首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Thermal stratification is increasing in strength as a result of higher surface water temperature. This could influence the vertical distribution of vertically migrating dinoflagellates. We studied the diel vertical distribution of the dinoflagellates Heterocapsa triquetra and Prorocentrum minimum using stratified laboratory columns with two thermoclines of different strength (ΔT° = 10 or 17 °C), with below cline temperature of 8 °C. Above the thermocline, nutrient depletion simulated the natural summer conditions in the Baltic Sea. Our study shows that H. triquetra and P. minimum can behave differently in terms of their vertical occurrence, both in space and in time when subjected to thermoclines of different strength. Also, both dinoflagellate species showed species-specific distribution patterns. In the ΔT° = 10 °C treatment, H. triquetra cells performed a diel vertical migration (DVM) behavior just above the thermocline, but not in the ΔT° = 17 °C. In the ΔT° = 17 °C, the cells did not migrate and cell densities in the water column decreased over time. Opposing results were observed for P. minimum, where a DVM pattern was found exclusively below the thermocline of ΔT° = 17 °C, while in the ΔT° = 10 °C treatment, no clear DVM pattern was observed, and the highest number of cells were found in the cold bottom water. These results indicate that an increase in thermal stratification can influence species-specific dinoflagellate distribution, behavior, and survival.  相似文献   

2.
As a biomass agricultural waste material, coconut shells were used for the preparation of high-quality modified activated carbon. Chemical modification of the surface of the prepared activated carbon is done by oxidation using H2O2 and HNO3, respectively. The surface area and pore volume of the coconut shells activated carbon are increased by the chemical modification, and followingly the removal of the metals is improved. The structural morphology and composition of the modified activated carbon coconut shells (MACCS) were evaluated by Fourier transform infrared (FTIR) spectra, thermogravimetric analysis–differential thermal analysis (TGA-DTA), scanning electron microscope (SEM), X-ray diffraction (XRD), surface area analysis (SAA), X-ray fluorescence (XRF), and carbon, hydrogen, nitrogen, and sulfur (CHNS) elemental analysis. The prepared MACCS has reasonably good chemical stability. The influence of solution pH, contact time, adsorbent dosage, adsorption temperature, initial metal concentrations, and interfering ions on the adsorption performance of the investigated ions onto the prepared sorbent was examined by a batch method. The selectivity sequence for sorption of Eu3+, Ce3+, Sr2+, and Cs+ ions on MACCS was found to be Eu3+?>?Ce3+?>?Sr2+?>?Cs+. The saturation capacities of MACCS for the studied metal ions were found to be 136.84, 85.55, 69.85, and 60.00?mg?g?1 for Eu3+, Ce3+, Sr2+, and Cs+ ions, respectively. The thermodynamic parameters, ΔH°, ΔS°, and ΔG° were also evaluated.  相似文献   

3.
Indoor mesocosm experiments were conducted to test for potential climate change effects on the spring succession of Baltic Sea plankton. Two different temperature (Δ0?°C and Δ6?°C) and three light scenarios (62, 57 and 49?% of the natural surface light intensity on sunny days), mimicking increasing cloudiness as predicted for warmer winters in the Baltic Sea region, were simulated. By combining experimental and modeling approaches, we were able to test for a potential dietary mismatch between phytoplankton and zooplankton. Two general predator–prey models, one representing the community as a tri-trophic food chain and one as a 5-guild food web were applied to test for the consequences of different temperature sensitivities of heterotrophic components of the plankton. During the experiments, we observed reduced time-lags between the peaks of phytoplankton and protozoan biomass in response to warming. Microzooplankton peak biomass was reached by 2.5 day °C?1 earlier and occurred almost synchronously with biomass peaks of phytoplankton in the warm mesocosms (Δ6?°C). The peak magnitudes of microzooplankton biomass remained unaffected by temperature, and growth rates of microzooplankton were higher at Δ6?°C (μ?0?°C?=?0.12 day?1 and μ?6?°C?=?0.25 day?1). Furthermore, warming induced a shift in microzooplankton phenology leading to a faster species turnover and a shorter window of microzooplankton occurrence. Moderate differences in the light levels had no significant effect on the time-lags between autotrophic and heterotrophic biomass and on the timing, biomass maxima and growth rate of microzooplankton biomass. Both models predicted reduced time-lags between the biomass peaks of phytoplankton and its predators (both microzooplankton and copepods) with warming. The reduction of time-lags increased with increasing Q10 values of copepods and protozoans in the tritrophic food chain. Indirect trophic effects modified this pattern in the 5-guild food web. Our study shows that instead of a mismatch, warming might lead to a stronger match between protist grazers and their prey altering in turn the transfer of matter and energy toward higher trophic levels.  相似文献   

4.
Five hundred and ninety-nine primary producers and consumers in the Papahānaumokuākea Marine National Monument (PMNM) (22°N–30°N, 160°W–180°W) were sampled for carbon and nitrogen stable isotope composition to elucidate trophic relationships in a relatively unimpacted, apex predator–dominated coral reef ecosystem. A one-isotope (δ13C), two-source (phytoplankton and benthic primary production) mixing model provided evidence for an average minimum benthic primary production contribution of 65 % to consumer production. Primary producer δ15N values ranged from ?1.6 to 8.0 ‰ with an average (2.1 ‰) consistent with a prevalence of N2 fixation. Consumer group δ15N means ranged from 6.6 ‰ (herbivore) to 12.1 ‰ (Galeocerdo cuvier), and differences between consumer group δ15N values suggest an average trophic enrichment factor of 1.8 ‰ Δ15N. Based on relative δ15N values, the larger G. cuvier may feed at a trophic position above other apex predators. The results provide baseline data for investigating the trophic ecology of healthy coral reef ecosystems.  相似文献   

5.
Effluent from dyeing and finishing processes is an important source of water pollution. The effectiveness of bentonite, kaolinite and sediment from a local deposit in removing methylene blue as a cationic dye from aqueous solutions has been investigated. The adsorption equilibrium (isotherm) has been determined according to Freundlich and Langmuir equations. The optimum amount is 0.5 g for all adsorbents, and the optimum pH ranges are 2–8 for bentonite and 2–6 for kaolinite and sediment. With respect to kinetic modelling, the adsorption of methylene blue on various adsorbents was fitted to a second-order equation. Also, the thermodynamic parameters were determined. The negative free energy values indicate the feasibility of the process and spontaneous nature of adsorption. The positive ΔH° values indicate the endothermic nature of the process. Thus, Egyptian clay minerals and sediments have a great tendency to remove the dye from solutions.  相似文献   

6.
Removal of Mo(VI) from aqueous solutions was investigated using cinder modified by sulfuric acid. Various parameters such as pH, agitation time, Mo(VI) concentration, and temperature have been studied. The maximum adsorption of Mo(VI) occurred at pH between 4.0 and 6.0. Kinetic studies showed that the adsorption generally obeyed a pseudo second-order model. The activation energy was 31.4?kJ?mol?1, indicating that the adsorption process was governed mainly by interactions of physical nature. Furthermore, application of Langmuir and Freundlich isotherm models to the adsorption equilibrium data showed that the adsorption behavior obeyed the Langmuir model. The adsorption capacity was found to be 10.8?g Mo(VI)?kg?1 adsorbent. Finally, thermodynamic parameters such as ΔH 0, ΔS 0, and ΔG 0 were also evaluated, which showed that the adsorption of Mo(VI) on the treated cinder was endothermic, entropy increasing, and spontaneous. In conclusion, the sulfuric acid-modified cinder was shown to be an inexpensive, effective, and simple adsorbent for the removal of Mo(VI) from water.  相似文献   

7.
A new adsorbent sulfhydryl and carboxyl functionalized magnetite nanocellulose composite [(MB-IA)-g-MNCC] was synthesized by graft co-polymerization of itaconic acid onto magnetite nanocellulose (MNCC) using EGDMA as cross linking agent and K2S2O8 as free radical initiator. The adsorption occurs maximum in the pH 6.5. The best fitted kinetic model was found to be pseudo-second-order kinetics. Therefore the mechanism of Co(II) adsorption onto (MB-IA)-g-MNCC follows ion exchange followed by complexation. The Langmuir model was the best fitted isotherm model for the adsorption of Co(II) onto the (MB-IA)-g-MNCC. Simulated nuclear power plant coolant water samples were also treated with (MB-IA)-g-MNCC to demonstrate its efficiency for the removal of Co(II) from aqueous solutions in the presence of other metal ions. To recover the adsorbed Co(II) ions and also to regenerate the adsorbent to its original state 0.1?M HCl was used as suitable desorbing agent. Six cycles of adsorption-desorption experiments were conducted and was found that adsorption capacity of (MB-IA)-g-MNCC has been decreased from 97.5% in the first cycle to 84.7% in the sixth cycle. Recovery of Co(II) using 0.1?M HCl decreased from 93.2% in the first cycle to 79.3% in the sixth cycle.

Abbreviations: T: absolute temperature; qe: amount adsorbed at equilibrium; qt: amount adsorbed at time t; CELL: cellulose; Co: cobalt; Ce: concentration at equilibrium; CHCl: concentration of HCl; CNaOH: concentration of NaOH; CA: concentrations of acid; CB: concentrations of base; Wg: dry weight of composite; Wi: dry weight of MNCC; DS: energy dispersive spectra; EGDMA: ethylene glycol dimethacrylate; Ce: equilibrium concentration; KL: equilibrium constant; F: Faradays constant; FTIR: Fourier transform infrared spectra; ΔGo: free energy change; KF: Freundlich adsorption capacity; 1/n: Freundlich constant; R: gas constant; D: grafting density; ECo: initial concentration; IA: itaconic acid; IA-g-MNCC: itaconic acid-grafted-magnetite nanocellulose composite; b: Langmuir constant; MNCC: magnetite nanocellulose composite; Q0: Maximum adsorption capacity; (MB-IA)-g-MNCC: 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite; NC: nanocellulose; pHpzc: Point of zero charge; K2S2O8: potassium peroxy sulphate; k1: pseudo-first-order rate constant; k2: pseudo-second-order rate constant; SEM: scanning Electron Microscope; bs: Sips adsorption capacity; Qs: Sips maximum adsorption capacity; ΔH°: standard enthalpy change; ΔS°: standard entropy change; A: surface area; σ0: surface charge density; 1/ns: surface heterogeneity factor; VSM: vibrating sample magnetometer; V: volume of solution; W: weight of (MB-IA)-g-MNCC; Mcomposite: weight of the composite; XRD: X-ray diffraction  相似文献   


8.
The best-fit equations of linear and non-linear forms of the two widely used kinetic models, namely pseudo-first-order and pseudo-second-order equations, were compared in this study. The experimental kinetics of methylene blue adsorption on activated carbon was used for this research. Both the correlation coefficient (R 2) and the normalized standard deviation Δq(%) were employed as error analysis methods to determine the best-fitting equations. The results show that the non-linear forms of pseudo-first-order and pseudo-second-order models were more suitable than the linear forms for fitting the experimental data. The experimental kinetics may have been distorted by linearization of the linear kinetic equations, and thus, the non-linear forms of kinetic equations should be primarily used to obtain the adsorption parameters. In addition, the Δq(%) method for error analysis may be better to determine the best-fitting model in this case.  相似文献   

9.
Enhanced biological phosphorus removal (EBPR) is a commonly used and sustainable method for phosphorus removal from wastewater. Poly-β-hydroxybutyrate (PHB), polyphosphate, and glycogen are three kinds of intracellular storage polymers in phosphorus accumulation organisms. The variation of these polymers under different conditions has an apparent influence on anaerobic phosphorus release, which is very important for controlling the performance of EBPR. To obtain the mechanism and kinetic character of anaerobic phosphorus release, a series of batch experiments were performed using the excessively aerated sludge from the aerobic unit of the biological phosphorus removal system in this study. The results showed that the volatile suspended solid (VSS) had an increasing trend, while the mixed liquid suspended sludge (MLSS) and ashes were reduced during the anaerobic phosphorus release process. The interruption of anaerobic HAc-uptake and phosphorus-release occurs when the glycogen in the phosphorus-accumulating-organisms is exhausted. Under the condition of lower initial HAc-COD, HAc became the limiting factor after some time for anaerobic HAc uptake. Under the condition of higher initial HAc-COD, HAc uptake was stopped because of the depletion of glycogen in the microorganisms. The mean ratio of Δρ Pρ PHB, Δρ GLYρ PHB, Δρ P/ΔCOD, was 0.48, 0.50, 0.44, and 0.92, respectively, which was nearly the same as the theoretical value. The calibrated kinetic parameters of the HAc-uptake and phosphorus-release model were evaluated as follows: Q HAc,max was 164 mg/(g · h), Q P,max was 69.9 mg/(g · h), K gly was 0.005, and KCOD was 3 mg/L. An apparently linear correlation was observed between the ratio of Δρ P/ΔCOD and pH of the solution, and the equation between them was obtained in this study.  相似文献   

10.
The aim of this project was to determine both the diurnal changes in photosynthetic activity of Antarctic sea ice algae and also the protective mechanisms they use to mitigate the effects of in situ UV radiation. Changes in the diurnal photosynthetic parameters of fast ice algal communities at McMurdo Sound were measured in situ, using a custom designed monitoring pulse amplitude modulation fluorometer. The sea ice microalgae were able to adapt rapidly to either increasing or decreasing ambient irradiances. ΔF/Fm' values were between 0.2 and 0.51, while Ek varied between 2.1 and 18 μmol photons m-2 s-1. ΔF/Fm', Ek, and relative electron transfer rate (rETR) all varied sequentially over the course of a day. rETR and Ek were highest at midday at the highest irradiances, when there was apparent midday down regulation of photosynthesis, while ΔF/Fm' was highest at midnight. The effects of natural UV radiation on sea ice were examined, but it was not possible to detect the effect of either UVB or UVA and UVB on photosynthesis. This was considered to be largely because of the large spatial and temporal heterogeneity of the under ice community, changing irradiances throughout the day and the relatively small change caused by UV.  相似文献   

11.
为探讨蛋白激酶Sch9是否影响细胞蛋白质稳态水平及其在热胁迫时的响应,以野生型、SCH9基因缺失突变体、转sch9基因ΔSch9(SCH9-3HA)酵母为材料,利用特异的泛素抗体,检测长期培养时全蛋白泛素化水平变化.结果表明,Sch9缺失引起细胞全蛋白泛素化水平降低,转sch9基因可以使细胞全蛋白泛素化水平恢复.55℃热胁迫30 min处理,突变体Δsch9全蛋白泛素化水平降低,转sch9基因Δsch9(SCH9-3HA)全蛋白泛素化水平不变,回到正常生长温度时,蛋白泛素化水平也没有改变.外加蛋白酶体抑制剂MG132时,突变体ΔSch9蛋白泛素化水平不受影响,而转sch9基因△sch9(SCH9-3HA)全蛋白泛素化水平显著增加,表明前者是自噬途径降解,而增加部分是通过蛋白酶体途径降解.蛋白激酶Sch9调控细胞全蛋白泛素化水平,以及2个不同的降解途径.  相似文献   

12.
A review for chromium removal by carbon nanotubes   总被引:1,自引:0,他引:1  
Water pollution is still a serious problem for the entire world. Adsorption technology is a promising process which is based on the fabrication of novel, cheap, non-dangerous and highly sorptive materials for application in wastewater purification processes. Nanomaterials are functional groups which find use in many important fields such as medicine, food processing and agriculture. This review collects information from published works about the use of carbon nanotubes as efficient and promising adsorbents in chromium removal from (real or synthesised) wastewater. For this purpose, isotherm (Langmuir, Freundlich, etc.), kinetic (pseudo-first-, second-order, etc.), thermodynamic (free-energy Gibbs, enthalpy, entropy) and desorption–regeneration studies were discussed in detail. Moreover, significant factors such as pH, agitation time, temperature, adsorbent dosage and initial dye concentration are also reported extensively. The maximum monolayer adsorption capacities of Cr(III) and Cr(VI) ions were 0.39–238.09 and 1.26–370.3?mg/g, respectively. The absolute values of ΔG0 and ΔH0 ranged 0.237–48.62 and 0.16–58.43?kJ/mol, respectively.  相似文献   

13.
Temperature-programmed pyrolysis mass spectrometry and Fourier-transform infrared spectroscopy have been used to monitor structural changes of humic and fulvic acids isolated from soils in China, in the temperature range of 25-550°C. in this work, we found that decarboxylation is obvious as the main reaction with dehydration reaction from 150°C to 400°C, the anhydride can be identified from FT-IR spectra at temperature range from 200°C to 400°C; there are evident changes of the aromatic nucleus of humic and fulvic acids above 400°C, even remaining up to 550°C. Besides, some changes of adsorption water can be distinguished before 200°C, and the mass signal of sulphur dioxide was detected.  相似文献   

14.
Adsorption thermodynamic studies of phosphomidon on fly ash at 25° and 50°C have been analysed as adsorption isotherms, Freundlich equations, Kd values and various other thermodynamic parameters. These data were in close agreement with Freundlich isotherms and yield ‘S’ type isotherms at both the temperatures. Thermodynamic constants (Ko) and standard free energy (ΔG°), enthalpy (ΔH°) and entropy changes (ΔS°) have been calculated for predicting the nature of adsorption.  相似文献   

15.
Growth and metabolism of the winter flounder Pseudopleuronectes americanus were studied in the laboratory at 2°, 5° and 8°C. Dry-weight determinations of growth demonstrated significant direct regressions of growth on temperature. Mean, daily specific growth rates were 10.1%/day at 80°C, 5.8%/day at 50°C, and 2.6%/day at 2°C. Time to metamorphosis was 49 days at 8°C and 80 days at 5°C. Larvae did not survive to metamorphosis at 2°C. Absolute values of routine metabolism expressed in μl of oxygen consumed regressed on body weight were best described by a third-degree polynomial. Larval routine metabolism increased from hatching to metamorphosis, at which time it declined before again increasing. Temperature directly affected routine metabolism. Metabolism on a unit-weight basis decreased with increasing size and was also directly influenced by temperature.  相似文献   

16.
The thermal envelope of development to the larval stage of two echinoids from eastern Australia was characterized to determine whether they fill their potential latitudinal ranges as indicated by tolerance limits. The tropical sand dollar, Arachnoides placenta, a species that is not known to have shifted its range, was investigated in Townsville, northern Australia (19°20′S, 146°77′E), during its autumn spawning season (May 2012). The subtropical/temperate sea urchin, Centrostephanus rodgersii, a species that has undergone poleward range expansion, was investigated in Sydney, southern Australia (33°58′S, 151°14′E), during its winter spawning season (August 2012). The thermal tolerance of development was determined in embryos and larvae reared at twelve temperatures. For A. placenta, the ambient water temperature near Townsville and experimental control were 24 °C and treatments ranged from 14 to 37 °C. For C. rodgersii, ambient Sydney water temperature and experimental control were 17 °C, and the treatment range was 9–31 °C. A. placenta had a broader developmental thermal envelope (14 °C range 17–31 °C) than C. rodgersii (9 °C range 13–22 °C). Both species developed successfully at temperatures well below ambient, suggesting that cooler water is not a barrier to poleward migration for either species. Both species presently live near the upper thermal limits for larval development, and future ocean warming could lead to contractions of their northern range limits. This study provides insights into the factors influencing the realized and potential distribution of planktonic life stages and changes to adult distribution in response to global change.  相似文献   

17.
The filtration rates of Mytilus edilis (=galloprovincialis; 40 mm) were determined in relation to food concentration and temperature, using pure suspensions of the unicellular alga Platymonas suecica in concentrations ranging from 3x105 cells/l to 1.5x108 cells/l. The rate of filtration (ml/h/mussel) generally decreased as cell concentrations increased, and dropped to low values when concentrations above 5x107 cells/l were supplied. The amount of water swept clear varied continuously, and noticeable differences in the filtration activity of M. edulis were observed over short time intervals (5 min). Fluctuations of filtered volumes per unit time were greater with lower than with higher concentrations of algae. The influence of temperature on filtration activity was highest between 5°–15°C and 25°–30°C. A temperature increase from 15° to 25°C resulted in only a slight increase in filtration rate. At 5° and 30°C, filtration dropped to very low values, namely 350 and 100 ml/h, respectively. The temperature coefficients for the filtration rates of M. edulis were determined as: Q10 (5° to 15°C)=4.96; Q10 (10° to 20°C)=1.22. The amount of algae cells ingested per mussel per hour is directly related to food concentration. The maximum number of cells filtered/mussel/h in an algal suspension of 70x106 cells/l was 21.5x105 cells/h. Cell concentrations of up to 40x106 cells/l were swept clear without producing pseudofaeces. The critical cell density for M. edulis was reached at algal concentrations of 70 to 80x106 cells/l. Above these concentrations no normal filtration activity was observed.  相似文献   

18.
In order to develop effective conservation strategies for endangered migratory species, the link between feeding and breeding grounds needs to be clarified. In this study, the genetic compositions of consecutive Japanese feeding aggregations of green turtles (Chelonia mydas) along the Kuroshio Current were examined by mixed-stock analyses of mitochondrial DNA control-region sequences. The results indicated that the southern feeding aggregation around Yaeyama (24.3°N, 124.0°E) was sourced from various Pacific rookeries in the Yaeyama, Ogasawara, Western Pacific, and Indian Oceans and Southeast Asia. Among northern feeding aggregations, the Ginoza (26.5°N, 128.0°E) aggregation was also sourced from the Western Pacific Ocean, but the Nomaike (31.4°N, 130.1°E), Muroto (33.2°N, 134.2°E), and Kanto (35.6°N, 140.5°E) aggregations were contributed mostly by the closer Ogasawara rookeries. The reduced contribution from tropical Pacific rookeries to northern feeding aggregations and the significant correlation between genetic differentiation and geographical distance matrices of feeding aggregations indicated that most hatchlings from these regions transported by the Kuroshio Current settle in upstream feeding grounds along the Japanese archipelago, implying that current flow influences the composition of feeding aggregations. Differences in the composition of relatively close neritic feeding aggregations have important conservation implications, for which both regional and multinational conservation strategies are needed.  相似文献   

19.
Batch adsorption experiments were conducted to explore the adsorption of Cr(VI) in aqueous solutions by β-FeOOH-coated sand. We investigated the key factors which affected the adsorption process such as adsorbent dosage, initial pH, initial Cr(VI) ion concentration, contact time and temperature. The uptake of Cr(VI) was very rapid and 44.3%, 51.6%, 58.9% of the adsorption happened during the first 180 minutes at 293K, 303K and 313K, respectively. The pseudo-second-order rate equation successfully described the adsorption kinetics. To study the adsorption isotherm, two equilibrium models, the Langmuir and Freundlich isotherms, were adopted. At 293K, 303K and 313K, the adsorption capacities obtained from the Langmuir isotherm were 0.060, 0.070 and 0.076 mg Cr(VI) per gram of the adsorbent, respectively. Thermodynamic parameters such as the change of energy, enthalpy and entropy were calculated using the equilibrium constants. The negative value of ΔG 0 and the positive value of ΔH 0 showed that the adsorption of Cr(VI) in aqueous solutions by β-FeOOH-coated sand was spontaneous, endothermic and occurred by physisorption.  相似文献   

20.
Since the solubilization of meat and bone meal (MBM) is a prerequisite in many MBM disposal approaches, enhancement of the solubilization by means of thermochemical pretreatment was investigated in this study at two temperatures (55°C and 131°C) and six sodium hydroxide (NaOH) concentrations (0, 1.25, 2.5, 5, 10 and 20 g/L). The MBM volatile solid (VS) reduction ratio was up to 66% and 70% at 55°C and 131°C, respectively. At the same temperature, the VS reduction ratio increased with the increase in the dosage of NaOH. The study on the methane (CH4) production potential of pretreated MBM shows that the addition of NaOH at 55°C did not cause the inhibition of the succeeding CH4 production process. However, CH4 production was inhibited by the addition of NaOH at 131°C. The CH4 production potential was in the range of 389 to 503 mL CH4/g VS MBM and 464 to 555 mL CH4/g VS MBM at 55°C and 131°C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号