首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
Conventional hazard evaluation techniques such as what-if checklist and hazard and operability (HAZOP) studies are often used to recognise potential hazards and recommend possible solutions. They are used to reduce any potential incidents in the process plant to as low as reasonably practicable (ALARP) level. Nevertheless, the suggested risk reduction alternatives merely focus on added passive and active safety systems rather than preventing or minimising the inherent hazards at source through application of inherently safer design (ISD) concept. One of the attributed reasons could be the shortage of techniques or tools to support implementation of the concept. Thus, this paper proposes a qualitative methodology that integrates ISD concept with hazard review technique to identify inherent hazards and generate ISD options at early stage of design as proactive measures to produce inherently safer plant. A modified theory of inventive problem solving (TRIZ) hazard review method is used in this work to identify inherent hazards, whereby an extended inherent safety heuristics tool is developed based on established ISD principles to create potential ISD options. The developed method namely Qualitative Assessment for Inherently Safer Design (QAISD) could be applied during preliminary design stage and the information required to apply the method would be based on common process and safety database of the studied process. However, user experiences and understanding of inherent safety concept are crucial for effective utilisation of the QAISD. This qualitative methodology is applied to a typical batch reactor of toluene nitration as a case study. The results show several ISD strategies that could be considered at early stage of design in order to prevent and minimise the potential of thermal runaway in the nitration process.  相似文献   

2.
Quantitative Risk Assessment (QRA) has been a very popular and useful methodology which is widely accepted by the industry over the past few decades. QRA is typically carried out at a stage where complete plant has been designed and sited. At that time, the opportunity to include inherent safety design features is limited and may incur higher cost. This paper proposes a new concept to evaluate risk inherent to a process owing to the chemical it uses and the process conditions. The risk assessment tool is integrated with process design simulator (HYSYS) to provide necessary process data as early as the initial design stages, where modifications based on inherent safety principles can still be incorporated to enhance the process safety of the plant. The risk assessment tool consists of two components which calculate the probability and the consequences relating to possible risk due to major accidents. A case study on the potential explosion due to the release of flammable material demonstrates that the tool is capable to identify potential high risk of process streams. Further improvement of the process design is possible by applying inherent safety principles to make the process under consideration inherently safer. Since this tool is fully integrated with HYSYS, re-evaluation of the inherent risk takes very little time and effort. The new tool addresses the lack of systematic methodology and technology, which is one of the barriers to designing inherently safer plants.  相似文献   

3.
Many worlds' major process industry accidents are due to BLEVE such as at Feyzin, France, 1966 and San Juan Ixhuatepec, Mexico City, 1984. One of the approaches to eliminate or minimize such accidents is by the implementation of inherently safer design concept. This concept is best implemented where the consequence of BLEVE can be evaluated at the preliminary design stage, and necessary design improvements can be done as early as possible. Thus, the accident could be avoided or minimized to as low as reasonably practicable (ALARP) without resorting to a costly protective system. However, the inherent safety concept is not easy to implement at the preliminary design stage due to lack of systematic technique for practical application. To overcome these hurdles, this paper presents a new approach to assess process plant for the potential BLEVE at the preliminary design stage and to allow modifications using inherent safety principles in order to avoid or minimize major accidents. A model known as Inherent Fire Consequence Estimation Tool (IFCET) is developed in MS Excel spreadsheet to evaluate BLEVE impacts based on overpressure, radiation heat flux and missile effects. In this study, BLEVE impacts are the criteria used as the decision-making for the acceptability of the design. IFCET is integrated with iCON process design simulator for ease of data transfer and quick assessment of potential BLEVE during the design simulation stage. A case study was conducted to assess of potential BLEVE from a propane storage vessel at the design simulation stage using this new approach. The finding shows promising results that this approach has a potential to be developed as a practical tool.  相似文献   

4.
化工过程开发中本质安全化设计策略   总被引:2,自引:6,他引:2  
本质安全化设计是预防人为失误及设备失效、降低化工过程风险应优先采用的技术。在比较传统设计方法与本质安全化设计方法的基础上,讨论了化工过程开发各阶段实现本质安全的机会,认为在开发初期,实施本质安全化的成本低,难度小;通过分析可行性研究、工艺研究、概念设计、基础设计、工程设计等阶段本质安全化设计的影响因素、设计目标和设计方法,探索化工过程开发中本质安全化设计策略,提出了化工过程本质安全化设计流程。通过工艺过程本质安全设计、工艺流程的简化和优化、不同设计方案的本质安全度评估等措施,可提高化工过程本质安全水平。  相似文献   

5.
Inherent safety is a proactive approach for hazard/risk management during process plant design and operation. It has been proven that, considering the lifetime costs of a process and its operation, an inherently safer approach is a cost-optimal option. Inherent safety can be incorporated at any stage of design and operation; however, its application at the earliest possible stages of process design (such as process selection and conceptual design) yields the best results.Although it is an attractive and cost-effective approach to hazard/risk management, inherent safety has not been used as widely as other techniques such as HAZOP and quantitative risk assessment. There are many reasons responsible for this; key among them are a lack of awareness and the non-availability of a systematic methodology and tools.The inherent safety approach is the best option for hazard/risk management in offshore oil and gas activities. In the past, it has been applied to several aspects of offshore process design and operation. However, its use is still limited. This article attempts to present a complete picture of inherent safety application in offshore oil and gas activities. It discuses the use of available technology for implementation of inherent safety principles in various offshore activities, both current and planned for the future.  相似文献   

6.
The concept of inherently safer design was introduced to design a fundamentally safer process so that hazards can be avoided or minimized rather than controlled or managed. The ideology has later been extended to the environmental, but not health criteria due to its complicated underlying principles. Even though health risk methods are already established, majority are for existing plants assessment. Early consideration of health aspect starting from process design stage however, has received much less attention. This paper introduces a simple graphical method to evaluate the inherent occupational health hazards of chemical processes during the R&D stage. A survey was conducted to identify the important health parameters for the graphical method development, involving nine world inherent safety and health experts. Based on their input, process mode, material volatility, operating pressure and chemical health hazard (toxicity and adverse effect) are the significant factors affecting inherent health hazards of chemical processes. The choice of parameters was bounded by the information availability at this stage. The method was applied on six routes to methyl methacrylate and ten routes to acetic acid. The parameters were plotted for each subprocess of the alternative routes. The ‘healthiest’ route was selected based on thorough hazards assessment across all the subprocesses. The first case study reveals the tertiary butyl alcohol as the ‘healthiest’ one as it poses relatively lower, or at least comparable hazards to the other routes due to exposure and health impacts. Meanwhile the acetic acid case study indicates ethanol oxide and ethyl oxide based routes as the inherently healthier as they operate at lower operating pressure besides posing comparable hazards level for the other three parameters, compared to the other routes. The case studies show that the inherent occupational health of a chemical process can already be evaluated easily in the R&D stage with the simple graphical method proposed.  相似文献   

7.
In the current practice, safety assessment is conducted once the process design has been completed. At this stage of design, the freedom to change the conceptual design is very limited and whatever strategies to be implemented will only control the hazard. This paper reports on the development of inherent safety index known as a process stream index (PSI) for inherent safety level assessment at preliminary design stage from the perspective of an explosion. The aim for PSI is to calculate, compare and prioritize the level of inherent safety of process streams during simulation work that influences the explosion. By prioritizing the streams based on the potential for the explosion, the design engineers can easily identify the critical streams to be considered for improvement in order to avoid or minimize explosion hazards. An enhancement technique to reflect the contribution of the individual components in the mixture is introduced, which provide significant contribution to the ranking of inherent safety level of process streams. The assessment of inherent safety level using PSI is demonstrated by case studies of HYSYS simulation for Acrylic Acid Plant and Natural Gas Liquid (NGL) plant.  相似文献   

8.
The implementation of inherently safer design concepts is considered beneficial to avoid hazards during early stages of design. The application of existing process design and modeling techniques that aid ‘substitution’, ‘intensification’ and ‘attenuation’ has been shown in this work. The techniques have been applied to solvent processes because of the inherent hazards associated with them, such as large inventories, and presence of highly toxic and flammable materials. For ‘substitution’, computer aided molecular design technique has been applied to select inherently safer solvents for a solvent operation. For ‘intensification’ and ‘attenuation’, consequence models and regulatory guidance from EPA RMP have been integrated into process simulation. Combining existing techniques provides a design team with a higher level of information to make decisions based on process safety. A case study has been shown for liquid extraction of acetic acid–water mixture. Suitable solvents were identified using ICAS 11.0-ProCAMD, and consequence models were integrated into Aspen plus simulator using a calculator sheet. Solvents such as 5-nonanone, 2-nonanone and 5-methyl-2-hexanone provide inherently safer options, but conventionally-used solvent, ethyl acetate, provides higher degree of separation capability. A conclusive decision regarding feasible solvents and operating conditions would depend on design requirements, regulatory guidance, and safety criteria specified for the process. Inherent safety has always been an important consideration to be implemented during early design steps, and this paper presents a methodology to incorporate the principles and to obtain inherently safer alternatives.  相似文献   

9.
This paper reviews the progress in inherent safety. A summary of the historical developments up to the year 2000 is first presented which sets the stage for a review of the key developments during the first 11 years of the 21st century. A landscape of inherent safety is developed by mapping publications on two coordinates. The first coordinate, the risk coordinate, indicates if the focus of a paper relates to inherent hazard or to the likelihood of events. The second coordinate, the management coordinate, focuses on the ways and means to understand and assess inherent safety. Out of the 187 papers that have appeared over this 11-year period, 131 pertained to developments in inherently safer design; these have been organized on the proposed landscape. The rest introduce the basic concepts of inherent safety and address its incorporation into regulation, education and accident investigation. These along with the application of inherent safety in industry are also discussed. We conclude with a discussion on recent trends in industry and suggest directions for future research.  相似文献   

10.
Over the years, a number of high-profile laboratory accidents involving severe injuries, fatalities, and economic losses have been reported, prompting a significant increase in efforts towards laboratory safety. However, the dominant safety measures rely excessively on add-on safeguards such as sprinklers and respirators and pay little attention to reducing the hazardous factors at their sources. This study introduced the inherent safety concept to minimize laboratory hazards and developed a dedicated implementation tool called Generic Laboratory Safety Metric (GLSM). The Traditional Laboratory Safety Checklist (TLSC) was first used to represent the safety indicators, and then the Precedence Chart (PC) and Bayesian Networks (BN) methods were used to reconcile the safety indicators to develop the GLSM. The developed GLSM was subsequently demonstrated through a case study of a university laboratory. The results revealed that the safety level increased from 2.44 to 3.52 after the risk-based inherently safer retrofitting, thus creating laboratory conditions with a relatively satisfactory safety level. This work presented a set of generic solutions to laboratory retrofitting towards inherent safety with a novel GLSM as the implementation tool. The proposed GLSM would contribute to risk quantification and identification of key risk factors for assigning targeted and fundamental safety measures to achieve inherently safer laboratories.  相似文献   

11.
This paper discusses the enhancement of inherent safety review and its implementation in the chemical process development and design. The aim is to update and improve the existing inherently safer design review (ISDR) practices during design of chemical process plant by exploiting major accident cases from the U.S. Chemical Safety Board (CSB) and Failure Knowledge Database (FKD). Although the basic guidelines to conduct ISDR during design phase are available, however they are too general and incomplete. The review criteria and their best timing for application are still missing. This paper attempts to develop the accident-based ISDR for chemical process plant design. The proposed accident-based ISDR is supported with detail review criteria for each phase of process design. The timing of ISDR application is corresponding to the common design tasks and decisions made in the design project. Therefore, timely design review could be done at the specific design task and the findings help designer to make a correct decision making.  相似文献   

12.
Safety of chemical processes and plants is a matter of high priority. The design of an inherently safer process is one of very beneficial ways of achieving this goal.The paper describes the method of designing an inherently safer process for a chosen set of equipment and materials involved by applying non-linear optimization. The optimization is aimed at finding an operational mode, which guarantees safety of the process under normal conditions and provides maximal attainable safety in case of one typical accident scenario – cooling failure. Discussion covers problem statement, choice of the optimization criteria, appropriate methods for defining control variables.An important practical challenge is stability analysis of the optimized process mode with respect to permissible deviations of control parameters and variables from the estimated values. The original method for the stability analysis of a non-stationary process is proposed. It comprises simplified preliminary evaluation method followed by the more detailed numerical optimization-based analysis.Several examples illustrate application of the methods proposed.  相似文献   

13.
该文提出了一种在设计初期进行化工过程本质安全化设计的策略。首先进行危险物质与危险能量两类共计11种危险类型的危险辨识。针对辨识出的危险类型,通过与相应的临界条件比较进行快速的危险评价,对于不可接受的危险必须采取本质安全化措施,可接受的危险可有选择性地进行本质安全化设计。在设计初期可以使用的本质安全化原则主要是消除、最小化、替代和缓和,针对11种危险类型可以应用不同的本质安全化设计模型,以使实际进行本质安全化设计时更加简单与快捷。该文把提出的本质安全化设计策略应用到一个甲苯硝化制硝基甲苯的工艺,形成了多种本质安全化措施,可以用来在设计初期消除或减少危险。  相似文献   

14.
The growing scale and complexity of process industries have brought safety, health, and environmental issues to the forefront. As a result, proactive risk reduction strategies (RRSs) are commonly employed to address these issues by reducing the frequency or mitigating the consequences of potential incidents. Among these strategies, inherent safety, which is a proactive measure of loss prevention and risk management, is considered to be the most effective method. This review aims to provide a comprehensive analysis of RRSs for achieving inherency, as well as techniques for evaluating the performance of inherent safety, health, and environmental aspects. Background information is presented, including the development and implementation of the inherently safer process design, as well as the approaches for achieving inherently healthier and environmentally friendlier processes. Subsequently, the execution approaches and practical applications of other RRSs are discussed to highlight the distinctiveness and benefits of inherent safety. Next, this study examined the characteristics of inherency assessment tools (IATs) based on available information at different process stages. Furthermore, the evaluation methods and historical development of IATs are investigated from the perspectives of safety, occupational health, and environmental considerations, followed by a statistical analysis of IATs. It is concluded that the no-chemical hazards-based IATs have not been extensively studied yet, which may improve the safety level of process plants from the perspective of comprehensive inherency risk reduction. As a way forward, future research opportunities are proposed to promote the implementation of greater optimized risk management.  相似文献   

15.
As a proactive safeguard, inherent safety has been regarded as the top hierarchy for loss prevention and risk management due to its salient features in eliminating or significantly reducing risks at source rather than mitigating them by add-on protections. Simultaneously, various assessment tools have been developed for ranking and selecting inherently safer designs or modifications. However, there still lacks a metric that can systematically incorporate various hazardous factors, which may hinder most industries from utilizing it to a full extent. To address this limitation, this work developed a Systematic Inherent Safety Metric (SISM) for measuring the inherently safer modifications. Firstly, the conceptual framework of SIS was proposed based on 5M1E (man, machine, material, method, measurement, and environment). Subsequently, analytic hierarchy process and fuzzy comprehensive evaluation were adapted to conduct risk identification and assessment. Finally, taking chlorine liquefaction process as a case study, the applicability and efficacy of SIS were validated based on PDCA (plan-do-check-action) cycle. The results show that the SISM value has improved from the relatively dangerous (RD) to the relatively safe (RS) after implementing SIS, thus demonstrating that the revised design is inherently safer than the base design.  相似文献   

16.
The lack of formal integration between process design stages with risk and consequence estimation is a hurdle to designing inherently safe process plants. Conventional risk assessment methodologies are often not carried out concurrently with process design. Therefore, process designers lack the information about risk levels and consequence that may result from the process conditions being considered in a particular process route until the design is completed. Hence, effects of changes in process conditions on risk levels and consequence cannot be studied in a time effective manner during the design stages. Few studies have been identified on the possibility and viability of integrating risk estimation with process design. But viable framework and methodology for doing so has not yet been reported. This paper presents a feasible framework in which risk and consequences estimation can be part of design stages. A demonstrative tool named as integrated risk estimation tool (iRET) was developed by using process simulation software, HYSYS and spreadsheet, MS Excel as the platforms. iRET estimates risk due to explosions by using TNT equivalence method and the TNO correlation method. iRET has a potential to be extended to include all forms of risk such as fire, explosion, toxic gas releases and boiling liquid expanding vapour explosion (BLEVE). The paper also presents case studies to demonstrate the functionality and viability of using iRET in conjunction with process design. The results of these case studies have successfully shown that the risk due to explosion can be assessed during the initial design stage ensuring a safer plant. The framework and iRET there by presented here provide systematic methodology and technology to design inherently safer plants.  相似文献   

17.
This work shows an application of inherent safety principles to a reaction widely used in the pharmaceutical industry. More specifically, it incorporates the teachings of Trevor Kletz into the design of an inherently safer process for the N-oxidation of alkylpyridines. This reaction is of interest because of the hazards resulting from the undesired, gas-generating decomposition of hydrogen peroxide, the oxidizing agent. The generation of oxygen, combined with the flammability of the alkylpyridines, represents a serious fire and explosion hazard for this process. The purpose of this paper is to demonstrate how an inherently safer process can be potentially achieved by designing improved reactors and by assessing conditions that reduce or eliminate the hazards. Furthermore, it is shown that such improvement in safety increases the efficiency of the process and results in a cost reduction.  相似文献   

18.
For the processing industries, it is critically to have an economically optimum and inherently safer design and operation. The basic concept is to achieve the best design based on technical and business performance criteria while performing within acceptable safety levels. Commonly, safety is examined and incorporated typically as an after-thought to design. Therefore, systematic and structured procedure for integrating safety into process design and optimization that is compatible with currently available optimization and safety analysis methodology must be available.The objective of this paper is to develop a systematic procedure for the incorporation of safety into the conceptual design and optimization stage. We propose the inclusion of the Dow fire and explosion index (F&EI) as the safety metric in the design and optimization framework by incorporating F&EI within the design and optimization framework. We first develop the F&EI computer program to calculate the F&EI value and to generate the mathematical expression of F&EI as a function of material inventory and operating pressure. The proposed procedure is applied to a case study involving reaction and separation. Then, the design and optimization of the system are compared for the cases with and without safety as the optimization constraint. The final result is the optimum economic and inherently safer design for the reactor and distillation column system.  相似文献   

19.
The concept of inherent safety is important in developing an inherently safer and user-friendly process. This paper discusses a new integrated approach of computer-aided product design and inherent safety assessment. Computer-aided Molecular Design (CAMD) approach was utilized in this work to identify potential alternative to n-hexane, the widely used industrial solvent in extracting residual palm oil from pressed palm fibre. The formulation of solvent mixtures was optimized to meet the targeted physical properties before being tested using the Soxhlet Extraction method. Inherent safety assessment to assess the solvent's flammability, toxicity, reactivity, and explosiveness was conducted on the new solvent mix, Mixture 1 (n-hexane + ethanol), Mixture 2 (n-hexane + acetone) and Mixture 3 (n-hexane + n-butanol). It was found that Mixture 1 and 3 are safer than n-hexane and able to extract more oil than n-hexane and Mixture 2. However, the utilization of the solvent is dependent on the end product from the residual palm oil.  相似文献   

20.
Four strategies can be used to achieve safety in chemical processes: inherent, passive, active and procedural. However, the strategy that offers the best results is the inherent safety approach, especially if it is applied during the initial stages of a project. Inherently Safer Design (ISD) permanently eliminates or reduces hazards, and thus avoids or diminishes the consequences of incidents. ISD can be applied using four strategies: substitution, minimization, moderation and simplification. In this paper, we propose a methodology that combines ISD strategies with Quantitative Risk Assessment (QRA) to optimize the design of storage installations. As 17% of major accidents in the chemical industry occur during the storage process and cause significant losses, it is essential to improve safety in such installations. The proposed method applies QRA to estimate the risk associated with a specific design. The design can then be compared to others to determine which is inherently safer. The risk analysis may incorporate complex phenomena such as the domino effect and possible impacts on vulnerable material and human elements. The methodology was applied to the San Juanico tragedy that occurred in Mexico in 1984.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号