首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Costal sediment samples from Great Kwa River as well as adjoining termite nest and soil samples were analyzed for quantitative determination of polycyclic aromatic hydrocarbons (PAHs) and sterols using gas chromatography–mass spectrometry (GC–MS) in order to access the possibility of transport of biologically produced PAHs/sterols from termite nest to the sediments. The total PAH concentrations (sum of parent and alkyl) for the sediments ranged between 131.96 and 139.35 ng/g dry weight (dw) while those for the nest and soil samples were in the range 9.51–9.71 and 71.85–77.26 ng/g dw, respectively. These levels of PAHs in sediments were relatively low compared to other urban/industrial Asian and American countries. No evidence of the usual biologically produced PAHs was found, thus reducing the likelihood of transport of these compounds from the nest to the sediments. The absence of parent and alkyl PAHs in central compartment of the nest may reflect the selective fern leaves feeding pattern of the dominant termite species prevalent in the vicinity of the study site. Utilization of six selected PAH ratios such as Fla/(Fla + Pyr) (0.4–0.5), Ant/(Ant + Phe) (0.25–0.90), BaA/(BaA + Chrys) (0.45–0.61), MP/P (0.05–6.81), 1,7/(1,7?+?2,6)-DMP (0.61–0.95), and LPAH/HPAH ( 2.80–3.80) allows discrimination of PAH sources for the samples to be made with a mixed source dominance observed. Examination of sterol distributions in the samples shows relatively high abundance of cholest-5-en-3β-ol in central compartment of the nest, considered here as a consequence of metabolic conversion of phyto-/fungi sterols in the tissues of the termite species. The relatively reduced levels of stanol compounds in central compartment of the nest may be associated with their utilization by the termites for growth and development.  相似文献   

2.
Concentrations of polycyclic aromatic hydrocarbons (PAHs) were examined and potential sources of PAHs were identified from the dated tree-rings of Masson pine (Pinus massoniana L.) near two industrial sites (Danshuikeng, DSK and Xiqiaoshan, XQS) in the Pearl River Delta of south China. Total concentrations of PAHs (∑PAHs) were revealed with similar patterns of temporal trends in the tree-rings at both sites, suggesting tree-rings recorded the historical variation in atmospheric PAHs. The differences of individual PAHs and of ∑PAHs detected in the tree-rings between the two sites reflected the historical differences of airborne PAHs. Regional changes in industrial activities might contribute to the site-specific and period-specific patterns of the tree-ring PAHs. The diagnostic PAH ratios of Ant/(Ant + PA), FL/(FL + Pyr), and BaA/(BaA + Chr)) revealed that PAHs in the tree-rings at both sites mainly stemmed from the combustion process (pyrogenic sources). Principal component analysis further confirmed that wood burning, coal combustion, diesel, and gasoline-powered vehicular emissions were the dominant contributors of PAHs sources at DSK, while diesel combustion, gasoline and natural gas combustion, and incomplete coal combustion were responsible for the main origins of PAHs at XQS. Tree-ring analysis of PAHs was indicative of PAHs from a mixture of sources of combustion, thus minimizing the bias of short-term active air sampling.  相似文献   

3.
Nineteen soil samples were collected in and around Songshan coking plant in Guangdong province of China and analyzed for eighteen polycyclic aromatic hydrocarbons (PAHs) by gas chromatography-mass spectrometry (GC-MS). The total concentration of PAHs ranged from 2.36 to 1146.39 mg kg(-1) dry weight, varying significantly among the sampling sites, most individual PAHs were correlated with each other. A cluster analysis was performed to examine the correlation of PAH distribution, five groups were observed with sample types in the coking plant. 2-3 ring PAHs were predominant in group I and II, while 4-5 ring PAHs showed great abundance in group III, IV and V, which contributed to the distance from the emission sources in the coking plant and the behaviors of particle-bound and gaseous PAHs. The ratios of Flu?:?(Flu + Pyr), BaA?:?(BaA + Chr), InP?:?(InP + BgP) and Ant?:?(Ant + Phen) ratios were 0.51-0.87, 0.16-0.89, 0.47-0.68 and 0.03-0.60, respectively. The total index of all studied soils was > 6, indicating that the source of the PAHs in coking plant soils were from the pyrolysis processes. Health risk assessments were carried out by dermal PAH exposure data to quantify cancer risk. The resultant lifetime exposure levels due to TEQ(BaP) desorbed onto skin for workers ranged from 2.25 × 10(-7) to 7.86 × 10(-5) mg kg(-1) per day, and the estimated cancer risks were between 8.45 × 10(-6) and 2.94 × 10(-3), indicating that the dermal exposures of PAHs to coking workers might be acceptable in most soil sites.  相似文献   

4.
Ambient gas and particle phase samples were collected during two sampling periods from a residential area of an industrialized city, Kocaeli, Turkey. The sampling occurred during winter months when structures were being heated, and summer months when structures were not being heated. Σ(13)PAH (gas + particle) concentrations ranged between 6.2 ng m(-3) (DahA) and 98.6 ng m(-3) (Phe) in the heating (winter) period and 3.0 ng m(-3) (BaA) and 35.1 ng m(-3) (Phe) in the non-heating (summer) period. Phe, Flt and Pyr were found to be at high concentrations in both sampling periods. Winter time to summer time concentration ratios for individual ambient PAH concentration ratios ranged between 1.2 (DahA) and 17.5 (Flu), indicating the effect of the emissions from residential heating on measured concentrations of PAHs, but great industrial plants and the only incinerator facility of Turkey are other important pollution sources around the city. Temperature dependence of gas phase PAHs was investigated using the Clausius-Clapeyron equation. A high slope obtained (5069.7) indicated the effect of the local sources on measured gas phase PAHs. Correlation of the supercooled vapor pressure (P) with the gas particle partitioning coefficient (K(p)) and particle phase fraction was also evaluated. The relationship between the meteorological parameters and individual PAH (gas + particle) concentrations was investigated further by multiple linear regression analysis. It was found that the temperature had a significant effect on all of the measured PAH concentrations, while the effects of the wind speed and direction were not significant on the individual PAHs. On the other hand, PAH concentrations showed a strong linear relationship with the ventilation coefficient (VC) which showed the influence of local sources on measured PAHs. Benzo[a]pyrene toxic equivalent (BaP(eq.)) concentrations were used for health risk assessment purposes. The winter period risk level (2.92 × 10(-3)) due to the respiratory exposure to PAHs was found to be almost 3 times higher than in the summer period (1.15 × 10(-3)).  相似文献   

5.
Three diesel-dominated routes (DDRs) and three gasoline-dominated routes (GDRs) were chosen as the study sites. The total number of vehicles on GDRs (47,200) was much higher than that on DDRs (14,500). The concentration of polycyclic aromatic hydrocarbons (PAHs), elemental carbon, organic carbon, and metals from GDR roadsides was higher than that for DDRs. The diagnostic ratios (ANTHR/PHE + ANTHR, FLT/FLT + PYR, BaA/BaA + CHR, and IND/IND + BghiP + ANTHN) all indicated that the major PAH source on DDR and GDR was emissions from vehicle engine combustion. The marked diesel ratios of low molecular weight PAH2.5/T-PAH2.5, methyl-PAH2.5/T-PAH2.5, methyl-PHE/PHE, and Mo/PM2.5 on DDRs were higher than those on GDRs. Significant correlations were found between the number of vehicles and the concentration of T-PAH2.5, Car-PAHs2.5, and BaPeq2.5 on DDRs and GDRs. The increase in the levels of T-PAH2.5, Car-PAHs2.5, and BaPeq2.5 per 100 vehicles on DDRs was about 3.3, 3.5, and 4.2 times higher than that on GDRs, respectively. The higher percentage of high-exhaust volume from the larger amount of diesel vehicles on DDRs than that on GDRs was the main factor leading to these results. The diagnostic ratios BaA2.5/CHR2.5 and (BbF + BkF)2.5/BghiP2.5 showed significant differences between the fine PAH sources emitted on DDRs and GDRs, whereas the diagnostic ratios Me-PAH2.5/T-PAH2.5 and (BbF + BkF)2.5/BghiP2.5 showed good correlations with the percentages of diesel exhaust volume in the total exhaust volume (E diesel/E total) on DDRs.  相似文献   

6.
This paper reports the monitoring results of eleven polycyclic aromatic hydrocarbons (PAHs), four to six-ring, at two urban sites-Central & Western (CW) and Tsuen Wan (TW) in Hong Kong from January to December 2000; and the findings of a study conducted in 2001 of the partitioning of the gaseous and particulate phases of PAHs. The sum of the eleven PAHs under study (sigmaPAHs) was found to range from 6.46 to 38.8 ng m(-3). The annual mean levels at 12.2 ng m(-3) and 15.8 ng m(-3) for CW and TW respectively are comparable to those recorded for the previous two years and are also within the reported ranges for other metropolitan cities in the Asia Pacific region. Amongst the selected eleven PAHs, fluoranthene and pyrene were the two most abundant found in the urban atmosphere of Hong Kong during the study period accounting for approximately 80%, of the total PAHs. The ratios of benzo(a)pyrene to benzo(g,h,i)perylene (BaP/BghiP) and indeno(1,2,3-cd)pyrene to benzo(g,h,i)perylene (IDP/BghiP) indicate that diesel and gasoline vehicular exhausts were the predominant local emission sources of PAHs. Seasonal variations with high winter to summer ratios for each of the individual PAHs (CW: 1.6-16.7 and TW: 0.82-8.2) and for sigmaPAHs (CW: 1.9 and TW: 1.8) and a spatial variation of BaP amongst the air monitoring stations are noted. Results of correlation studies illustrate that local meteorological conditions such as ambient temperature, solar radiation, wind speed and wind direction have significant impact on the concentrations of atmospheric PAHs accounting for the observed seasonal variations. A snapshot comparison of the concentrations of PAHs at four sites including a roadside site, a rural site and the two regular urban sites CW and TW was also performed using the profiles of PAHs recorded on two particulate episode days in March 2000.  相似文献   

7.
Atmospheric fine and coarse particles were collected in Teflon filters in three cities of the region of the Lower Sinos River Basin of Rio Grande do Sul in the year 2010. The filters were Soxhlet extracted, and 14 priority PAHs were analyzed using a gas chromatograph coupled to a mass spectrometer (GC/MS). The principal emission sources of these compounds were assessed by using diagnostic ratios and receptor model: positive matrix factorization (PMF 3.0) of the US Environmental Protection Agency. The results of PAHs concentration for the studied year showed significant levels of high molecular weight (HMW) PAH, Ind, and BghiP, in PM2.5 in the winter season, showing the influence of mobile sources. The application of receptor model PMF 3.0 revealed that the main sources of PAHs were vehicle fleet (both diesel and gasoline), followed by coal combustion, wood combustion, and resuspension of dust. The results of the receptor modeling are in agreement with the data obtained by the ratio diagnostic.  相似文献   

8.
Polycyclic aromatic hydrocarbons (16 EPA-PAHs) in urban surface soil from Jiaxing City were determined using HPLC. The total concentration of 16 EPA-PAHs was detected from 18.73 to 441.34 pg/g. Individual PAH occupation analysis demonstrates that four-ring PAHs comprise as much as 44.16% and were prevalent in the composition of PAH pollutants. The other components were two-ring PAHs (7.36%), three-ring PAHs (17.28%), five-ring PAHs (16.16%), and six-ring PAHs (15.04%). Source analysis on the characteristic ratios of anthracene(Ane)/[Ane+phenanthrene(Phe)], fluoranthene(Fla)/[Fla+pyrene(Pyr)], and benzo[a]pyrene(Bap)/benzo[g,h,i]perylene(Bgp) reveals that PAH pollutants originated mainly from coal combustion, but vehicular emission as a source was not negligible. All PAHs discussed in the paper have similar source in most sampling sites. The spatial distributions of pollution sources were closely related to geographic location, geographic condition, and living habit of indigenes. A linear relationship between 2-3-ring PAHs, 4-6-ring PAHs, SOM, and ∑PAHs were investigated and significant correlativity were expatiated lastly. It revealed that coefficient between 2-3-ring PAHs and ∑PAHs is 0.56, between 4-6-ring PAHs and ∑PAHs is 0.99, between SOM and ∑PAHs is 0.82.  相似文献   

9.
PAH and PCB in soils of Switzerland--status and critical review   总被引:1,自引:0,他引:1  
The surface soil concentrations (0-20 cm) of the Swiss soil monitoring network (NABO) with 105 observation sites representing all major land use types ranged for the sum of 16 EPA PAH (PAH(16)) from 32 to 8465 microg kg(-1) (median 163 microg kg(-1)), for benzo[a]pyrene (BaP) from 0.5 to 1129 microg kg(-1) (median 13 microg kg(-1)) and for the sum of seven IRMM PCB (PCB(7)) from 0.5 to 12 microg kg(-1) (median 1.6 microg kg(-1)). The legal guide values of Switzerland were exceeded for PAH(16) at only three and for BaP at two sites. The PCB(7) concentrations were clearly below any assessment value. The concentration ranges were overlapping between all land use types. Tendencies for higher concentrations were observed at urban and viticulture sites. The overall measurement precision at repeatability conditions ranged from 1 to 37% RSD for PAH(16), BaP and PCB(7). The median bias for the chemical analysis was around zero for PAH(16), +5% for BaP and -5% for PCB(7) with spreads ranging from less than -20% up to more than +30%. The PAH profiles were clearly dominated by phenanthrene. Stratification by land use revealed a prevalence of benzo[a]pyrene at urban and naphthalene at conservation sites. For PCB, the general congener rank order was PCB no. 153 > 138 > 101 > 180. From a broad correlation screening only PAH(16)/BaP (r = 0.88**) were relevant for practical soil protection. The extensive comparison with other studies was severely biased by the lack of harmonisation, especially concerning sampling depth, sampling support, analytical method and the sum calculation procedure.  相似文献   

10.
Considering the mounting evidences of the effects of air pollution on health, the present study was undertaken to assess the ambient air quality status in the fast growing urban centres of Haryana state, India. The samples were collected for total suspended particulate matter (TSPM), respirable suspended particulate matter (PM10), sulfur dioxide (SO2), and oxides of nitrogen (NO2) during different seasons from 8 districts of Haryana during January, 1999 to September, 2000. The four types of sampling sites with different anthropogenic activities i.e. residential, sensitive, commercial and industrial were identified in each city. The ambient air concentration of TSPM and PM10 observed was well above the prescribed standards at almost all the sites. The average ambient air concentrations of SO2 and NO2 were found below the permissible limits at all the centres. Comparatively higher concentration of SO2 was observed during winter seasons, which seems to be related with the enhanced combustion of fuel for space heating and relatively stable atmospheric conditions. Air Quality Index (AQI) prepared for these cities shows that residential, sensitive and commercial areas were moderately to severely polluted which is a cause of concern for the residents of these cities. The high levels of TSPM and SO2 especially in winter are of major health concern because of their synergistic action. The data from Hisar city reveals a significant increase in the total number of hospital visits/admissions of the patients with acute respiratory diseases during winter season when the level of air pollutants was high.  相似文献   

11.
The concentrations of polycyclic aromatic hydrocarbons (PAHs) were determined in groundwater and soil profiles from upland field and paddy field in the Hunpu wastewater-irrigated area of northeast China. In the study area, the peak concentrations of total PAHs were within or just below the topsoil, and the contents decline with depth at various trend verified by the Spearman's rank correlation test. The total PAH concentrations in upland soil layers ranged from 46.8 to 2,373.0 microg/kg (dry wt.), while the concentrations in paddy soil layers ranged from 23.1 to 1,179.1 microg/kg (dry wt.). The 16 priority PAHs were all detected in the analyzed soil samples, and naphthalene (Nap), phenanthrene (Phe), fluoranthene (Fla), chrysene (Chr), and benzo[a]pyrene (Bap) were selected for further study in terms of their vertical distributions. The concentrations of both total and individual PAHs in upland soil were generally higher than those in the corresponding layers of paddy soil. The concentrations of total and individual PAH were notably different between the corresponding horizons in upland and paddy soil were probably attribute to the different sources and properties of the PAHs and soil; different methods of soil tillage and plant growing. Special PAH compound ratios, such as phenanthrene/anthracene, fluoranthene/pyrene, LMW/HMW, and parent PAH ratios (Ant/178, Fla/202, BaA/228, and Ilp/276) were used to identify the source of soil PAHs. The data suggests that the possible sources of PAHs in the Hunpu wastewater-irrigation area are the incomplete combustion of coal, petroleum and crude oil, automobile exhausts. These sources lead to pollution of the soil and groundwater by wet/dry deposition and vertical downward migration.  相似文献   

12.
Mass size distributions of total suspended particulate matter (TSPM) was measured from Sep 2002 to April 2003 in indoor kitchen environments of five locations in Jawaharlal Nehru University (JNU), New Delhi, with the help of a high volume cascade impactor. Particulate matters were separated in five different size ranges, i.e. >10.9 microm, 10.9-5.4 microm, 5.4-1.6 microm, 1.6-0.7 microm and <0.7 microm. The particle size distribution at various sites appears to follow uni-modal trend corresponding to fine particles i.e. size range <0.7 microm. The contributions of fine particles are estimated to be approximately 50% of TSPM and PM10.9, while PM10.9 comprises 80% of TSPM. Good correlations were observed between various size fractions. Regression results reveal that TSPM can adequately act as a surrogate for PM10.9 and fine particles, while PM10.9 can also act as surrogate for fine particles. The concentrations of heavy metals are found to be dominantly associated with fine particles. However, the concentration of some metals and their size distribution, to some extent is also site specific (fuel type used).  相似文献   

13.
The seasonal variations of concentrations of PAHs in the soil and the air were measured in urban and rural region of Dalian, China in 2007. In soil, mean concentrations of all PAHs in summer were larger than those in winter, whereas the concentrations of heavier weight PAHs in winter were larger than those in summer. Winter/summer concentration ratios for individual PAHs (R(W/S)) increased with the increase of molecular weight of PAHs in soil, indicating that PAHs with high molecular weight were more easily deposited to soil in winter than summer. In air, mean concentrations of all PAHs in winter were larger than those in summer. In comparison with the R(W/S) in soil, all the values of R(W/S) in air were larger than one indicating that the entire individual PAH concentrations in winter were larger than those in summer. The average concentration composition for each PAH compound in soil and air samples was determined and the seasonal change of PAH profile was very small. It was suggested that PAHs in soils and air had the same or similar sources both in winter and summer. The approach to the soil-air equilibrium was assessed by calculating fugacity quotients between soil and air using the soil and air concentrations. The calculated soil-air fugacity quotients indicated that soil acted as a secondary source to the atmosphere for all lighter weight PAHs (two-three rings) and it will continue to be a sink for heavier weight PAHs (five-six rings) in the Dalian environment, both in winter and summer. Medium weight PAHs (four-five rings) were close to the soil-air equilibrium and the tendency shifted between soil and air when season or function region changed. The fugacity quotients of PAHs in summer (mean temperature 298 K) were larger than those in winter (mean temperature 273 K), indicating a higher tendency in summer than winter for PAHs to move from soil to air. The variation of ambient conditions such as temperature, rainfall, etc. can influence the movement of PAHs between soil and air. Most of the fugacity quotients of PAHs for the urban sites were larger than that for the rural site both in winter and summer. This phenomenon may be related with that the temperatures in urban sites were higher than those in the rural site because of the urban heat island effect.  相似文献   

14.
Particle-associated polycyclic aromatic hydrocarbon (PAH) concentrations were investigated at eight sampling sites during cold periods where heating is used (heating period) (February to March, 2005) and warm periods where heating is not required (non-heating periods) (August to September 2006) in the urban area of Anshan, an iron and steel city in northeastern China. Eleven PAH species were measured using GC-MS. The total average concentrations of PAHs ranged from 46.14 to 385.60 ng m(-3) in the heating period and from 5.28 to 146.40 ng m(-3) in the non-heating period. The lowest concentration of ∑PAHs was observed at Qianshan, a monitoring site far from the city and industrial area, and the highest concentration occurred in the site located at the factory area of Anshan Iron and Steel Incorporation. Moreover, ambient PAH profiles were studied and high molecular weight PAH (including 4-6 rings) species occurred in the high fractions. Toxic equivalent factors analysis gave the potential carcinogenic risks in Anshan. For the heating sampling period, BaP equivalent concentration is in the range of 41.98 to 220.83 ng m(-3), and 9.23 to 126.00 ng m(-3) for the non-heating sampling period. By diagnostic ratio analysis, traffic emission and combustion (coal or biomass) were potential sources for PAHs in Anshan. Finally, PCA results indicated the major sources were vehicle emission, steel industry emission, and coal combustion for both heating and non-heating seasons, which agreed with the results from the diagnostic ratio analysis.  相似文献   

15.
Atmospheric polycyclic aromatic hydrocarbons (PAHs) mainly originate from incomplete combustion or pyrolysis of materials containing carbon and hydrogen. They exist in gas and particle phases, as well as dissolved or suspended in precipitation (fog or rain). Current studies in atmospheric PAHs are predominantly focused on fog and rainwater samples. Some sampling difficulties are associated with fog samples. This study presented the first observation of the characteristics of PAHs in fog samples using a solid phase microextraction (SPME) technique. Eighteen fog samples were collected during ten fog events from March to December 2009 in the Shanghai area. PAHs were extracted by SPME and analyzed by gas chromatography-mass spectrometry (GC-MS). As the compounds were partially soluble in water, with solubility decreasing with increasing molecular weight, low molecular weight (LMW) PAH compounds were universally found in the fog water samples. Naphthalene (NaP), phenanthrene (Phe), anthracene (Ant) and fluoranthene (Flo) were dominant compounds in fog water. The total PAH concentration in fog water ranged from 0.03 to 6.67 μg L(-1) (mean of 1.06 μg L(-1)), and was much higher in winter than in summer. The concentration of PAHs in fog or rain water decreased after undergoing a pre-rain or pre-fog wash. The average concentration of PAHs was higher in fog than in rain. Diagnostic ratio analysis suggested that petroleum and combustion were the dominant contributors to PAHs in urban Shanghai. Backward trajectories were calculated to determine the origin of the air masses, showing that air masses were mostly from the northeast territory.  相似文献   

16.
Daytime and nighttime PM(2.5) samples were collected between August 5 and 16, 2009 and between January 24 and February 4, 2010 in an industrial complex site (site A) and an electronic waste recycling site (site B) to determine the seasonal and diurnal variations of 19 individual polycyclic aromatic hydrocarbons (PAHs) with molecular weight 302 (MW302) including four highly carcinogenic dibenzopyrene (DBP) isomers dibenzo[a,l]pyrene (DBalP), dibenzo[a,e]pyrene (DBaeP), dibenzo[a,i]pyrene (DBaiP), and dibenzo[a,h]pyrene (DBahP). This is the first report on DBP isomers in air particles from South China. The total concentration of PAH MW302 isomers ranged from 1.65 to 3.60 ng m(-3) in summer and 3.82 to 9.81 ng m(-3) in winter. The strongest peaks in the chromatograms of the MW302 isomers were naphtha[2,1-a]pyrene (N21aP), dibenzo[j,l]fluoranthene (DBjlF), naphtha[1,2-b]fluoranthene (N12bF), naphtha[1,2-k]fluoranthene (N12kF) and dibenzo[a,e]fluoranthene (DBaeF), constituting 52.0 to 55.4% of the total MW302 isomers. All the MW302 isomers showed notable seasonal variations. Most of the MW302 isomers in site B showed distinctive diurnal variations with higher concentrations occurring in the night. Taking into account both concentration and potency equivalence factors (PEFs), the strongest carcinogen in the analyzed samples was DBaiP, and the ratios of sum carcinogenic potency of four highly carcinogenic DBP isomers to benzo[a]pyrene (BaP) was about 0.94 in winter to 1.89 in summer, indicating the importance of DBP isomers for the risk assessment. Health risk assessment indicated that on average, 1 in 100 000 residents in the two industrial sites may have an increased risk of cancer due to PAH exposure.  相似文献   

17.
Urbanization can increase the vulnerability of soils to various types of contamination. Increased contamination of urban soils with polycyclic aromatic hydrocarbon (PAH) could relate to increased number of petrol pump stations and mechanical workshops—a phenomenon that needs to be constantly monitored. This study was undertaken to explore the soil PAH levels in Rawalpindi and Islamabad urban areas in relation to land use activities. Composite soil samples from petrol pump stations and mechanical workshops (n?=?32) areas were evaluated for five PAHs––naphthalene, phenanthrene, pyrene, benzo[a]pyrene, and indeno(1,2,3-cd)pyrene—and compared with control area locations with minimum petroleum-related activity (n?=?16). Surface samples up to 3 cm depth were collected and extraction of analytes was carried out using n-hexane and dichloromethane. Prior to running the samples, standards (100 μg ml–1) were run on HPLC to optimize signal to noise ratio using acetonitrile as mobile phase at a flow rate of 1.25 ml/min at 40 °C. Significant differences between petrol pump stations and mechanical workshop areas were observed for individual PAH as well as with control area soil samples. Naphthalene was found to be the most abundant PAH in soil, ranging from 2.47 to 24.36 mg kg–1. Correlation between the benzo[a]pyrene (BaP) level in soil and the total PAH concentration (r?=?0.82, P?<?0.0001) revealed that BaP can be used as a potential marker for PAH pollution. A clear segregation between petrogenic and pyrogenic sources of contamination was observed when low molecular weight PAHs detected in soil was plotted against high molecular weight PAHs. The former source comprised lubricants and used engine oil found at mechanical workshops, whereas the latter could be mostly attributed to vehicular emission at petrol pumps. The results indicate that PAH contamination in urban areas of Rawalpindi and Islamabad has direct relevance with land use for petroleum activity. We conclude that in order to reduce the soil PAH exposure in urban environment, petrol pumps and mechanical workshops must be shifted to less densely populated areas because of their role as important point sources for PAH emission.  相似文献   

18.
This paper presents the analysis of polycyclic aromatic hydrocarbons (PAHs) measured in all four seasons in suspendedparticulate matter (SPM) collected with a high-volume sampler on one measuring site in the northern part of Zagreb. About 30 samples of SPM were analysed for each season, including workdays and weekends and there were no differences amongst them. The concentrations of all PAHs were highest in winter andlowest in summer. The spring PAH concentrations were lower thanthe autumn ones, as the spring had more sunny and warm days. Theprofiles of PAH/BaP at the measurement sites showed that the mainsource of PAHs in spring and summer was traffic while asubstantial amount of autumn and winter PAHs, besides traffic,came from heating.  相似文献   

19.
马鞍山市大气环境中苯并(a)芘分布与变化规律研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了马鞍山市大气环境中苯并(a)芘的分布与变化规律,监测了马鞍山市各功能区,新老市区的居民区及交通要道大气环境中苯并(a)芘的含量,该市功能区内的工业区大气中苯并(a)芘污染严重,最高质量浓度达50.31ng/m^3,居民区内老市大气中的苯并(a)芘污染明显高于新市区,究其原因,老市区是马鞍山,市工业发源地,属居民,商业及工业混合区,研究中发现,大气中苯并(a)芘含量高低有季节性的昼夜变化现象,时空分布和迁移变化规律明显,并且大气中总悬浮颗粒物与苯并(a)芘的相关性显著。  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants derived from pyrolysis and pyrosynthesis processes. Industrial activity, motor vehicle emission, and domestic combustion are the main sources of PAHs in the urban atmosphere. In this work, samples collected during the day and night in the urban area of Sarajevo are analyzed separately for gaseous and particle-bound PAHs; the possible origin of PAHs at the receptor site was suggested using different methods applied to the solid phase and to the total PAHs (gaseous + particulate phase). Finally, the risk level in Sarajevo associated to the carcinogenic character of the studied PAHs has been assessed. The result of this study suggests that (a) the total PAH concentrations were higher than those reported in other European cities; (b) the PAH daytime concentrations are higher than nocturnal concentrations: the sum of the PAH day/night ratios is 1.52 (gas) and 1.45 (particle phase); (c) stationary combustion and traffic were suggested to be the main sources of PAHs; (d) the average particle-bound benzo(a)pyrene (BaP) concentration (5.4 ng/m3) is higher than EU target annual value (1 ng/m3); and (e) PAH cancer risk exceeds the carcinogenic benchmark level recommended by the EPA mainly due to BaP during both the day and night periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号