首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
随着工业化进程的不断推进,室内空气中的挥发性有机化合物(VOC) 对室内环境的污染日渐严重,对人体的健康也造成了危害。本文对此作了介绍,并综述了国内外室内空气污染物的监测、采样、分析手段及治理方法,着重叙述了多孔炭材料在环保中的应用开发。  相似文献   

2.
活性炭吸附对印染废水深度处理的研究   总被引:6,自引:1,他引:5  
活性炭吸附处理可使印染废水生化出水符合直接排放或回用的标准.对不同活性炭进行性能指标测试,据此筛选出对大分子有机物吸附性能较好的3种不同材质的括性炭(混合炭、原煤炭和果壳炭),并进行吸附容量实验.同时,考察不同空床接触时间(EBCT)下的微型快速穿透(MCRB)实验.结果表明,果壳炭在3种备选炭中COD去除率和活性炭吸附容量利用率最高;1个大中型炭柱中的EBCT为20 min的果壳炭床至少可以连续使用8 d才需更换新炭,而后置炭床的串联会保证出水在8 d后继续达到<纺织染整工业污染物排放标准>(GB 4287-1992)中一级排放标准(COD<50 mg/L).  相似文献   

3.
以乙二胺(EDA)还原氧化石墨烯(GO)制得一种吸附剂材料,即还原态氧化石墨烯(RGO)。考察了动态条件下Cd2+溶液的初始浓度、流速及吸附床高度对穿透曲线的影响,同时利用Bed-Depth-Service Time(BDST)模型对吸附床高度与穿透时间的关系进行线性拟合分析,研究了RGO对Cd2+溶液的动态吸附性能。结果表明,RGO可以有效地去除水溶液中的Cd2+,随着吸附床高度的增加,离子的去除率增大,穿透时间延长;当溶液初始浓度增大时穿透时间缩短,离子的去除率减小;而溶液的流速加快,穿透时间和去除率都相应减小。吸附床高度与穿透时间的关系可用BDST模型较好地进行描述,预测新的操作条件下的穿透时间与实验值误差均小于5%。  相似文献   

4.
麦草对水中苯胺的动态吸附研究   总被引:1,自引:0,他引:1  
通过对苯胺初始浓度、流速、初始pH值和吸附床高度对穿透曲线的影响进行探讨,采用BDST模型和Thomas模型对动态实验数据进行线性拟合分析,研究了麦草对水中苯胺的动态吸附性能。结果表明:麦草能够有效地去除水中的苯胺,随着吸附床高度增加,穿透时间延长;而随着苯胺初始浓度、流速和pH值的增大,穿透时间急剧缩短。BDST模型能够准确地预测新的操作条件下的穿透时间,误差均〈5%;Thomas模型能够很好地描述麦草对苯胺的动态吸附动力学,由Thomas模型获得的麦草吸附柱对苯胺的动态吸附量与实验值相符。对吸附饱和后的麦草可用0.6mol/L盐酸进行解吸。  相似文献   

5.
颗粒活性炭吸附去除水中三氯乙烯的研究   总被引:2,自引:1,他引:1  
通过吸附容量实验及微型快速穿透(MCRB)实验,考察了7种活性炭对水样中三氯乙烯(TCE)的去除效果.结果表明,表征活性炭对小分子化合物吸附容量的苯酚值可以预测各种活性炭对TCE的吸附容量;国内常用炭型对TCE的吸附性能与国际常用炭型相当.性价比更高;不同TCE初始浓度及低浓度甲醇对TCE吸附容量没有明显的影响,而自来水中天然有机物(NOM)的竞争吸附作用会降低活性炭对TCE的吸附容量;MCRB实验数据提供了较为准确的TCE平衡吸附容量.验证了各种活性炭对TCE的相对吸附容量,并显示使用2个串联活性炭炭床可以提高吸附容量利用率,节省处理费用,确保出水达标.  相似文献   

6.
以某焦化厂生化出水为研究对象,考寨了金属负载活性炭(简称负载炭)和Fenton氧化预处理等强化活性炭工艺对总氰化物(TCN)的去除效果.在TCN批式实验中,对负载炭的金属离子种类和固定方式进行了考察,同时研究了接触时间、DO对游离氰(KCN配水)、络合氰(K3Fe(CN)6配水)及焦化厂生化出水中TCN的去除效果.结果表明,负载金属离子可以有效提高活性炭对TCN的去除量,KI固定后的载铜活性炭对TCN的去除更有效.吸附作用在活性炭去除TCN过程中起着主要作用,同时TCN在活性炭表面也发生缓慢的催化氧化反应.在穿透实验中,采用了小型炭柱穿透和微型快速穿透实验方法,得到的TCN穿透曲线基本相同.含不同比例原煤炭和负载炭的小型炭柱处理经Fenton氧化预处理的焦化厂生化出水时,在18 d的启动阶段后形成生物活性炭柱,其出水能长期达到<城镇污水处理厂污染物排放标准>(GB 18918-2002)规定的要求.载铜话性炭可以提高活性炭工艺对TCN的去除能力,确保处理全程(57 d)出水的TCN达标.  相似文献   

7.
饱和吸氰炭再生方法及其机理的研究   总被引:1,自引:0,他引:1  
研究了饱和吸氰炭的化学药剂再生与活化方法,确定工作条件,经含H2O2,甲醛的0.5mol/LNaOH溶液再生,再用含10%CuCl2的2mol/LHCl溶液活化后活性炭的性能恢复到原炭的96%以上,研究表明,经再生与活化后炭样的比表面积所增加,中孔,微孔所占的比例增大,表面含氧基团增多是再生炭获得理想处理效果的主要原因。  相似文献   

8.
挥发性有机化合物的污染与防治   总被引:18,自引:1,他引:18  
挥发性有机化合物(VOC)对环境污染及治理是当前国际环保热点之一,本文对VOC污染大气及其机制作了论述,并介绍了《VOC跨国大气污染议定书》的主要内容。VOC的防治对策主要为开发与采用代用品,加强生产管理和使用管理,回收再生,分解等,文中对其效率及经济性进行了比较。  相似文献   

9.
凹凸棒土颗粒吸附剂的制备   总被引:12,自引:0,他引:12  
讨论了凹凸棒土的复配造粒及再生方法,考察了造粒添加剂的种类,焙烧温度,焙烧时间等因素对颗粒强度和脱色性能的影响。研究结果表明:凹凸棒土颗粒吸附剂制备的工艺条件是,凹凸棒土:AlCl3:MgCl2.6H2O:MsSO4.7H2O=1:05%:1%:1%,焙烧温度为450℃,焙烧时间为1h,吸附饱和后的颗粒吸附剂可以采用热再生。  相似文献   

10.
采用连续流活性炭炭床处理印染废水生化出水,通过XAD-8/XAD-4吸附树脂将印染废水生化出水中的溶解性有机物分为4类:疏水酸、非酸疏水物质、弱疏水物质和亲水物质,采用超滤膜法测定水样的分子量分布,对印染废水生化出水中不同种类以及不同分子量大小的有机物在煤质炭、椰壳炭2种活性炭动态实验处理过程中的去除特性进行研究。实验结果表明,2种活性炭对该水样中的有机物均有明显的去除效果,其中以煤质炭的处理效果较优。煤质炭吸附疏水性和亲水性有机物均有明显的处理效果,对非酸疏水物质和弱疏水有机物的吸附效果较差。煤质炭对分子量<10 k的小分子有机物的吸附效果对实验结果的贡献较大。  相似文献   

11.
Prediction of the adsorption capacity for volatile organic compounds (VOCs) onto activated carbons is elucidated in this study. The Dubinin-Radushkevich (D-R) equation was first used to predict the adsorption capacity of nine aromatic and chlorinated VOCs onto two different activated carbons. The two key parameters of the D-R equation were estimated simply from the properties of the VOCs using quantitative structure-activity relationship and from the pore size distribution of the adsorbent. The approach based on the D-R equation predicted well the adsorption capacity at high relative pressures. However, at the relative pressures lower than -1.5 x 10(-3), the D-R approach may significantly overestimate adsorption capacity. To extrapolate the approach to lower relative pressures, the integration of the D-R equation and the Langmuir isotherm, called the D-R-L model, was proposed to predict adsorption capacity over a wide range of relative pressures of VOCs. In this model, the Langmuir isotherm parameters were extracted from the predicted D-R isotherm at high relative pressures. Therefore, no experimental effort was needed to obtain the parameters of the D-R-L model. The model successfully predicted the adsorption capacity of aromatic and chlorinated hydrocarbons tested onto BPL and Sorbonorit B carbons over relative pressures ranging from 7.4 x 10(-5) to 0.03, suggesting that the model is applicable at the low relative pressures of VOCs often observed in many environmental systems. In addition, the molecular size of organic compounds may be an important factor affecting the adsorption capacity of activated carbons. For BPL carbon, an ultramicroporous adsorbent, the limiting pore volume Wo of the D-R equation decreased when the kinetic diameter of the adsorbate was larger than 6 angstroms. However, for Sorbonorit B carbon, no reduction of Wo was found, suggesting that the Wo may be related to the pore size distribution of the adsorbents, as well as to their molecular size. This size exclusion effect may play an important role in predicting the adsorption capacity of VOCs onto microporous adsorbents in the D-R-L model and in the corresponding D-R equation.  相似文献   

12.
Abstract

Volatile organic compounds (VOCs) are a major concern for indoor air pollution because of the impacts on human health. In recent years, interest has increased in the development and design of activated carbon filters for removing VOCs from indoor air. Although extensive information is available on sources, concentrations, and types of indoor VOCs, there is little or no information on the performance of indoor air adsorption systems for removing low concentrations of primary VOCs. Filter designs need to consider various factors such as empty bed contact time, humidity effects, competitive adsorption, and feed concentration variations, whereas adsorption capacities of the indoor VOCs at the indoor concentration levels are important parameters for filter design. A preliminary assessment of the feasibility of using adsorption filters to remove low concentrations of primary VOCs can be performed. This work relates the information (including VOC classes in indoor air, the typical indoor concentrations, and the adsorption isotherms) with the design of a particular adsorbent/adsorbates system. As groundwork for filter design and development, this study selects the primary VOCs in indoor air of residences, schools, and offices in different geographical areas (North America, Europe, and Asia) on the basis of occurrence, concentrations, and health effects. Activated carbon fiber cloths (ACFCs) are chosen as the adsorbents of interest. It is demonstrated that the isotherm of a VOC (e.g., toluene on the ACFC) at typical indoor concentrations—parts per billion by volume (ppbv) level—is different than the isotherm at parts per million by volume (ppmv) levels reported in the publications. The isotherms at the typical indoor concentrations for the selected primary VOCs are estimated using the Dubinin–Radushkevitch equation. The maximum specific throughput for an indoor VOC removal system to remove benzene is calculated as a worst-case scenario. It is shown that VOC adsorption capacity is an important indicator of a filter’s lifetime and needs to be studied at the appropriate concentration range. Future work requires better understanding of the realistic VOC concentrations and isotherms in indoor environments to efficiently utilize adsorbents.  相似文献   

13.
研究了废弃物基活性炭对挥发性有机污染物中的典型组分--甲苯的吸附特性.结果表明,废弃物基活性炭吸附甲苯等温线的类型系优惠型吸附等温线,表明具有良好的吸附能力;同时其吸附甲苯时穿透时间的对数与甲苯入口浓度的对数之间具有良好的线性相关性,即可由吸附高浓度甲苯时的穿透时间估算低浓度时的穿透时间;动态吸附时废弃物基活性炭的中孔对甲苯亦具有一定的吸附性能.  相似文献   

14.
Activated carbon (AC) filters are used widely in air cleaning to remove volatile organic compounds (VOCs) and ozone (O(3)). This paper investigates the O(3) removal efficiency of AC filters after previous exposure to VOCs. Filter performance was tested using coconut shell AC and two common indoor VOCs, toluene and d-limonene, representing low and high reactivities with O(3). AC dosed with low, medium and high loadings (28-100% of capacity) of VOCs were exposed to humidified and ozonated air. O(3) breakthrough curves were measured, from which O(3) removal capacity and parameters of the Elovich chemisorption equation were determined. VOC-loaded filters were less efficient at removing O(3) and had different breakthrough behavior than unloaded filters. After 80 h of exposure, VOC-loaded AC samples exhibited 75-95% of the O(3) removal capacity of unloaded samples. O(3) breakthrough and removal capacity were not strongly influenced by the VOC-loading rate. Toluene-loaded filters showed rapid O(3) breakthrough due to poisoning of the AC, while pseudo-poisoning (initially higher O(3) adsorption rates that rapidly decrease) is suggested for limonene-loaded filters. Overall, VOC loadings provide an overall reduction in chemisorption rates, a modest reduction in O(3) removal capacity, and sometimes dramatic changes in breakthrough behavior, important considerations in filter applications in environments where both O(3) and VOCs are present.  相似文献   

15.
Volatile organic compounds (VOCs) are the cause of indoor air pollution and are readily emitted from furniture and cleaning agents. In Taiwan, the concentrations of indoor VOCs range roughly from 1 to 10 ppm. It is important to effectively reduce indoor VOC emissions and establish the implementation of long-term, low-cost, controlled techniques such as those found in the ultraviolet/titanium dioxide (UV/TiO2) control systems. This study evaluates the performance of a photoreactor activated by visible irradiation and packed with TiO2/quartz or TiO2/mobile catalytic material number 41 (MCM-41). The photocatalysts tested include commercial TiO2 (Degussa P-25) and synthesized TiO2 with a modified sol-gel process. The UV light had a wavelength of 365 nm and contained an 8-W, low-pressure mercury lamp. Reactants and products were analyzed quantitatively by using gas chromatography with a flame-ionization detector. It is important to understand the influence of such operational parameters, such as concentration of pollutant, temperature, and retention time of processing. The indoor concentrations of VOCs varied from 2 to 10 ppm. Additionally, the temperatures ranged from 15 to 35 degrees C and the retention time tested from 2 to 8.2 sec. The results show that quartz with TiO2 had a better photoreductive efficiency than quartz with MCM-41. The toluene degradation efficiency of 77.4% with UV/TiO2/quartz was larger than that of 54.4% with the UV/TiO2/MCM-41 system under 10-min reaction time. The degradation efficiency of the UV/TiO2 system decreased with the increasing concentrations of indoor VOCs. The toluene degradation efficiency at 2 ppm was approximately 5 times greater than that at 10 ppm. The photoreduction rate of the VOCs was also evaluated with the Langmuir-Hinshewood model and was shown to be pseudo-first-order kinetics.  相似文献   

16.
泡沫活性炭的制备及其对丙酮的吸附性能研究   总被引:1,自引:0,他引:1  
以中间相沥青和原煤为原料,在高温高压下发泡成型,经过高温炭化和水蒸气活化后制得了比表面积为672m2/g、中孔发达的泡沫状成型活性炭(MACFoam).该成型活性炭中含有大量的微米级孔道并具有良好的透气性,可以作为气流通道.由其所装填的吸附床层对丙酮的吸附行为与颗粒活性炭相似,可以使用Yoon-Nelson方程对实验穿...  相似文献   

17.
The removal characteristics of trace compounds and moisture in raw landfill gas (LFG) were studied. The LFG from the extraction well was saturated with water and moisture was eliminated by physical methods including cyclone-type dehydrator and compressor. The moisture removal efficiency of dehydrator and compressor was above 80%. As the moisture contents of LFG decreased, the toxic compounds like aromatics and chlorinated compounds were effectively removed by using the granular activated carbon. The breakthrough time and adsorption capacity of benzene, toluene, and ethyl benzene decreased rapidly when the relative humidity is over 60%. The effect of moisture was more pronounced at lower adsorbate concentrations tested than at higher concentrations. The breakthrough curves for multi-component mixtures show displacement effects. In the course of competing adsorption, adsorbates with strong interaction force to displace weakly bounded substances. Adsorption by activated carbon is in descending order of xylene, ethylbenzene, toluene, tri or tetrachloroethylene, benzene, carbon tetrachloride and chloroform in LFG, respectively.  相似文献   

18.
椰壳活性炭吸附消除VOCs   总被引:1,自引:0,他引:1  
对一种椰壳活性炭对甲基丙烯酸甲酯的吸附消除行为进行了研究,重点考察了甲基丙烯酸甲酯的浓度、流速和吸附温度等条件以及水汽存在时对活性炭吸附行为的影响。结果表明,该颗粒活性炭对甲基丙烯酸甲酯有良好的吸附效果,甲基丙烯酸甲酯进口浓度和进气量的改变均会影响吸附饱和时间,导致其增加或减少。通过变温吸附实验确定降低环境温度对其吸附有促进作用。湿度为50%时吸附量相对干气饱和吸附量影响较小,说明该活性炭抗水汽能力较好。经多次重复再生实验,其饱和吸附量未见明显下降。  相似文献   

19.
采用以农业废弃物核桃壳为原料,天然软锰矿为添加剂共混制成的新型柱状活性炭进行了不同水蒸气含量下的烟气脱硫实验,利用Bangham和Elovich 2种模型对实验结果进行模拟与比较。实验结果表明,随着水蒸气含量的增加,穿透硫容和时间逐渐增加,并在水蒸气含量为10%时达到最大点,此时硫容为243.0 mg/g。模拟结果表明,2种模型均可以较好地模拟烟气脱硫实验结果,其中Elovich模型具有更高的拟合相关度和准确性。在对Elovich模型加以改进以包含水蒸气影响后,可以更好地描述烟气在不同水蒸气含量下的新型柱状活性炭脱硫情况。  相似文献   

20.
Abstract

The use of sorbents has been proposed to remove volatile organic compounds (VOCs) present in ambient air at concentrations in the parts-per-billion (ppb) range, which is typical of indoor air quality applications. Sorbent materials, such as granular activated carbon and molecular sieves, are used to remove VOCs from gas streams in industrial applications, where VOC concentrations are typically in the parts-per-million range. A method for evaluating the VOC removal performance of sorbent materials using toluene concentrations in the ppb range is described. Breakthrough times for toluene at concentrations from 2 to 7500 ppb are presented for a hydrophobic molecular sieve at 25% relative humidity. By increasing the ratio of challenge gas flow rate to the mass of the sorbent bed and decreasing both the mass of sorbent in the bed and the sorbent particle size, this method reduces the required experimental times by a factor of up to several hundred compared with the proposed American Society of Heating, Refrigerating, and Air-Conditioning Engineers method, ASHRAE 145P, making sorbent performance evaluation for ppb-range VOC removal more convenient. The method can be applied to screen sorbent materials for application in the removal of VOCs from indoor air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号