首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
以乌鲁木齐市主城区为例,将区域机动车排放清单数据作为排放源数据,利用AERMOD模型对乌鲁木齐市主城区域机动车排放的主要大气污染物质量浓度分布情况进行了数值模拟,并探讨了机动车排放的大气污染物对乌鲁木齐市城市空气质量的影响。结果表明:由机动车排放引起的乌鲁木齐市主城区域大气污染物CO、HC、NOx和PM10的质量浓度分布均表现为新市区和米东区高于其他几个区域,最大影响浓度点出现在新市区河南路北侧和米东区,为机动车所排放的大气污染物影响最为显著的区域;模拟得到的各大气污染物年均质量浓度在网格点最高值均低于相关标准浓度限值;显著影响区域范围内,NOx模拟预测浓度占区域环境空气质量浓度的44.12%,是区域环境空气中NOx的较为重要排放源,而可吸入颗粒物(PM10)仅占0.5%,说明机动车颗粒物排放不是乌鲁木齐城市空气中可吸入颗粒物的主要排放源。  相似文献   

2.
公路隧道实验调查交通来源空气污染方法   总被引:6,自引:3,他引:3  
采用公路隧道实验方法来调查交通来源空气的污染,笔者在中国北方和南方公路隧道内进行了气态污染物和大气颗粒物的监测,气态污染物和大气颗粒物为多点位同步监测,气态污染物包括CO,SO2,NOx和VOCs等,大气颗粒物包括TSP,PM10,PM2.5和粒径浓度谱分布等.同时,还调查和分析了隧道内机动车流量、能见度和气象因子.利用上述分析和测定结果,可以综合地研究交通来源污染及其对环境的影响.   相似文献   

3.
采用天气学分析和GRAPES-CUACE气溶胶伴随模式相结合的方式,探讨了北京市2016年2月29日~3月6日一次PM2.5重污染过程的大气环流特征、污染形成和消散原因,并利用伴随模式追踪了造成此次重污染过程的关键排放源区及敏感排放时段.结果表明:此次重污染过程北京市PM2.5浓度存在明显日变化,在3月4日20:00达到污染峰值,观测数据显示海淀站PM2.5浓度达到506.4μg/m3.形成此次重污染过程的主要天气学原因是北京站地面处于低压中心,且无冷空气影响,风速较弱,逆温较强,大气层结稳定,混合层高度较低,500hPa西风急流较弱,污染物水平和垂直扩散条件差,大气污染物易堆积;此次过程中,500hPa短波槽过境、边界层偏南风急流和冷空气不完全渗透导致了本次严重污染PM2.5浓度的短暂下降.伴随模式模拟结果表明,此次污染过程目标时刻的污染浓度受到来自河北东北部和南部、天津、山西东部、以及山东西北部污染物的共同影响,目标时刻PM2.5峰值浓度对北京本地源响应最为迅速,山西响应速度最慢;北京、天津、河北及山西排放源对目标时刻前72h内的累积贡献比例分别为31.1%、11.7%、52.6%和4.7%.北京本地排放源占总累积贡献的1/3左右,河北排放源累积贡献占一半以上,天津和山西分别占1/10和1/20,河北源贡献占主导地位,天津和山西贡献较小;目标时刻前3h内,北京本地源贡献占主导地位,贡献比例为49.3%,目标时刻前4~50h内,河北源贡献占主导地位,贡献比例为48.6%,目标时刻前50~80h,山西源贡献占主导地位,贡献比例在50%以上.  相似文献   

4.
一种快速定量估计大气污染物来源的方法   总被引:3,自引:0,他引:3  
定量估计目标区域大气污染物源区的时空分布对有效应对空气污染具有重要的支撑作用.本文利用FLEXPART拉格朗日粒子扩散模式、WRF模式和清华大学MEIC人为排放源清单,建立了一种基于气象条件和人为源排放清单的快速定量估计大气污染物源区时空分布的方法,并以上海地区2015年12月22—23日一次污染过程为例,确定了目标区域和目标时段的污染物来源分布.与WRF-Chem模式人为排放源"清零试验"结果的对比分析结果表明,本定量估计的结果尽管在数值存在一定偏差,但在时间和空间分布上具有良好的一致性.研究表明,本文提供了一种快速并较为准确的定量估计目标区域大气污染物源区时空分布的方法.  相似文献   

5.
近年来随着城市交通基础建设的发展,汽车保有量的大幅增加,化石燃料的燃烧也随之增加,城市空气质量面临新的挑战。其中,大气汞污染受到越来越多的关注。文章利用Lumex RA-915和多功能汞分析仪,应用原位检测方法在隧道行车中和道路旁2 m远处,测定了城市隧道及道路周边空气中的元素汞的分布,初步研究了地面交通汞排放对周边环境中元素汞分布的特征的影响。结果表明:隧道内各点的大气汞浓度变化较小,并与通风情况有关;当隧道外自然风风速较大时,隧道内外大气中元素汞浓度均明显降低,从10~17ng/m3降低到4~8 ng/m3。地面道路旁大气元素汞的分布随汽车行驶状况、温度和昼夜变化而变化。中午大气中汞浓度较低,而傍晚较高;从白天至晚上呈上升趋势,从10.8 ng/m3和16.4 ng/m3升高到15.7 ng/m3和19.4 ng/m3;气温越高,大气中的汞浓度也越高;路口汽车怠速时汞浓度较高。因此,应加大交通排放对城市大气汞污染贡献的关注。  相似文献   

6.
工业锅炉燃料燃烧过程排放的二氧化硫、氮氧化物、烟粉尘已成为中国大气煤烟型污染和复合型污染的重要诱因,其源强的核算对于大气污染防控、改善空气环境有着重要的意义。详细介绍了环境影响评价过程中工业锅炉废气基本参数的换算、现有锅炉大气污染物实测浓度的折算及新建锅炉大气污染物源强的核算方法,归纳了相关参数、排污系数,并对工业锅炉大气污染物源强核算研究的发展作出了展望,可为从事工业锅炉大气污染防治控制的环保工作者提供参考。  相似文献   

7.
一、引言大气污染研究中的一个重要课题是研究污染物在大气中的扩散稀释规律。目前,在实际估算污染物浓度分布时,仍广泛采用扩散方程的一种基本解——正态分布函数,以它为出发点,根据排放源和气象条件的具体情况,作相应简化,算出污染物的浓度分布。这样,浓度分布标准差(扩散参数)σ_y、σ_z 就成为最重要的参数。σ_y、σ_z 与气象因素有关,它虽不象温度、压力、风向、风速这些物理量直观和容易  相似文献   

8.
某实验室排放的尾气中含有一定量的二氧化硫,随尾气排放后在空气中扩散,对周围环境产生污染。运用通用流体模拟软件FLUENT计算了实验尾气在大气中的扩散,对N向风和W向风两种风向下的三种不同风速和静风工况下SO2的扩散分别进行了模拟,对所得计算结果进行了可视化,分析了风向和风速对尾气浓度扩散的影响。得出实验室周围环境空气中二氧化硫浓度及空气质量,可以用来评价一楼实验室对周围办公学习人员身体健康的影响。初步结论如下:W向风与N向风对尾气扩散规律的影响明显不同;随着风速增大,室内流场复杂,空气更新加快,污染物浓度降低;静风工况室内空气污染程度远低于有风工况。  相似文献   

9.
铅大气污染物环境保护标准限值研究   总被引:2,自引:0,他引:2  
铅因其对公众健康的影响,其大气污染物标准限值的合理性倍受关注.论文对比分析了国内外铅大气污染物环境质量与排放标准,通过计算提出基于保护环境空气质量的排放标准理论限值及建议限值.分析发现,目前国际上铅环境空气质量标准浓度限值为0.00015~0.0015 mg·m~(-3),但多采用世界卫生组织(WHO)的年均浓度限值0.0005 mg·m~(-3);建议我国今后修订标准时对铅年均浓度和季均浓度限值进一步加严.与发达国家相比,我国铅环境空气质量季均浓度限值水平已显落后;国际上目前各类排放源铅大气污染物排放浓度限值在0.04~2 mg·m~(-3)之间,金属冶炼源等主要源的排放浓度限值在1~2 mg·m~(-3),其他排放源均在0.5 mg·m~(-3)以下;我国铅、锌熔炼源正在执行的排放浓度限值(8 mg·m~(-3))较为宽松,而其他源的铅大气排放浓度限值与国际上的限值基本一致.通过计算认为,保护公众健康的铅大气污染物的理论排放限值为1.2~2.4 mg·m~(-3).考虑到我国的经济技术水平,建议铅、锌熔炼源的铅大气污染物新建企业排放浓度限值为2 mg·m~(-3);其他源的新建企业排放浓度建议限值为0.5 mg·m~(-3).经过过渡期,现有企业应达到新建企业的排放控制要求.铅的企业边界浓度排放限值是保护企业边界附近公众健康的有效屏障,但鉴于铅的污染特性,对于具体建设项目应加强环评力度,提出更具体明确的排放控制要求,并加强对企业周边环境敏感点的环境监测等,采取综合措施保护公众健康.  相似文献   

10.
研究了夏季杭州市主要类型道路(隧道、快速道路、主干道和支路)空气中挥发性有机物的污染特征,以及2010年11月—2011年7月间快速道路空气中VOC的季节变化规律.分析结果表明,杭州市道路空气中VOC浓度显著大于风景区内VOC浓度,隧道浓度最高(828.4μg·m-3),其它道路空气中VOC浓度随着车流量减少而降低.源解析结果发现道路空气中VOC的主要贡献者为机动车排放,但同时也受到溶剂挥发、煤或生物质燃烧的影响,风景区内VOC则受煤或生物质燃料燃烧的影响更大.快速道路空气中VOC浓度和反应活性由机动车排放、植物排放和气象条件共同决定,呈现夏〉秋〉冬〉春的季节变化特征.机动车排放的烯烃和芳香烃是道路空气中主导的活性VOC物种,说明机动车排放是杭州市大气反应活性的最大贡献者.此外,在夏、秋季节,植被排放的异戊二烯显著的增强了道路空气中VOC的反应活性.  相似文献   

11.
为研究河谷型城市地形及其引起的风场和污染物扩散的复杂问题,利用CFD(计算流体力学)方法和复杂地形网格生成技术,建立河谷型城市风场及大气污染分布的数值仿真模型,实现CFD方法在复杂地形空气运动和污染物扩散方面的应用.分别使用LES(large eddy simulation)模型和mixture模型研究兰州市地面风场特征和污染物扩散形态,计算得到的污染物分布结果与实测结果分布一致.结果表明:复杂地形对空气运动的影响很大,如风速因山体屏障作用会呈现带状分布特征,山体后侧易出现弱风区域;同时,风场会密切影响污染物扩散,决定了污染物扩散形态,如幅散能够影响污染物扩散范围及污染水平.而给定西北风条件下,如地面以上10 m、风速为5 m/s、不受地形阻挡情况下,工业区污染物浓度被稀释10倍,约扩散2.2 km;山体阻挡会抑制污染物纵向扩散,表现在山体阻挡情况下污染物稀释100倍时的扩散长度约为相对平坦区域的1/3.此外,不同的入口风向会引起空气运动与山体相互作用发生变化,进而会使得地面风速、局部风场存在差异,造成污染物扩散及分布形态差异.研究显示,CFD方法可行,模型可靠,可以用来研究地形对风场和污染物扩散的影响.   相似文献   

12.
2013年1月份,全国大面积爆发雾霾天气,根据常州市区1月份空气质量环境监测数据和气象资料,分析了造成市区1月份空气质量下降的主要原因;气象因素往往制约着大气污染物的稀释、扩散、输送和转化过程,进而影响大气污染物的分布及污染物浓度,降水、风速、温度、相对湿度、天气形势对大气污染时空分布均会造成影响;气象因素与大气污染的特征及其相互关系研究可以为有关部门制定防治大气污染、保护城市生态环境的决策提供科学、有效的依据,更好的提高人民生活质量。  相似文献   

13.
城市街道峡谷结构对近地面边界层的风场环流等气象要素具有重要影响,可导致城市局地空气污染分布发生变化.随着城市化发展及城市空气质量变化,街道峡谷的城市空气污染影响日益突出,分析街道峡谷内部风场成为认识和治理我国城市空气污染的一条重要途径.鉴于目前我国鲜有城市街道尺度大气边界层精细气象观测研究,本文分析了美国俄克拉荷马大学的街道峡谷精细气象观测数据及其FLUENT模拟.结果表明:街道峡谷内风场结构变化依赖大气背景风向,当背景风向平行于街道峡谷走向时,街谷两岸风速几乎没有差异,而在背景风向垂直于街道峡谷走向时,由于高空风进入街谷形成的涡旋气流对街道峡谷风场有补充作用,峡谷两侧中层高度风场差异变大,风速差值大约为0.5 m·s~(-1),且街道峡谷两岸风速差异得到了FLUENT模式的验证,但模式对迎风岸的风速模拟存在高估,模拟的中层高度处两岸风速差值为1.6 m·s~(-1).观测资料分析揭示大气边界层稳定度条件对街道峡谷内风场分布也有很大影响,中性稳定条件下街道峡谷两岸近地层风速差异最大,输送进入峡谷空间的风速增量比原峡谷内风速大约高1倍,其它稳定度条件下街谷两岸风速差异被削弱.  相似文献   

14.
基于风廓线雷达数据、大气污染数据及气象数据对2017年12月17日—2018年1月3日成都地区的一次持续性重污染天气过程进行研究,并对两次污染物浓度爆发式增长阶段的污染原因及污染物来源进行了分析.结果表明:①在这次重污染天气过程中,风廓线雷达高精度的风场资料(包括水平风速、风向、垂直风速、大气折射率结构常数C■)配合其他气象要素在分析两个污染阶段污染物的累积及扩散、输送中可以发挥重要的作用,即当成都地区水平风场风速较小且风向多变时,此时受静稳型天气控制,污染物浓度会快速累积增长,而当出现较强的东北风时,可能会有沙尘污染物的输入,应注意沙尘天气的提前预警.垂直风场中垂直速度和大气折射率结构常数C■的变化往往影响着污染物浓度的变化,由于风廓线雷达具有较高的时间分辨率,因此,对污染天气过程的变化有一定的指示意义.②结合局地环流指数和边界层通风量,重新定义了一种适合成都地区风场特征的通风指数:有效通风量(EVI),从而表明第一阶段污染的主要原因是成都地区由静稳型天气控制,边界层内风场对污染物的稀释扩散能力差,导致污染物累积.③通过后向轨迹模拟并结合PM_(2.5)浓度数据进行聚类分析,认为第二阶段污染主要是东北方向携带有大量沙尘污染物的气团输送到成都地区导致的,与源于西北地区沙尘天气的沙尘输送密切相关.  相似文献   

15.
北京夏季典型臭氧污染分布特征及影响因子   总被引:19,自引:2,他引:17  
为研究北京地区O3分布特征及其影响因子,利用AML-3车载式大气环境污染激光雷达系统(下称AML-3)对北京地区2011年5月7日—6月9日的φ(O3)进行观测. 通过AML-3自带的污染物地面观测系统和差分吸收激光雷达,分析近地面、高空φ(O3)时空分布特征,并将φ(O3)与温度、风速及风向3个气象要素进行相关分析. 结果表明:近地面φ(O3)日变化明显,06:00左右为低谷,下午14:00左右达到峰值. 高空φ(O3)的空间分布很不均匀,上层气流易使O3富集层向下输送造成污染,同时稳定边界层对大气扩散的不利影响也是形成O3污染的重要原因. φ(O3)的日变化趋势与温度的日变化趋势呈显著正相关,R(相关系数)为0.74;上下层湍流交换使风速与近地面φ(O3)呈正相关,而水平扩散使二者呈负相关;通过分析风向的分布规律发现,东北风易造成北京地区O3污染.   相似文献   

16.
城市大气污染扩散监测模型的理论与试验研究   总被引:2,自引:0,他引:2  
结合城市大气污染的具体情况 ,在理论分析的基础上 ,通过风洞实验对特定条件下的城市大气污染模型进行了模拟试验研究 ,建立了适合一定条件下城市大气污染物扩散的数学和物理模型 ,在此基础上对试验数据进行了分析和处理 ,得到了特定条件下城市大气污染的一般规律 ,该扩散模式同时还可以应用于城市大气污染物扩散浓度的估算  相似文献   

17.
基于255 m气象塔天津地区污染天气高空风特征研究   总被引:4,自引:1,他引:3  
基于2016年4月—2017年3月天津地区地面、255 m气象塔和风廓线监测数据,结合数值模拟,研究天津污染天气分析中高空风特征,以期进一步提高污染天气预报准确率.结果表明:高空风速和风向分析对污染天气趋势判断有重要作用,如冠层以上高度风速、300~1500 m风向对PM2.5污染程度的指示效果好于近地面同类数据;在选取高空风速指标时,应尽量避免边界层顶附近高度风速数据选取,如使用300 m和600 m风速和作为指标要好于300、600和900 m风速和作为指标.而其是否有利于污染扩散判断的临界阈值为10~15 m·s-1,小于10 m·s-1时水平扩散条件不利于污染物扩散,大于15 m·s-1时有利于污染物扩散.分析高空风向时,需要考虑输送高度和Ekman螺线的影响,与地面不同,300~1500 m高空风分析时,有利于出现污染天气的风向为西风、西南风和南风,而地面仅为南风和西南风;当1500 m高度呈现东风、偏东风和东南风时,天津地区受来自渤海的气流影响明显,污染气象条件有利于污染物扩散,空气质量以良好为主.  相似文献   

18.
利用常规气象观测资料、空气质量监测资料、再分析资料和数值模式资料,分析了2014年2月20-26日京津冀地区持续重污染天气过程的环流背景、气象要素特征、静稳天气条件和传输条件.结果表明:2月20-26日,亚洲东部受弱高压脊控制,京津冀及周边地区位于地面高压后部,等压线较为稀疏,气压梯度小,造成地面风速较小;与此同时,混合层高度低,通风系数小和逆温存在,构成重污染天气出现和维持的气象条件,均不利于大气中污染物和水汽的垂直和水平扩散.静稳天气指数对于重污染天气有一定的指示意义,高静稳天气指数通常对应高PM2.5浓度,且二者变化趋势一致性高;2月20-26日静稳天气指数总体上大于2014年1-3月其他几次污染过程,且在高位长时间维持,造成此次污染过程更严重.此外,传输条件也是京津冀重污染天气的主要成因:地面高压西侧的偏南或偏东气流有助于污染物和水汽向京津冀地区输送和聚集,使能见度进一步降低、污染物浓度进一步升高.  相似文献   

19.
结合激光雷达分析2014年春季南京地区一次大气污染过程   总被引:4,自引:1,他引:3  
包青  贺军亮  查勇  程峰  李倩楠 《环境科学》2015,36(4):1187-1194
利用环境监测数据、气象数据以及数值模拟结果,结合激光雷达数据反演的气溶胶消光系数,分析了2014年5月26日至6月1日南京地区一次典型的大气污染过程.本次污染过程受到外源性沙尘和烟尘输入以及本地污染排放叠加影响.气象因素对污染物的生消起到了重要作用,低压、逆温等因素阻碍污染物扩散,最终强降雨的出现使本次污染过程终结.整个污染过程中大气边界层高度偏低且变化不大,大气形势稳定,污染物扩散困难.激光雷达可以有效探测气溶胶的垂直分层结构,能直观准确地反映出污染物的分布聚集情况以及时空变化,对大气污染监测具有重要意义.  相似文献   

20.
2011年10月珠江三角洲一次区域性空气污染过程特征分析   总被引:3,自引:1,他引:2  
2011年10月18—25日珠江三角洲地区出现了一次区域性空气污染过程,重污染区域集中在西部,后期向中部转移,PM10为首要污染物.针对本次空气污染过程的研究发现,此次珠江三角洲地区空气污染过程主要受大尺度冷高压活动的影响,一直为下沉气流所控制,500 m以下近地层风速很小,边界层高度较低,存在贴地逆温层,非常不利于污染物的输送和扩散.PM10浓度与风速、能见度呈显著的负相关关系,与温度相关性不显著;且与风速和温度的相关性存在滞后性.稳定天气形势、大范围下沉气流、近地层静小风和贴地逆温是导致这次区域性空气污染过程的气象原因,PM10浓度增加导致珠江三角洲能见度下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号