首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long Ye  Hong You  Jie Yao  Xi Kang  Lu Tang 《Chemosphere》2013,90(10):2493-2498
Seasonal variation and influencing factors of perchlorate in snow, surface soil, rain, surface water, groundwater and corn were studied. Seven hundreds and seventy samples were collected in different periods in Harbin and its vicinity, China. Perchlorate concentrations were analyzed by ion chromatography–electrospray mass spectrometry. Results indicate that fireworks and firecrackers display from the Spring Festival to the Lantern Festival (February 2, 2011–February 17, 2011) can result in the occurrence of perchlorate in surface soil and snow. Perchlorate distribution is affected by wind direction in winter. Melting snow which contained perchlorate can dissolve perchlorate in surface soil, and then perchlorate can percolate into groundwater so that perchlorate concentrations in groundwater increased in spring. Perchlorate concentrations in groundwater and surface water decrease after rainy season in summer. Groundwater samples collected in the floodplain areas of the Songhua River and the Ashi River contained higher perchlorate concentrations than that far away with the rivers. The corns have the ability to accumulate perchlorate.  相似文献   

2.
Water, soil, vegetation, and rodents were collected from three areas along the Las Vegas Wash, a watershed heavily contaminated with perchlorate. Perchlorate was detected at elevated concentrations in water, soil, and vegetation, but was not frequently detected in rodent liver or kidney tissues. Broadleaf weeds contained the highest concentrations of perchlorate among all plant types examined. Perchlorate in rodent tissues and vegetation was correlated with perchlorate concentrations in soil as expected, however rodent residues were not highly correlated with plant perchlorate concentrations. This indicates that soil may be a greater source, or a more constant source of perchlorate exposure in rodents than vegetation.  相似文献   

3.
Surface water samples were collected from 55 sites in the Great Lakes Basin and analyzed for the presence of perchlorate using HPLC/MS/MS with an isotopically enriched internal standard. Sites included areas impacted by heavy industry, urbanization, agriculture and atmospheric deposition. Perchlorate was detected at several of the sites at concentrations close to the method detection limit (0.2 microg/l). Despite these low concentrations, its presence was confirmed by sample concentration and determination of the isotopic ratio of perchlorate. The presence of perchlorate at two of the sites was related to a fireworks display which had occurred prior to sampling. The other detections of perchlorate were in rivers/creeks draining watersheds which had high density livestock and crop farming activity. We suspect the two are related. To our knowledge, these are the first reported concentrations of perchlorate in Canadian surface waters.  相似文献   

4.
Perchlorate as an environmental contaminant   总被引:5,自引:0,他引:5  
Perchlorate anion (ClO4-) has been found in drinking water supplies throughout the southwestern United States. It is primarily associated with releases of ammonium perchlorate by defense contractors, military operations, and aerospace programs. Ammonium perchlorate is used as a solid oxidant in missile and rocket propulsion systems. Traces of perchlorate are found in Chile saltpeter, but the use of such fertilizer has not been associated with large scale contamination. Although it is a strong oxidant, perchlorate anion is very persistent in the environment due to the high activation energy associated with its reduction. At high enough concentrations, perchlorate can affect thyroid gland functions, where it is mistakenly taken up in place of iodide. A safe daily exposure has not yet been set, but is expected to be released in 2002. Perchlorate is measured in environmental samples primarily by ion chromatography. It can be removed by anion exchange or membrane filtration. It is destroyed by some biological and chemical processes. The environmental occurrence, toxicity, analytical chemistry, and remediative approaches are discussed.  相似文献   

5.
离子色谱在饮用水消毒副产物及高氯酸盐分析中的应用   总被引:3,自引:0,他引:3  
介绍了离子色谱在饮用水中消毒副产物及高氯酸盐分析中的应用。重点介绍了离子色谱测定饮用水中溴酸盐和高氯酸盐的方法。简单介绍了卤代乙酸和氯酸盐的离子色谱测定法及离子色谱-质谱联用技术在饮用水消毒副产物及高氯酸盐分析中的应用。  相似文献   

6.
Perchlorate, a known thyroid endocrine disruptor, contaminates surface waters near military instillations where solid fuel rocket motors are manufactured or assembled. To assess potential perchlorate exposure to fish and the human population which may feed on them, fish were collected around the Naval Weapons Industrial Reserve Plant in McLennan County, TX, and analyzed for the presence of the perchlorate anion. The sampling sites included Lake Waco and Belton Lake, and several streams and rivers within their watersheds. The general tendency was that perchlorate was only found in a few species sampled, and perchlorate was not detected in every individual within these species. When detected in the fish, perchlorate tissue concentrations were greater than that in the water. This may be due to highly variable perchlorate concentrations in the water coupled with individual-level variation in elimination from the body, or to routes of exposure other than water.  相似文献   

7.
Perchlorate contamination of aquifers and drinking-water supplies has led to stringent regulations in several states to reduce perchlorate concentrations in water at acceptable levels for human consumption. Several perchlorate treatment technologies exist, but there is significant cost associated with their use, and the majority of them are unable to degrade perchlorate to innocuous chloride. We propose the use of a novel sorbent for perchlorate, i.e. an aluminum-based drinking-water treatment residual (Al-WTR), which is a by-product of the drinking-water treatment process. Perchlorate sorption isotherms (23+/-1 degrees C) showed that the greatest amount (65%) of perchlorate removed by the Al-WTR was observed with the lowest initial perchlorate load (10 mg L(-1)) after only 2 h of contact time. Increasing the contact time to 24 h, perchlorate removal increased from 65 to 76%. A significant correlation was observed between the amounts of perchlorate removed with evolved chloride in solution, suggesting degradation of perchlorate to chloride.  相似文献   

8.
Several issues regarding the adverse impacts of the chemical—perchlorate—have been identified recently. Perchlorate is a persistent chemical, and remains in water and soil, thereby accumulating in plants and animals. Fetuses suffer the most from perchlorate contamination. There are ongoing debates about the impacts, toxicity and health effects of perchlorate. Many studies have been conducted on its ecotoxicity and its effects, but standards do not exist for perchlorate. This study aims to review the sources, impacts, fate, transport and remediation of perchlorate.  相似文献   

9.
Perchlorate concentrations in rice samples from many different provinces, and correlation with surface water contamination, were investigated in the Republic of Korea. Perchlorate levels in the 51 rice samples purchased from local markets ranged from below the detection limit to 1.79?±?0.39 μg/kg with a mean level of 0.21 μg/kg and 7 samples collected from the Nakdong River watershed ranged from 0.38?±?0.1 to 3.23?±?0.47 μg/kg with a mean level of 0.9 μg/kg. The correlation coefficient between perchlorate levels in rice samples from the Nakdong river watershed and the levels in surface water was estimated to be approximately 0.904 in the 95 % confidence interval. These results show that surface water contamination was highly related to the perchlorate pollution of rice in the Republic of Korea.  相似文献   

10.
Pendrin mediates uptake of perchlorate in a mammalian in vitro system   总被引:1,自引:0,他引:1  
Perchlorate is a known endocrine disruptor present in groundwater, vegetables and dairy food products in many regions of the United States. It interferes with the uptake of iodide into the thyrocyte by the sodium-iodide symporter at the basolateral surface, thus potentially disrupting the synthesis of thyroid hormone. Because transport of iodide from the thyroid follicular cells to the follicular lumen is mediated by the protein pendrin at the apical surface, we hypothesized that perchlorate may also interact with this protein. Therefore, HeLa cells were transfected with the human SLC26A4 gene, which encodes pendrin, to generate an in vitro mammalian system expressing the recombinant pendrin protein (HeLa-PDS). The HeLa-PDS cells, along with untransfected cells, were then cultured in presence of iodide and/or perchlorate. Intracellular levels of these two chemicals were measured by ion chromatography tandem mass spectrometry. Results from this study show that iodide and perchlorate uptake increases significantly in HeLa-PDS cells as compared to untransfected cells. Thus, recombinant HeLa cells expressing pendrin protein accumulate iodide and perchlorate intracellularly, indicating that pendrin is involved in the uptake of perchlorate. Additional results from this study suggest that iodide and perchlorate competitively inhibit each other for uptake by pendrin. The ability of perchlorate to compete with iodide for uptake by both basal and apical transporters may increase the potential of perturbation of thyroid homeostasis and therefore the estimated risk posed to susceptible human populations.  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs) are a group of toxic, persistent, bioaccumulating organic compounds containing two or more fused aromatic rings. They are listed by the U.S. Environmental Protection Agency as priority pollutants because of their carcinogenicity and toxicity. Employing ozonation as a remediation technique, this work investigated the treatability of a sediment sample from a freshwater boat slip subjected to coal tar contamination over a long period. The contaminated sediment sample contained high levels of PAHs in the forms of naphthalene, phenanthrene, pyrene, and benzo[a]pyrene, among other byproducts present in the humic and solid phases of the sediment. The objectives of this work were to examine (1) the degradation of PAHs in the contaminated sediment as treated by ozonation in the slurry form, (2) the effects of ozonation upon the soil matrix and the biodegradability of the resultant PAH intermediates, and (3) the feasibility of a combined technique using O3 as a pretreatment followed by biological degradation. The sediment was made into 3% w/w soil slurries and ozonated in a 1.7-L semi-batch, well-stirred reactor equipped with pH control and a cold trap for the gaseous effluent. Samples were collected after different ozonation durations and tested for biochemical oxygen demand (BOD), chemical oxygen demand (COD), UV absorbance, and toxicity, along with quantitative and qualitative determinations of the parent and daughter intermediates using gas chromatography/flame ionization detection (GC/FID), GC/mass spectrometry (MS), and ion chromatography (IC) techniques. The GC/MS technique identified 16 compounds associated with the humic and solid phases of the sediment. Intermediates identified at different ozonation times suggested that the degradation of PAHs was initiated by an O3 attack resulting in ring cleavage, followed by the intermediates' oxidation reactions with O3 and the concomitant OH radical toward their mineralization. Results suggested that ozonation for 2 hr removed 50-100% of various PAHs in the solid and liquid phases (as well as the aqueous and gaseous media resulting from the treatment process) of the sediment sample and that organic and inorganic constituents of the sediment were also altered by ozonation. Measurements and comparisons of BOD, COD, UV absorbance, and toxicity of the samples further suggested that ozonation improved the bioavailability and biodegradability of the contaminants, despite the increased toxicity of the treatment effluent. An integrated chemical-biological system appeared to be feasible for treating recalcitrant compounds.  相似文献   

12.
The perchlorate anion (ClO 4 m ) is produced when the solid salts of ammonium, potassium, and sodium perchlorate, and perchloric acid dissolve in water. Ammonium perchlorate, used in solid rocket engine fuels, has a limited shelf life and must periodically be replaced. Before 1997, perchlorate could not be readily detected in groundwater at concentrations below 100 µg/L, until the California Department of Health Services developed an acceptable analytical method that lowered the detection limit to 4 µg/L. Subsequently, groundwater containing perchlorate were soon encountered in several western states, and contamination became apparent in Colorado River water. Most perchlorate salts have high water solubilities; concentrated solutions have densities greater than water. Once dissolved, perchlorate is extremely mobile, requiring decades to degrade. Health effects from ingesting low dosage perchlorate-contaminated water are not well known: it interferes with the body's iodine intake, causing an inhibition of human thyroid production. Contaminated surface and groundwater treatment may require bio- and/or phytoremediation technologies. Perchlorate in groundwater is relatively unretarded; it probably travels by advection. Therefore, it may be used as a tracer for hydrocarbon and metal contaminants that are significantly more retarded. Possible forensic techniques include chlorine isotopes for defining multiple or commingled perchlorate plumes.  相似文献   

13.
The current models are not simple enough to allow a quick estimation of the remediation time. This work reports the development of an easy and relatively rapid procedure for the forecasting of the remediation time using vapour extraction. Sandy soils contaminated with cyclohexane and prepared with different water contents were studied. The remediation times estimated through the mathematical fitting of experimental results were compared with those of real soils. The main objectives were: (i) to predict, through a simple mathematical fitting, the remediation time of soils with water contents different from those used in the experiments; (ii) to analyse the influence of soil water content on the: (ii(1)) remediation time; (ii(2)) remediation efficiency; and (ii(3)) distribution of contaminants in the different phases present into the soil matrix after the remediation process. For sandy soils with negligible contents of clay and natural organic matter, artificially contaminated with cyclohexane before vapour extraction, it was concluded that (i) if the soil water content belonged to the range considered in the experiments with the prepared soils, then the remediation time of real soils of similar characteristics could be successfully predicted, with relative differences not higher than 10%, through a simple mathematical fitting of experimental results; (ii) increasing soil water content from 0% to 6% had the following consequences: (ii(1)) increased remediation time (1.8-4.9h, respectively); (ii(2)) decreased remediation efficiency (99-97%, respectively); and (ii(3)) decreased the amount of contaminant adsorbed onto the soil and in the non-aqueous liquid phase, thus increasing the amount of contaminant in the aqueous and gaseous phases.  相似文献   

14.
The purpose of this study was to investigate the uptake and elimination of perchlorate in eastern mosquitofish (Gambusia holbrooki). Fish were exposed to 0.1-1000 mg/l sodium perchlorate for 12h, 1, 2, 5, 10, and 30 days, and perchlorate was determined in whole body extracts. Perchlorate was not detected in mosquitofish exposed to the low concentrations of perchlorate (0, 0.1, and 1mg/l sodium perchlorate), regardless of the exposure time, whereas it was detected when fish were exposed to 10, 100, and 1000 mg/l. The tissue concentrations were approximately 10 times less than that in the water. There was no difference in the uptake of perchlorate depending upon the exposure time, however, a difference in perchlorate uptake depending upon the concentration of the exposure dose (P<0.001) was observed. Uptake (K(u)) and elimination (K(e)) rate constants were 0.09 l/mg day and 0.70 day(-1), respectively. The half-life (T1/2) of perchlorate was 0.99 day. Thus, it appears that perchlorate is rapidly taken up and eliminated in eastern mosquitofish. These results are critical and may be used to develop models of fate, effects, and transport of perchlorate in natural systems, as well as to assess ecological risk in affected ecosystems.  相似文献   

15.
Activated carbon (AC) amendment is an innovative method for the in situ remediation of contaminated soils. A field-scale AC amendment of either 2% powder or granular AC (PAC and GAC) to a PAH contaminated soil was carried out in Norway. The PAH concentration in drainage water from the field plot was measured with a direct solvent extraction and by deploying polyoxymethylene (POM) passive samplers. In addition, POM samplers were dug directly in the AC amended and unamended soil in order to monitor the reduction in free aqueous PAH concentrations in the soil pore water. The total PAH concentration in the drainage water, measured by direct solvent extraction of the water, was reduced by 14% for the PAC amendment and by 59% for GAC, 12 months after amendment. Measurements carried out with POM showed a reduction of 93% for PAC and 56% for GAC. The free aqueous PAH concentration in soil pore water was reduced 93% and 76%, 17 and 28 months after PAC amendment, compared to 84% and 69% for GAC. PAC, in contrast to GAC, was more effective for reducing freely dissolved concentrations than total dissolved ones. This could tentatively be explained by leaching of microscopic AC particles from PAC. Secondary chemical effects of the AC amendment were monitored by considering concentration changes in dissolved organic carbon (DOC) and nutrients. DOC was bound by AC, while the concentrations of nutrients (NO(3), NO(2), NH(4), PO(4), P-total, K, Ca and Mg) were variable and likely affected by external environmental factors.  相似文献   

16.
The perchlorate anion (ClO4) is produced when the solid salts of ammonium, potassium, and sodium perchlorate, and perchloric acid dissolve in water. Ammonium perchlorate, used in solid rocket engine fuels, has a limited shelf life and must periodically be replaced. Before 1997, perchlorate could not be readily detected in groundwater at concentrations below 100 μg/L, until the California Department of Health Services developed an acceptable analytical method that lowered the detection limit to 4 μg/L. Subsequently, groundwater containing perchlorate were soon encountered in several western states, and contamination became apparent in Colorado River water. Most perchlorate salts have high water solubilities; concentrated solutions have densities greater than water. Once dissolved, perchlorate is extremely mobile, requiring decades to degrade. Health effects from ingesting low dosage perchlorate-contaminated water are not well known: it interferes with the body's iodine intake, causing an inhibition of human thyroid production. Contaminated surface and groundwater treatment may require bio- and/or phytoremediation technologies. Perchlorate in groundwater is relatively unretarded; it probably travels by advection. Therefore, it may be used as a tracer for hydrocarbon and metal contaminants that are significantly more retarded. Possible forensic techniques include chlorine isotopes for defining multiple or commingled perchlorate plumes.  相似文献   

17.
A multiresidue analytical method was developed for the determination of 9 endocrine disrupting chemicals (EDCs) and 19 pharmaceuticals and personal care products (PPCPs) including acidic and neutral pharmaceuticals in water and soil samples using rapid resolution liquid chromatography-tandem mass spectrometry (RRLC-MS/MS). Solid phase extraction (SPE), and ultrasonic extraction combined with silica gel purification were applied as pretreatment methods for water and soil samples, respectively. The extracts of the EDCs and PPCPs in water and soil samples were then analyzed by RRLC-MS/MS in electrospray ionization (ESI) mode in three independent runs. The chromatographic mobile phases consisted of Milli-Q water and acetonitrile for EDCs and neutral pharmaceuticals, and Milli-Q water containing 0.01 % acetic acid (v/v) and acetonitrile: methanol (1:1, v/v) for acidic pharmaceuticals at a flow rate of 0.3 mL/min. Most of the target compounds exhibited signal suppression due to matrix effects. Measures taken to reduce matrix effects included use of isotope-labeled internal standards, and application of matrix-match calibration curves in the RRLC-MS/MS analyses. The limits of quantitation ranged between 0.15 and 14.08 ng/L for water samples and between 0.06 and 10.64 ng/g for solid samples. The recoveries for the target analytes ranged from 62 to 208 % in water samples and 43 to 177 % in solid samples, with majority of the target compounds having recoveries ranging between 70–120 %. Precision, expressed as the relative standard deviation (RSD), was obtained less than 7.6 and 20.5 % for repeatability and reproducibility, respectively. The established method was successfully applied to the water and soil samples from four irrigated plots in Guangzhou. Six compounds namely bisphenol-A, 4-nonylphenol, triclosan, triclocarban, salicylic acid and clofibric acid were detected in the soils.  相似文献   

18.
Contaminated water and soil at active or abandoned munitions plants is a serious problem since these compounds pose risks to human health and can be toxic to aquatic and terrestrial life. Our objective was to determine if zero-valent iron (Fe(0)) could be used to promote remediation of water and soil contaminated with 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). As little as 1% Fe(0) (w/v) removed 70 mg TNT litre(-1) from aqueous solution within 8 h and removed 32 mg RDX litre(-1) within 96 h. Treating slurries (1:5 soil:water) of highly contaminated soil (5200 mg TNT and 6400 mg RDX kg(-1) soil) from the former Nebraska Ordnance Plant (NOP) with 10% Fe(0) (w/w soil) reduced CH(3)CN-extractable TNT and RDX concentrations below USEPA remediation goals (17.2 mg TNT and 5.8 mg RDX kg(-1)). Sequential treatment of a TNT-contaminated solution (70 mg TNT litre(-1) spiked with (14)C-TNT) with Fe(0) (5% w/v) followed by H(2)O(2) (1% v/v) completely destroyed TNT and removed about 94% of the (14)C from solution, 48% of which was mineralized to (14)CO(2) within 8 h. Fe(0)-treated TNT also was more susceptible to biological mineralization. Our observations indicate that Fe(0) alone, Fe(0) followed by H(2)O(2), or Fe(0) in combination with biotic treatment can be used for effective remediation of munitions-contaminated water and soil.  相似文献   

19.
A method involving high resolution gas chromatography combined with ion trap (HRGC-MS/MS) and negative chemical ionisation (NCI) was developed for the determination of nitrated or oxygenated polycyclic aromatic hydrocarbons (nitro-PAHs, oxy-PAHs) and other electrophilic substitutes in soil samples. Efficient clean-up was achieved by a combination of methods for the determination of PAHs in soil and nitro-PAHs in aerosol using solid phase extraction (SPE) and semipreparative high performance liquid chromatography (HPLC). In samples of surface soil from the city of Basle (Switzerland), nitro-PAHs (mainly 3-nitrofluoranthene and 1-nitropyrene) were found in concentrations between 30 and 800 ng/kg dry weight. Oxy-PAHs and parent PAHs revealed 102-104-fold higher levels. Nitro-PAHs which are up to 105 times more mutagenic seem to be less persistent in soil than the parent forms, although their entire mutagenic potential has to be estimated as being on the same order of magnitude. In urban air particulate matter, the amounts of nitro-PAHs (2–62 pg/m3) were 10–100 times lower than oxyPAHs and parent PAHs which were both found in a similar range. 3-nitrobenzanthrone, a recently described suspected human carcinogen has not yet been detected. Using multivariate statistical analysis, it was possible to elucidate similarities or special characteristics of substances in a given matrix reflecting their chemical properties or specific emission sources.  相似文献   

20.
Perchlorate is an oxidizer that has been routinely used in solid rocket motors by the Department of Defense and National Aeronautics and Space Administration. Royal Demolition Explosive (RDX) is a major component of military high explosives and is used in a wide variety of munitions. Perchlorate bearing wastewater typically results from production of solid rocket motors, while RDX is transferred to Army industrial wastewaters during load, assemble and pack operations for new munitions, and hot water or steam washout for disposal and deactivation of old munitions (commonly referred to as demilitarization, or simply demil). Biological degradation in Anaerobic Fluidized Bed Reactors (AFBR), has been shown to be an effective method for the removal of both perchlorate and RDX in contaminated wastewater. The focus of this study was to determine the effectiveness of removal of perchlorate and RDX, individually and when co-mingled, using ethanol as an electron donor under steady state conditions. Three AFBRs were used to assess the effectiveness of this process in treating the wastewater. The performance of the bioreactors was monitored relative to perchlorate, RDX, and chemical oxygen demand removal effectiveness. The experimental results demonstrated that the biodegradation of perchlorate and RDX was more effective in bioreactors receiving the single contaminant than in the bioreactor where both contaminants were fed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号