首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
全氟化合物同分异构体的环境行为及毒性效应研究进展   总被引:1,自引:0,他引:1  
以全氟辛烷磺酸盐(PFOS)和全氟辛烷羧酸(PFOA)为代表的全氟化合物(PFASs)是一类新型持久性有机污染物,目前已经在全球自然环境、野生生物及人群中广泛检出,其环境与健康问题已引起人们的高度重视。传统的电氟化法生产工艺使PFASs产品存在碳链同分异构体。这些PFAS的同分异构体可能具有不同的环境行为和毒理效应。随着分析方法的逐渐成熟,目前,国外的学者已经在该研究领域进行了一些探索性的研究,并取得了一定的进展,而我国在该领域的研究相对较少。以PFOS和PFOA为例,在介绍了PFAS同分异构体的来源、命名和世界各地生产厂家的异构体组成等基本信息的基础上,还系统介绍了环境介质中PFAS同分异构体的分析方法、环境迁移转化差异及源分析研究;生物和人体的生物累积性及毒理学差异等;并对目前存在的问题进行了讨论,为今后PFAS同分异构体的环境问题研究提供相应的参考。  相似文献   

2.
全氟化合物(perfluorocarbons,PFASs)作为一种新型污染物已引起广泛关注.PFASs在环境中具有持久性和生物毒性,并可以通过食物链传递,在生物体内富集并产生生物学放大效应.近年来已成为全球性污染物,并已在各类环境介质、生物体及人体内被检出.因此本文主要综述了当前国内外PFASs在不同环境介质中的污染现状,比较分析了 PFASs及与其他有机污染物对生物的单一、联合毒性并对PFASs污染治理和防控提出了展望,为今后PFASs的研究及毒理学评价提供参考依据.  相似文献   

3.
常熟氟化学工业园水环境和生物样品中全氟化合物的分布   总被引:2,自引:0,他引:2  
采用Oasis-WAX-SPE柱富集,高效液相色谱/电喷雾负离子源串联质谱(HPLC/negative ESI/MS/MS)对常熟氟化学工业园区地表河水样品和水生动物样品(乙腈萃取物)中的全氟及多氟化合物(PFASs)进行了测定,分别检测出8种和14种PFASs.园区河水中总PFASs浓度范围为91.0—9374.9 ng.L-1,为国内已有报道中最高;PFOA和PFPrA是河水样品中含量最高的两种PFASs,且在不同水样中均可占到总PFASs的73%以上,未检出PFOS;生物样品中总PFASs浓度范围为12.93—394.77 ng.g-1ww(湿重),PFOA、PFOS和PFPrA为主要PFASs;与园区所在城市的鱼类等样品相比较,采自氟化学工业园区的鱼类体内富集了更多的PFAS.研究结果表明,常熟氟化学工业园区地表水环境PFOA和PFPrA污染较重,为目前国内最高水平;在园区河水和生物体内检测出高浓度的PFPrA,说明氟化学工业园区内部分工厂可能已使用短链氟化物替代PFOA和PFOS,在今后的研究中对PFPrA等短链全氟化合物的监测应给予更多关注.  相似文献   

4.
全氟和多氟化合物(per-and polyfluoroalkyl substances,PFASs)是一类新型持久性有机污染物(POPs),广泛应用于工业和人类日常生活用品中。此类化合物具有高能量的C-F共价键,因此具有优良的理化特性和生物稳定性。由于存在持久性、生物累积性、长距离迁移以及毒性等问题,长链PFASs(C7)已经成为全世界关注的焦点之一,寻找能够替代PFASs的新型化合物具有重要意义。本文介绍了几种可能替代PFASs的新型氟化替代品,PFASs替代品在各类环境介质中的分布、持久性、人体暴露及毒性等几个方面进行了综述,特别对目前存在的问题及今后的研究方向进行了讨论和展望,以期为PFASs替代品的环境污染及风险评估提供参考。  相似文献   

5.
六溴环十二烷(hexabromocyclododecanes,HBCDs)是一种典型的疏水性脂肪族溴代阻燃剂,2013年被列入《斯德哥尔摩公约》受控名单中. HBCDs具有手性中心,多个对映异构体,不同的立体构型在环境中会发生选择性富集分布,降解转化和生物毒性等行为.植物是生态系统能量的生产者,HBCDs可通过植物吸收改变植物生理,影响其在食物链的传递乃至整个生态系统,对环境和人体健康存在潜在危害.本文对HBCDs异构体和对映体的植物提取分析方法、植物富集和传输、污染土壤的植物修复以及植物毒性效应的最新研究进行梳理.液相色谱质谱联用技术可有效检测植物中的HBCDs异构体和对映体,对映体水平的检测将成为未来HBCDs立体构型分析的发展方向. HBCDs已在各类植物中被陆续检出,多数研究中α-HBCD是主要的异构体.目前在HBCDs对映体水平上的研究还非常有限,其在植物体内的传输尚无统一规律.植物种植可有效清除土壤中的HBCDs,展现出生物修复应用前景.HBCDs会引起植物生长发育迟缓、氧化胁迫和基因损伤等效应,不同构型的HBCDs表现出特异的选择性毒性行为.鉴于目前关于HBCDs的植物研...  相似文献   

6.
以六溴环十二烷(HBCD)为代表的脂环族溴代阻燃剂(CBFRs)被广泛应用于纺织、建材、电子、电气、化工、交通、建材等领域.随着HBCD作为《关于持久性有机污染物的斯德哥尔摩公约》增列持久性有机污染物,与HBCD具有相似结构和性能的四溴环己烷(TBECH)和四溴环辛烷(TBCO)等CBFRs被当作HBCD的潜在替代产品.迄今为止,HBCD、TBECH和TBCO已在大气、水体、土壤等多种环境介质和生物体中被检出,它们在生物体内的代谢转化以及内分泌干扰、神经、生殖、发育等毒性效应亦受到广泛关注.值得指出的是,所有CBFRs均含有同分异构体,表现出异构体选择性的生物富集、代谢和毒性效应.遗憾的是,目前相关研究还十分匮乏.本文从CBFRs的环境暴露水平、生物富集、毒性效应、以及CBFRs的生物转化等方面展开综述,特别强调了从异构体水平研究HBCD及其替代物的必要性.本文有助于全面了解CBFRs生物富集、代谢及毒性效应,对于正确认识和准确评价CBFRs的生态和健康风险具有重要的科学意义.  相似文献   

7.
水体、土壤和沉积物中铊的化学形态研究进展   总被引:1,自引:0,他引:1  
铊(TI)是一个典型性的毒害重金属元素,在环境中的迁移转化行为、富集机制、毒性和生物效应与其赋存化学形态密切相关.本文对水体、土壤和沉积物中Tl化学形态分布、演化特征和化学形态分析方法作了系统总结和评述,并对Tl化学形态分析存在问题及未来发展趋势进行了展望.  相似文献   

8.
全氟化合物(PFASs)是一类具有疏水基团和亲水基团的新型污染物.目前,在环境条件对PFASs生物富集影响方面已开展了诸多研究,但有关碳质材料(CMs)和溶解性有机质(DOM)共存对PFASs在生物体内富集的影响还未见报道。为探讨这一问题,研究了沉积物-水体系中2种碳质材料木炭(W400)、多壁碳纳米管(MWCNT10)和4种DOM(丹宁酸、富里酸、蛋白胨和腐殖酸)对6种典型PFASs在摇蚊幼虫体内生物富集的影响。结果表明,暴露10 d后(已达到富集平衡状态),无论体系中是否存在CMs,添加1~50 mg C·L-1不同类型的DOM对PFASs在摇蚊幼虫体内生物富集的影响不显著。无论体系中是否存在DOM,添加CMs均能降低摇蚊幼虫体内PFASs的含量,且MWCNT10对PFASs生物富集的降低比例显著高于W400。与对照相比,添加0.4%的MWCNT10对摇蚊幼虫体内PFASs含量的降低比例为21%~56%,而同等添加量的W400对其降低比例均低于20%。这表明,在沉积物-水体系中,当CMs和DOM共存时,CMs是影响PFASs在摇蚊幼虫体内富集的主要因素,而少量DOM的引入对其影响不大。  相似文献   

9.
紫外吸收剂大量用于工业材料和个人护理品中,近年来在水体中不断被检出,同时由于其高度亲脂性,易在底泥和水生生物体内富集,产生潜在的毒性效应,已成为一类新型污染物。本文综述了紫外吸收剂在湖泊环境中的分布和生物富集效应,重点分析了二苯甲酮类等典型紫外吸收剂对底栖动物的药物代谢系统、抗氧化系统及其生长发育的影响及其毒性作用机制,并对未来该领域的研究进行了展望。  相似文献   

10.
全氟和多氟烷酸类化合物(perfluoroalkyl and polyfluoroalkyl substances, PFASs)是一类新型持久性有机污染物,目前其在民用和工业产品中得到广泛应用。在环境样品、野生动物以及人类体内都检测到了这类物质。PFASs对哺乳动物和水生生物具有广泛的毒性,其对生态环境和人体健康的影响受到公众关注。目前,PFASs对人类健康的研究还多停留在流行病学研究和体外细胞毒性研究方面,由于人类有复杂的免疫和代谢系统,因此PPASs对人类健康影响的具体机制和安全剂量仍然需要进一步研究。本文针对PFASs在人体的分布、流行病学研究、毒理学效应和作用机制等热点问题进行了总结,并对目前PFASs研究存在的问题及今后的研究方向进行讨论和展望。  相似文献   

11.
在野生动物物种中,乳汁在传递全氟烃基物质(PFASs)于后代中所起的作用,人类还了解甚少。本文以雌性冠海豹及其生产的一对幼崽为研究对象,在哺乳期间,对母体血浆和乳汁中的8种PFASs进行了定量检测,以及对乳汁在PFASs传递过程中所起的作用进行了分析。选择冠海豹是因为它的泌乳周期短(3~ 4 d),在此期间幼崽仅以乳汁为食。胎盘或乳汁传递成为幼崽体内PFASs的唯一来源。通过对8种PFASs的分析(Σ8PFAS),发现7种存在于所有样品中;因此,乳汁是幼崽体内PFASs的来源。在所有样本中,全氟辛烷磺酰基化合物是优势PFAS。Σ8PFAS的平均浓度为母体血浆中6.0 ng/g蛋白(36 ng/g湿重),乳汁中0.77 ng/g蛋白(3.2 ng/g湿重)以及幼崽血浆中12 ng/g蛋白(66 ng g湿重)。血浆中检测到的PFASs浓度在已有报道的其他海豹物种体内检测到的浓度范围之内,低于已知的实验啮齿动物的毒性阈值。PFASs从母体到幼崽的传递效率的个体差异,依赖于PFASs碳键长度、相对传递量最低的为中间能级键的PFASs (C9-C10)。结果显示母体通过乳汁和胎盘传递PFASs,其中胎盘传递是主导途径。
精选自Randi Gr?nnestad, Gro D. Villanger, Anuschka Polder, Kit M. Kovacs, Christian Lydersen, Bj?rn M. Jenssen, Katrine Borg?. Maternal transfer of perfluoroalkyl subastances in hooded seals. Environmental Toxicology and Chemistry: Volume 36, Issue 3, pages 763–770, July 2017. DOI: 10.1002/etc.3623
详情请见http://onlinelibrary.wiley.com/wol1/doi/10.1002/etc.3623/full
  相似文献   

12.
草铵膦和草甘膦均为灭生性广谱除草剂,具有低毒、高效的特点,是目前世界上使用最多的2种有机磷类除草剂,广泛应用于防除果园、非耕地等的杂草.在世界范围内广泛使用导致这2种农药越来越多地进入环境,尤其是水环境中.由于草铵膦和草甘膦在水中的溶解度大,且在水溶液中较稳定,目前在多地的水体中均检出2种农药残留.随着对草铵膦和草甘膦毒性研究的深入,有越来越多的研究结果显示这2种农药对水生生物存在一定的毒性.针对目前草铵膦和草甘膦在水体中的环境行为和毒性效应(包括对鱼类、藻类和其他水生生物的毒性效应)研究进展进行了总结,旨为草铵膦和草甘膦在水环境中的环境行为和对水生生物的毒性研究提供有益借鉴,为2种农药的合理使用提供参考.  相似文献   

13.
随着纳米氧化锌的大量生产和应用,作为其最终受体之一的水环境将面临越来越大的威胁.纳米氧化锌在水环境中的团聚,溶解等环境行为使其具有不稳定性,在很大程度上影响着纳米氧化锌在水体中的迁移性、生物可利用性以及对生态环境的毒性.本文着重探讨纳米氧化锌在水环境中的环境行为及其影响控制因素和检测分析方法,归纳纳米氧化锌对不同种类水生生物的毒性效应,分析纳米氧化锌的毒性机制及其存在的问题,并对水环境中纳米氧化锌的环境行为及生物毒性的研究方向进行了展望.  相似文献   

14.
微塑料与有毒污染物相互作用及联合毒性作用研究进展   总被引:2,自引:0,他引:2  
随着塑料产品的广泛应用,微塑料(microplastics,MPs)污染已经成为全球关注的重大环境问题.海洋中的MPs能够与有毒污染物(如有机污染物、重金属和纳米颗粒等)发生相互作用,对海洋生物产生复合效应.因此,MPs与环境中有毒污染物的联合毒性效应越来越引起人们的关注.本文首先概括总结出MPs对海洋生物的毒性效应及致毒机制,包括遮蔽效应、氧化应激、免疫毒性、生殖毒性、遗传毒性、神经毒性和行为毒性等方面:随后分别讨论了MPs和有机污染物、重金属以及人工纳米颗粒的联合毒性效应,从微塑料对污染物的吸附、富集和载体效应着手分析微塑料与污染物之间的相互作用,凝练得出MPs增强或抑制污染物毒性的作用机制,包括微塑料改变污染物的生物可利用性、微塑料改变生物体对污染物的胁迫响应、微塑料与污染物发生交互作用等;最后对微塑料与有毒污染物联合毒作用研究的发展方向进行了展望,建议在未来研究中重点关注环境特征的次生微塑料与有毒污染物相互作用的环境行为和生物效应,特别是通过食物链的传递作用.以期为准确评估和深入理解微塑料的海洋环境和人类健康风险提供理论依据.  相似文献   

15.
自21世纪以来,全氟和多氟烷基物质(per-and polyfluoroalkyl substances,PFASs)的环境问题一直受到科学界和公众的广泛关注. PFASs具有难降解、生物富集和长距离迁移等特点,已在大气、土壤和水体等环境介质及生物体中广泛检出.本研究以北部湾海域70个表层沉积物样品为对象,对其中11种典型PFASs(PFHxA、PFHpA、PFOA、PFNA、PFDA、PFUnDA、PFDoDA、PFTrDA、PFTeDA、PFHxS、PFOS)进行了系统研究.通过高效液相色谱-三重四极杆串联质谱法对该海域表层沉积物中PFASs污染水平进行分析,利用相关性分析对该海域表层沉积物中PFASs来源进行解析,并运用环境风险熵值法对该海域表层沉积物中PFASs污染进行了风险评估.结果表明,北部湾海域70个点位中,除全氟己烷磺酸(PFHxS)未被检出外,其余10种PFASs均被检出,全氟己酸(perfluorohextanoic acid,PFHxA)、全氟辛酸(perfluorooctanoic acid,PFOA)及全氟辛烷磺酸(perfluorooctance sulfo...  相似文献   

16.
十溴二苯乙烷(Decabromodiphenyl ethane,DBDPE)是一种新型溴系阻燃剂,在国内外得到越来越广泛的应用,因此在环境中也开始被普遍检测到.研究发现,DBDPE有生物累积的潜在可能性,这不仅会威胁生态系统的安全,也将对人类健康产生潜在影响.目前,关于DBDPE的研究主要集中于其在土壤、沉积物、生物体等环境介质中的含量分析,而对其急性毒性效应与亚急性毒性效应的研究较少,毒理学研究方面更是缺乏.因此,笔者拟介绍DBDPE的来源、环境分布、生物富集及毒理学效应,并提出了今后研究的主要方向.  相似文献   

17.
全氟辛烷磺酸(PFOS)是全氟和聚氟烷基物质(PFASs)人造类别中的一员,是全世界在水体、人类、哺乳动物和鱼类中最常检测到的PFAS之一。斑马鱼(Danio rerio)是一种小型淡水鱼类,被认为是研究化合物毒性的合适的脊椎动物模型。先前的研究表明,雄性和雌性斑马鱼中脂肪酸结合蛋白(fabps)的组织特异性生物蓄积和表达的改变可能是由于PFAS和脂肪酸转运体之间的相互作用。此外,有报道显示人类和动物暴露于PFAS后导致神经系统的影响。因此,本研究旨在探讨PFOS暴露是否影响斑马鱼肝脏、肠道、心脏和卵巢脂肪酸代谢相关基因(fabp1a、fabp2和fabp10a),以及大脑和肌肉中涉及神经系统的基因(ChAT、ngf、bdnf、AChE和hdac6)的表达。结果表明,与脂肪酸代谢和神经功能相关的基因表达随暴露浓度和性别的变化而变化。此外,我们的发现强调了这些基因的表达随暴露时间的不同而不同。我们的研究结果将PFOS作用的知识基础扩展到其他组织,而不是仅限于研究较为透彻的肝脏。这项调查结果为今后研究PFOS作为环境中最丰富的PFAS之一的潜在风险提供了依据。  相似文献   

18.
全氟烷基化合物(PFASs)是一类新型持久性有机污染物,具有环境持久性、生物蓄积性和毒性.近年来,PFASs引起的环境问题受到国内外学者的广泛关注和研究,与此同时,PFASs的去除技术也被广泛研究.现有的PFASs去除技术主要包括吸附、化学氧化、化学还原和生物降解等,因为反应机理和适用条件的差异,各种技术对PFASs的去除效果也有所不同.本文主要对不同PFASs去除技术的常用材料、反应效率、反应机理、能耗和影响因素进行了详细的阐述和对比,同时总结归纳了目前研究所存在的问题、面临的挑战以及未来发展的前景,以期为开发更高效的PFASs去除技术提供参考.  相似文献   

19.
全(多)氟化合物(per-and polyfluoroalkyl substances,PFASs)是一类广泛存在、日益引起国内外关注的新微持久性污染物.近年来,PFASs已在全球垃圾填埋渗滤液中频繁检出,对生态安全与人体健康造成潜在威胁.本文系统综述了国内外废物填埋系统PFASs的来源,渗滤液赋存PFASs特征、影响因素及其去除方面的研究进展.总体上,垃圾填埋渗滤液赋存PFASs浓度水平跨越6个数量级(ng·L-1—mg·L-1),并呈现以短链PFASs为主的污染特征.降雨、渗滤液回灌、渗滤液理化性质等因素均会影响PFASs赋存特征,但具体影响机制尚未阐明.现有渗滤液处理工艺(生物处理、膜处理等)对PFASs的去除率可高达99.8%,但处理过程中仍存在前体物污染转化与副产物环境归宿不明等问题.本文还对该领域的前沿研究方向进行了展望,以期增进对填埋渗滤液赋存PFASs污染及其控制的科学认识,为填埋系统新污染物控制提供科技支持.  相似文献   

20.
硫丹的环境行为及水生态毒理效应研究进展   总被引:3,自引:0,他引:3  
有机氯农药硫丹作为一种典型的持久性有机污染物(POPs)曾广泛应用于农业生产,我国曾大量使用。硫丹作为一种重要的污染物通过地表径流、淋、溶、干/湿沉降等方式进入水体,在直接影响大型水生植物和浮游藻类的同时,给鱼类等水生动物也带来了一定的毒性效应。由于其半衰期较长、迁移能力强、富集性高,在水体环境中已普遍检测出硫丹的存在,因此,对硫丹的水生生态安全性评价显得十分重要。硫丹对水生生物具有高毒性,它可影响生物正常受体配体作用、损伤生物膜、影响活性氧代谢并具有潜在的内分泌干扰作用。本文介绍了硫丹的环境行为效应,并综述了硫丹对水生生物的毒性及几种致毒机制,展望了该领域今后的研究重点和方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号