首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction between ethanol and water was studied in the temperature range of 400–600°C at atmospheric pressure over supported catalysts in a microchannel reactor. The supported catalysts prepared by washcoating and impregnation were active in the ethanol steam reforming but differ in their performance. The metal nature, metal loading and type of the carriers markedly influence the catalytic activity and selectivity of the catalysts. Among them Rh-based catalysts exhibited the highest catalytic activity, as compared to Co and Ni-based catalysts. Bimetallic Rh-Ni catalysts exhibit significant improvement in terms of ethanol conversion and hydrogen selectivity and the promoting role of the Ni and CeO2 addition is discussed. The bimetallic Rh-Ni catalyst promoted by CeO2 was stable for at least 100 h without any detectable degradation in performance.  相似文献   

2.
A series of Pd–Ce supported ZSM-5 zeolite catalysts for CO oxidation at low temperature were prepared by co-impregnation method. The effect of Pd–Ce synergistic function, Ce loadings, and properties of ZSM-5 zeolite on low temperature CO catalytic oxidation was investigated in detailed. The results showed that the Pd and Ce loading on ZSM-5 zeolite support at the same time enhanced catalytic activity compared with only Pd or Ce loading on ZSM-5 zeolite support. The properties of ZSM-5 zeolite had a strong influence for CO oxidation. Through the research, the ZSM-5 zeolite with high silicon aluminum ratio and small size also was helpful for CO oxidation. Among these catalysts, the catalyst with 19 wt% Ce loading displayed the highest catalytic activity. Chemical and physical properties of catalysts were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and TEM showed that Pd species were highly dispersed on the surface of ZSM-5 zeolite, which was strongly dependent on the amounts of Ce loading and the interaction among Pd species, Ce promoter and ZSM-5 support. The addition of CeO2 improved the dispersion of Pd species over ZSM-5, and synergistic function of Pd and CeO2 enhanced the catalytic activity. XPS characterization indicated that as the addition of Ce increased, Pd species was easy to enrich on the surface of the catalyst.  相似文献   

3.
Carbon coated monolith was prepared by sucrose solution 65 wt.% via dip-coating method. Sulfonation of incomplete carbonized carbon coated monolith was carried out in order to synthesize solid acid catalyst. The textural structure characteristics of the solid acid catalyst demonstrated a low surface area and pore volume. Palm fatty acid distillate (PFAD), a by-product of palm oil refineries, was utilized as oil source in biodiesel production. The esterification reaction subjected to different reaction conditions was performed by using the sulfonated carbon coated monolith as heterogeneous catalyst. The sulfonation process had been performed by using vapour of concentrated H2SO4 that was much easier and efficient than liquid phase sulfonation. Total acidity value of carbon coated monolith was measured for unsulfonated sample (0.5 mmol/g) and sulfonated sample (4.2 mmol/g). The effect of methanol/oil ratio, catalyst amount and reaction time were examined. The maximum methyl ester content was 89% at the optimum condition, i.e. methanol/oil molar ratio (15:1), catalyst amount (2.5 wt.% with respect to PFAD), reaction time (240 min) and temperature 80 °C. The sugar catalyst supported on the honeycomb monolith showed comparable reactivity compared with the sugar catalyst powder. However, the catalyst reusability studies showed decrease in FFA% conversion from 95.3% to 68.8% after four cycles as well as the total acidity of catalyst dropped from the value 4.2 to 3.1 mmol/g during these cycles. This might be likely due to the leaching out of SO3H group from the sulfonated carbon coated monolith surface. The leaching of active species reached a plateau state after fourth cycle.  相似文献   

4.
Simultaneous photocatalytic reduction of poisonous Cr(VI) and Ni(II) ions, coupled with photocatalytic oxidation of sodium dodecyl benzene sulfonate (SDBS) were studied with a trace amount of commercial titania nanoparticles and by means of a direct-photo-irradiation reactor. The co-presence of metal ions and SDBS causes metal ions reduction as well as SDBS oxidation to enhance and energy efficiency to improve. XRD, XPS and FTIR analysis were used to characterize TiO2 particles before and after usage with the aim of evaluating the mechanism of reactions. The effect of major operating parameters, pH and temperature, was investigated. Under conditions of [Cr(VI)]0 = [Ni(II)]0 = 5 mg/L, [SDBS]0 = 10 mg/L, [TiO2] = 40 mg/L, pH 6 and T = 35 °C; the removal efficiencies of 55.4%, 71.2% and 57.2% were obtained, respectively, for Cr(VI) and Ni(II) reduction, as well as for SDBS oxidation, after 110 min operation. The relevant kinetic model jointed with the Arrhenius equation was introduced. Pseudo-first-order reactions are relevant. Energy consumption (electrical and thermal) evaluations revealed that operations at higher temperatures provide significant cost reduction. Meantime, a criterion was proposed for a consistent assessment of this kind of processes.  相似文献   

5.
In the present study, 4 different functionalized pyrazoliums based on sulfoalkyl-pyrazolium hydrogensulfate and alkylsulfo-alakylpyrazolium hydrogensulfate were explored to catalyze biodiesel production from bitter apple oil (BAO). The results demonstrated that a longer chains catalyst of 2-(4-sulfobutyl) pyrazolium hydrogensulfate (SBPHSO4) exhibited the highest catalytic activity, which is attributed to its strong acidity. The highest yield of esters was up to 89.5% when the reaction was carried out under the conditions of 5.2 wt% of SBPHSO4, molar ratio of methanol to BAO of 15:1, 170 °C, and 800 rpm for 6 h. These results demonstrated that ionic liquids offer a promising new type of pyrazolium catalyst for biodiesel production. The use of clean ionic liquids in preparing clean biodiesel could solve the drawbacks associated with using the old conventional catalysts and might be employed as an efficient catalyst for such relevance.  相似文献   

6.
In this study, a series of Co–MgO mixed oxides (30 wt.% Co) were prepared by co-precipitation method and employed as catalyst in low temperature CO oxidation reaction. The preparation conditions were optimized by the Taguchi method of experimental design to synthesize a sample with high catalytic performance toward CO oxidation reaction. The effects of four variables, pH of solution, aging temperature, aging time and molarity of precursor solution at three levels were investigated. The optimized sample was characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed desorption of oxygen (O2-TPD), N2 adsorption/desorption, thermal gravimetric and differential thermal analysis (TGA/DTA), and transmission electron microscopy (TEM) techniques. The results revealed that the optimized sample showed a mesoporous structure with a narrow pore size distribution centered in the range of 7–17 nm and particle size about 5.5 nm. It was found that the molarity of solution and aging time had the most influence on the CO conversion, respectively. The catalytic results showed that the highest CO conversion obtained from samples synthesized by Taguchi orthogonal array was about 90% at 200 °C, while the CO conversion for optimized sample was 95%. In addition, the effect of operational conditions was studied over optimized sample.  相似文献   

7.
The response of two biofilters filled with an organic waste material for treating ethylbenzene and toluene was studied for 415 and 472 operating days, respectively. The peak elimination capacities (ECMAX) recorded were 170 g m?3 h?1 for ethylbenzene (ECMAX) and 138 g m?3 h?1 for toluene. Regarding the degradation profile through the biofilters, an increase in the inlet concentration displaced the degradation profile into the downstream section. A sudden decrease in the performance of both biofilters occurred when the moisture content (MC) of the packing material exceeded 37% for ethylbenzene and 30% for toluene. Thus, a recommended MC value was established in the 15–30% range. Given the bioreactor was operated at a low MC level, fungi prevailed over bacteria. Nevertheless, synergism was detected between both microorganism types for the mineralization of the aromatic hydrocarbons.  相似文献   

8.
The base catalyst LZ-2, which was the mixture of CaO and Na–NaOH/Al2O3·3H2O, was chosen for the decomposition of phenol tar to generate valuable chemicals. The selectivity of LZ-2 for dimethyl phenyl carbinol, α-methyl styrene dimer and cumenyl phenol was 100%, 100% and 98%, respectively. Under the optimum operating conditions of catalyst 2.5 wt%, operating temperature 603.15 K and decomposition time 3.5 h, decomposition ratios of cumenyl phenol and dimethyl phenyl carbinol were 98.7% and 99.97%, respectively. In addition, the experimental repeatability demonstrated that the total yield of valuable chemicals still reached 90.1% after the catalyst being used five times. Mass and energy balance indicated that the catalytic decomposition was a high potential for the recycling of chemicals from phenol tar.  相似文献   

9.
Titania nanomaterial with an anatase structure and 5.6 nm crystallite size and 280.7 m2 g−1 specific surface areas had been successfully prepared by sol–gel/hydrothermal route. The effect of pH as a type of autoclave and calcination was studied. Crystallite size and phase composition of the prepared samples were identified. X-ray diffraction analyses showed the presence of anatase with little or no rutile phases. The crystallite size of the prepared TiO2 with acidic catalyst was both smaller than that prepared with basic catalyst, and was increasing after acidic calcinations by a factor 4–5. Basic calcinations produced a specific increase of 1.5. Rutile ratio and the particle size were increased after calcination at 500 °C. However, TiO2 powder synthesized using a basic catalyst persisted the anatase phase and a loosely aggregation of particles. Anatase TiO2 as prepared with acidic catalyst in Teflon lined stainless steel autoclave demonstrated the highest photocatalytic activity for degradation of 2,6-dichlorophenol-indophenol under ultraviolet irradiation with t½ 0.8 min.  相似文献   

10.
Swine excreta were dried by boiling via immersion in hot oil. In this method, moisture in the excreta is replaced with oil or evaporated by turbulent heat transfer in high-temperature oil. The dried excreta can be used in an incinerator like low-rank coal or solid fuel. Refined waste oil and B–C heavy oil were used for drying. Drying for 8 min at 150 °C reduced the water content of raw excreta from 78.90 wt.% to 1.56 wt.% (refined waste oil) or 1.62 wt.% (B–C heavy oil) and that of digested excreta from 79.58 wt.% to 3.40 wt.% (refined waste oil) or 3.48 wt.% (B–C heavy oil). The low heating values of the raw and digested excreta were 422 kJ/kg and ?2,713 kJ/kg, respectively, before drying and 27,842–28,169 kJ/kg and 14,394–14,905 kJ/kg, respectively, after drying. A heavy metal analysis did not detect Hg, Pb, Cd, As, and Cr in the dried excreta, but Al, Cu, and Zn, which occur in the feed formula, were detected. Thermogravimetric analysis before and after drying revealed that emission of volatiles and combustion of volatiles and fixed carbon occurred at temperatures of 250–500 °C when air was used as the transfer gas.  相似文献   

11.
The use of different lower and higher alcohols viz; methanol, ethanol, n-propanol and n-octanol, for the synthesis of methyl, ethyl, propyl and octyl fatty acid esters by transesterification of vegetable oil (triglycerides) with respective alcohols also known as ‘Bio-diesel’ and ‘Bio-lubricants’ was studied in detail. The reactions were carried out in a batch process. The activity with different supports like clay (K-10), activated carbon, ZSM-5, H-beta and TS-1 were compared. The superacids (heteropolyacids, HPA) viz; Dodeca-Tungstophosphoric acid [H3PO4·12 WO3·xH2O] (TPA) and Dodeca-Molybdo phosphoric acid ammonium salt hydrate [H12Mo12N3-O40P + aq] (DMAA) was used to increase the acidity and so the activity by loading on the most active support viz; clay (K-10). These HPA loaded on clay as a catalyst was used for the following study: effect of percent HPA loading on clay, effect of different vegetable oils, effect of different alcohols on the triglyceride conversion based on glycerol formation and selectivity based on alkyl esters formation. The data is compared at the best-optimized identical set of operating reaction conditions: 170 °C, 170 rpm, catalyst loading: 5% (w/w of reaction mixture), molar ratio (oil: alcohol): 1:15 and time on stream of 8 h. The generated data is also evaluated based on the reported one.  相似文献   

12.
Oxidative disintegration of municipal waste activated sludge (WAS) using conventional Fenton (Fe2+ + H2O2, CFP) and Fenton type (Fe0 + H2O2, FTP) processes was investigated and compared in terms of the efficiency of sludge disintegration and enhancement of anaerobic biodegradability. The influences of different operational variables namely sludge pH, initial concentration of Fe2+ or Fe0, and H2O2 were studied in detail. The optimum conditions have been found as catalyst iron dosage = 4 g/kg TS, H2O2 dosage = 40 g/kg TS and pH = 3 within 1 h oxidation period for both CFP and FTP. Kinetics studies were performed under optimal conditions. It was determined that the sludge disintegration was happened in two stages by both processes: rapid and subsequent slow disintegration stages and rapid sludge disintegration stage can be described by a zero-order kinetic model. The effects of oxidative sludge disintegration under the optimum conditions on anaerobic digestion were experienced with biochemical methane potential (BMP) assay in batch anaerobic reactors. Total methane production in the CFP and FTP pre-treated reactors increased by 26.9% and 38.0%, relative to the untreated reactor (digested the raw WAS). Furthermore, the total chemical oxygen demand reductions in the pre-treated reactors were improved as well.  相似文献   

13.
The start-up and operation of a partial nitritation sequencing batch reactor for the treatment of landfill leachate were carried out on intermittent aeration mode. Partial nitrite accumulation was established in 15 days after the mode was changed from continuous aeration to intermittent aeration. Despite the varying influent composition, partial nitritation could be maintained by adjusting the hydraulic retention time (HRT) and the air flow rate. An increase in the air flow rate together with a decrease in air off duration can improve the partial nitritation capacity and eventually result in the development of granular sludge with fine diameters. A nitrogen loading rate of 0.71 ± 0.14 kg/m3/d and a COD removal rate of 2.21 ± 0.13 kg/m3/d were achieved under the conditions of an air flow rate of 19.36 ± 1.71 m3 air/m3/h and an air on/off duration of 1.5 min/0.7 min. When the ratio of total air flux (TAF) to the influent loading rate (ILR) was controlled at the range of 163–256 m3 air/kg COD, a stable effluent NO3?–N/NOx?–N (NO2?–N plus NO3?–N) ratio below 13% was achieved. Interestingly, the effluent pH was found to be a good indicator of the effluent NO2?–N/NH4+–N ratio, which is an essential parameter for a subsequent anaerobic ammonium oxidation (Anammox) reactor.  相似文献   

14.
This paper presents the photo-catalytic degradation of real refinery wastewater from National Refinery Limited (NRL) in Karachi, Pakistan, using TiO2, ZnO, and H2O2. The pretreatment of the refinery effluent was carried out on site and pretreated samples were tested at 32–37 °C in a stirrer bath reactor by using ultra-violet photo oxidation process. The degradation of wastewater was measured as a change in initial chemical oxygen demand (COD) and with time. Optimal conditions were obtained for catalyst type, and pH. The titanium dioxide proved to be very effective catalysts in photo-catalytic degradation of real refinery wastewater. The maximum degradation achieved was 40.68% by using TiO2 at 37 °C and pH of 4, within 120 min of irradiations. When TiO2 was combined with H2O2 the degradation decreased to 25.35%. A higher reaction rate was found for titanium dioxide. The results indicate that for real refinery wastewater, TiO2 is comparatively more effective than ZnO and H2O2. The experiments indicated that first-order kinetics can successfully describe the photo-catalytic reaction. The ANOVA results for the model showed satisfactory and reasonable adjustment of the second-order regression model with the experimental data. The ANOVA results also showed that pH is significant than reaction time and catalyst dosage of TiO2; and in case of ZnO, reaction time is significant than pH and catalyst dosage. This study proves that real refinery wastewater reacts differently than synthetic refinery wastewater, oil field produced water or oil water industrial effluent.  相似文献   

15.
This paper reports the performance of a compost biofilter subjected to periodic intermittent loads of gas-phase hexane and toluene. The biofilter was operated for 10 h per day, at different empty bed residence times (4, 2 and 1.3 min), and at different inlet concentrations of hexane and toluene, varying between 2 and 3.8 g m?3, respectively. Steady-state removal efficiency profiles, reaching more than 90% for both the pollutants, was observed after 44 days of operation. Periodic operation of the compost biofilter was characterized by an adsorption step, followed by biological conversion of the pollutants by the microorganisms inherent to the compost. After resuming daily biofilter operation, the required times for biochemical reaction to dominate the initial adsorption step was observed to be 2.5 and 1 h, respectively, for toluene and hexane. The maximum elimination capacity due to the biological step was found to be 61.6 g m?3 h?1. The results from this study showed the effectiveness of the biofilter to handle mixtures of gas-phase pollutants, subjected to regular intermittent operations, thus proving their worthiness for industrial use.  相似文献   

16.
Biodegradation of toluene vapour was investigated for 168 days in a polyurethane packed biofilter inoculated with a mixed microbial population. Biofilter consisted of five square cross-section modular units each of size 0.16 m × 0.16 m × 0.20 m and filled with the polyurethane foam cubes up to a height of 0.15 m. Inlet concentration of toluene was varied from 0.04 to 2.5 g m?3 and the volumetric flow rate of toluene loaded air from 0.06 to 0.90 m3 h?1.Depending upon initial loading rates, removal efficiency ranging from 68.2 to 99.9% and elimination capacity ranging from 10.85 to 90.48 g h?1 m?3 were observed during steady state operations. More than 90% removal efficiency was observed up to an inlet loading rate of 76.3 g h?1 m?3. High carbon recovery (>90%) indicated effective biodegradation in the bed. Low variation of pH (7.2–8.8) and pressure drop (45.8–76.3 Pa) was observed. The stability of the biomass was evident from the fast response of the biofilter to shutdown and restartup.  相似文献   

17.
Alkylpyridine N-oxides are important intermediates in the pharmaceutical and agrochemicals industries. The N-oxides are produced via the homogeneously catalyzed oxidation of the respective alkylpyridines using a 50% excess of hydrogen peroxide. The competitive hydrogen peroxide decomposition produces oxygen in the flammable environment of alkylpyridines and thus forms a key hazard for this reaction. In this work, the N-oxidation was performed under pressure in the temperature range of 110–125 °C with different catalyst concentrations. It was shown that temperature had an undisputable positive effect on the N-oxidation efficiency. The accurate measurement of the pressure rise due to decomposition was difficult. However, only 5% of the added H2O2 decomposed when stoichiometric quantities were employed, even in the temperature of 110 °C. The N-oxidation was very efficient, even when the lowest concentration of catalyst employed in this study was used.  相似文献   

18.
In this study, chemical oxygen demand (COD) was characterized as total organic constituents and the isolated humic substances (HS) were characterized as an individual organic contaminant in landfill leachate. It was found that the HS content of landfill leachate was 83.3%. The results of laboratory tests to determine the roles of HS in reducing the organic content of landfill leachate during Fenton process are presented. Furthermore, the performances of oxidation and coagulation of Fenton reaction on the removal of HS and COD from leachate were investigated. The change curves of HS removal were similar to those of COD. The HS removal was 30% higher than COD removal, which indicated that HS were mostly degraded into various intermediate organic compounds but not mineralized by Fenton reagent. The oxidation removal was greatly influenced by initial pH relative to the coagulation removal. The oxidation and coagulation removals were linear dependent with hydrogen peroxide and ferrous dosages, respectively. Ferrous dosage greatly influenced the coagulation removal of COD at low ratio ([H2O2]/[Fe2+] < 3.0), but not at extremely high ratio ([H2O2]/[Fe2+] > 6.0). The coagulation removal of HS was not affected obviously by oxidation due to both Fenton oxidation and coagulation remove high molecular weight organics preferentially. Higher temperature gave a positive effect on oxidation removal at low Fe2+ dosage, but this effect was not obvious at high Fe2+ dosage.  相似文献   

19.
This research conducted both lab-scale and pilot-scale tests by selecting toluene as the typical volatile organic compounds (VOCs) and by using the promising non-thermal plasma oxidation technology – dielectric barrier discharge (DBD). To develop baseline engineering data to demonstrate the feasibility of application of self-made DBD reactors, the peak voltage, gas flow speed, initial toluene concentration, discharge frequency and duty ratio were studied. The results showed that toluene removal efficiency improves with increase of electrical voltage, frequency and duty ratio, and declines with increase of polar distance, gas flow speed and toluene initial concentration. When the voltage increases, the energy efficiency rises first and then drops. The energy efficiency reaches the climax when the energy density reaches 150.8 J/L and 101.7 J/L in the lab-scale experiment and pilot-scale experiment respectively.  相似文献   

20.
This study aims to develop a methodology for the thermal characterization of MSWI fly ash. We performed TGA–DTA and component variation analysis, microstructure transfer of sintered fly ash, as well as leaching toxicity, volatilization ratio and specification transformation of heavy metals as a function of temperature. It is found that content of crystal phases first increases between room temperature and 800 °C and then decreases between 800 °C and 1200 °C, while that of glass phases registers a reverse trend. Fly ash registers a SiO2–Al2O3–metal oxides system and its content of glass phases is around 57%. Increase of sintering temperature between 600 °C and 1200 °C is conducive to the reduction of soluble As, Cd, Cu, Hg, Pb, Ni and Zn, while content of soluble Cr increases as temperature rises from 800 °C to 1200 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号