护区水体为研究对象,使用三维荧光光谱技术(EEMs)结合平行因子模型(PARAFAC)探究辽河保护区水体溶解性有机质(DOM)的组成成分、主要来源及DOM的空间分布特征.同时,结合水体理化性质指标,运用统计学分析方法研究影响DOM的主要因素.结果表明,辽河保护区表层水中DOM含有3种荧光组分,分别为陆源及海洋源类腐殖C1(λEx/λEm=245,315 nm/415 nm)、类富里酸C2(λEx/λEm=260,355 nm/470 nm)及类色氨酸C3(λEx/λEm=225,280 nm/340 nm).辽河保护区DOM以类腐殖质物质C1与C2为主要成分(占总组分荧光强度的78%),以类蛋白质组分C3为次要组分(占总组分荧光强度的22%).从组分及空间分布上看,DOM类腐殖质组分总荧光强度表现为上游>下游>中游,类蛋白质组分的荧光强度则表现为中游>下游>上游,与周边环境因素及人为扰动因素具有密切关系.DOM来源受内源释放和外源输入共同影响,具有自生源特征和腐殖化特征.通过相关性分析可知,C1、C2与DOC呈显著正相关关系;C3与TP呈正相关关系,与TN呈负相关关系.  相似文献   

9.
土壤中溶解性有机质对不同类型堆肥的响应差异   总被引:2,自引:0,他引:2  
为探究不同类型堆肥施用对土壤溶解性有机质(DOM)的影响,以空白土壤为对照,采用紫外、荧光光谱并结合平行因子分析对分别添加不同比例的牛粪堆肥、餐厨垃圾堆肥和污泥堆肥土壤中DOM进行分析,探究DOM结构变化特征及其驱动因素.结果表明,3种堆肥施用后土壤中AN、NH4+-N、DOC和SOM含量均显著提高,SOM和DOC含量随堆肥添加量的增加而增加;施用牛粪和餐厨垃圾堆肥更有利于土壤中AN、NO3--N和DOC含量的提高,而施用污泥堆肥土壤中NH4+-N和SOM含量更高.堆肥施用后DOM结构特性的改变主要表现为共轭苯环结构、疏水性组分、醌基和显色组分含量显著提高,不饱和有机分子π→π*的跃迁更为活跃,DOM分子量增大,腐殖化程度增强.堆肥低剂量添加(5%)时,餐厨垃圾堆肥更有利于DOM的芳构化和腐殖化;堆肥较高剂量添加(10%和20%)时,牛粪堆肥更能驱动DOM结构变化;污泥堆肥对DOM结构影响最弱.堆肥施用后土壤DOM荧光组分相对含量发生改变,小分子类腐殖质相对含量增加,类蛋白相对含量降低.二维相关光谱表明,施用牛粪和餐厨垃圾堆肥土壤中DOM荧光组分变化顺序为:类蛋白 > 大分子类富里酸 > 小分子类腐殖质;而施用污泥堆肥土壤中表现为:大分子类富里酸 > 类蛋白 > 小分子类腐殖质.DOM结构变化受多种因素共同影响,影响程度表现为:堆肥种类 > 添加比例 > 理化因子 > 培养时间.DOC和AN含量的增加是引起DOM腐殖化程度增强和类蛋白相对含量降低的重要因素,小分子类腐殖质相对含量与NO3--N含量显著正相关,DOM中大分子类富里酸相对含量因外源SOM的输入而增加.  相似文献   

10.
张巧颖  孙伟  杜瑛珣  巩小丽 《环境科学》2021,42(4):1870-1878
蓝藻水华消亡时,藻细胞裂解会产生大量的胞内溶解性有机质(I-DOM).本研究利用紫外-可见吸收光谱(UV-Vis)和三维荧光-平行因子分析法(EEM-PARAFAC),考察太湖蓝藻I-DOM在微生物降解过程的组成变化,并研究了温度(20、25和30℃)和I-DOM初始浓度(5、10和20 mg·L-1)对I-DOM生物降解的影响.结果表明,I-DOM能较好被微生物降解,14 d后,DOC的去除率为50%~74%.初始I-DOM主要包含类色氨酸组分C1(80%),存在C2(一种广泛存在的类腐殖质,16.0%)和C3(微生物来源类腐殖质,3.7%);几乎不含C4(微生物来源类腐殖质,0.3%).微生物降解过程,这些组分既被消耗,同时又能被产生,呈现以下变化趋势:C1组分减少;C2组分变化趋势复杂,其先下降后增加,随后又下降;C3和C4先增加后减少.SrE2E3和HIX指标的变化显示,降解过程中,溶液中DOM分子量增大,腐殖性增强.本实验条件的温度和I-DOM初始浓度范围均不改变各组分的变化趋势;3个温度中25℃条件下降解效果最佳;而随着I-DOM初始浓度的增加,I-DOM降解增强.结合笔者关于I-DOM光降解的研究,推断太湖水华消亡产生的DOM可能有以下的归趋:其中类色氨酸能被有效降解,而各类腐殖质难以完全降解;这些类腐殖质芳香性较强,极可能与金属物质发生作用而从水体中去除,被埋藏在沉积物中.本研究有助于探明太湖蓝藻水华消亡产生DOM的归趋.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

16.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

17.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

18.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

19.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

20.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号