首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
于非采暖季和采暖季分别采集某石化化工行业聚集城市中心城区室内外PM_(2.5)样品,采用高效液相色谱法分析PM_(2.5)上载带的16种PAHs,对其分布特征、来源以及室外PAHs污染对室内污染的贡献进行了初步探讨。结果表明,研究区域非采暖季和采暖季室外PM_(2.5)中ΣPAHs浓度日均值分别为36.3、294 ng/m~3,室内PM_(2.5)中ΣPAHs浓度分别为14.8、84.6 ng/m~3,均以4、5环PAHs为主;室内PAHs主要来自室外渗透污染,但同时明显存在室内排放源贡献;PAHs来源分析进一步证实研究区域PAHs主要来自煤炭、石油等不完全燃烧,采暖季煤炭燃烧源贡献更突出。  相似文献   

2.
To identify the potential sources responsible for the particulate matter emission from secondary iron and steel smelting factory environment, PM2.5 and PM2.5?10 particles were collected using the low-volume air samplers twice a week for a year. The samples were analyzed for the elemental and black carbon content using x-ray fluorescence spectrometer and optical transmissometer, respectively. The average mass concentrations were 216.26, 151.68, and 138. 62 μg/m3 for PM2.5 and 331.36, 190.01, and 184.60 μg/m3 for PM2.5?10 for the production, outside M1 and outside M2 sites, respectively. The same size resolved data set were used as input for the positive matrix factorization (PMF), principal component factor analysis (PCFA), and Unmix (UNMIX) receptor modeling in order to identify the possible sources of particulate matter and their contribution. The PMF resolved four sources with their respective contributions were metal processing (33 %), e-waste (33 %), diesel emission (22 %) and soil (12 %) for PM2.5, and coking (50 %), soil (29 %), metal processing (16 %) and diesel combustion (5 %) for PM2.5?10. PCFA identified soil, metal processing, Pb source, and diesel combustion contributing 45, 41, 9, and 5 %, respectively to PM2.5 while metal processing, soil, coal combustion and open burning contributed 43, 38, 12, and 7 %, respectively to the PM2.5?10. Also, UNMIX identified metal processing, soil, and diesel emission with 43, 42 and 15 % contributions, respectively for the fine fraction, and metal processing (71 %), soil (21 %) and unidentified source (1 %) for the coarse fraction. The study concluded that metal processing and e-waste are the major sources contributing to the fine fraction while coking and soil contributed to the coarse fraction within the factory environment. The application of PMF, PCFA and UNMIX receptor models improved the source identification and apportionment of particulate matter drive in the study area.  相似文献   

3.
Concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 28 surface soils samples collected from Urumqi, northwest China, for examination of distributions, source contributions, and potential health effects. The results indicated that the sum of 16 PAHs concentration ranged from 331 to 15,799 μg?kg?1 (dw) in soils, with a mean of 5,018?±?4,896 μg?kg?1 (n?=?28). The sum of seven carPAHs concentration ranged from 4 to 1,879 μg?kg?1 (dw; n?=?28). The highest ∑PAHs concentrations were found at roadsides and industrial sites, followed by those at parks, rural areas, and business/residential areas. Coal combustion, emission of diesel and gasoline from vehicles, and petroleum source were four sources of PAHs as determined by PMF analysis, which contributed 51.19, 19.02, 18.35, and 11.42 % to the PAH sources, respectively. Excellent coefficients of correlation between the measured and predicted PAHs concentrations suggested that the PMF model was very effective to estimate sources of PAHs in soils. Incremental lifetime cancer risk values at the 95th percentile due to human exposure to surface soils PAHs in Urumqi were 2.02?×?10?6 for children and 2.72?×?10?5 for adults. The results suggested that the current PAHs levels in soils from Urumqi were pervasive and moderately carcinogenic to children and adults.  相似文献   

4.
This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19–97% of various PAHs, vehicular emissions 0–70%, diesel based sources 0–81% and other miscellaneous sources 0–20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R 2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.  相似文献   

5.
The study deals with the combined contribution of polycyclic aromatic hydrocarbons (PAHs) and metals to health risk in Delhi soils. Surface soils (0–5 cm) collected from three different land-use regions (industrial, flood-plain and a reference site) in Delhi, India over a period of 1 year were characterized with respect to 16 US Environmental Protection Agency priority PAHs and five trace metals (Zn, Fe, Ni, Cr and Cd). Mean annual ∑16PAH concentrations at the industrial and flood-plain sites (10,893.2?±?2826.4 and 3075.4?±?948.7 μg/kg, respectively) were ~15 and ~4 times, respectively, higher than reference levels. Significant spatial and seasonal variations were observed for PAHs. Toxicity potentials of industrial and flood-plain soils were ~88 and ~8 times higher than reference levels. Trace metal concentrations in soils also showed marked dependencies on nearness to sources and seasonal effects. Correlation analysis, PAH diagnostic ratios and principal component analysis (PCA) led to the identification of sources such as coal and wood combustion, vehicular and industrial emissions, and atmospheric transport. Metal enrichment in soil and the degree of soil contamination were investigated using enrichment factors and index of geoaccumulation, respectively. Health risk assessment (incremental lifetime cancer risk and hazard index) showed that floodplain soils have potential high risk due to PAHs while industrial soils have potential risks due to both PAHs and Cr.  相似文献   

6.
A source apportionment study was carried out to estimate the contribution of motor vehicles to ambient particulate matter (PM) in selected urban areas in the USA. Measurements were performed at seven locations during the period September 7, 2000 through March 9, 2001. Measurements included integrated PM2.5 and PM10 concentrations and polycyclic aromatic hydrocarbons (PAHs). Ambient PM2.5 and PM10 were apportioned to their local sources using the chemical mass balance (CMB) receptor model and compared with results obtained using scanning electron microscopy (SEM). Results indicate that PM2.5 components were mainly from combustion sources, including motor vehicles, and secondary species (nitrates and sulfates). PM10 consisted mainly of geological material, in addition to emissions from combustion sources. The fractional contributions of motor vehicles to ambient PM were estimated to be in the range from 20 to 76% and from 35 to 92% for PM2.5 and PM10, respectively.  相似文献   

7.
Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) in Delhi were evaluated to study particulate PAHs profiles during the different seasons of 2003. Samples of urban suspended particulate matter were collected during January 2003 to December 2003 at three locations (Okhla, Dhaulakuan and Daryaganj), using a high volume sampler provided with glass fiber filters. Samples were analyzed using the gas chromatography technique. The annual average concentrations of total PAHs were found as 1,049.3 ng/m(3) at Okhla, 1,344.37 ng/m(3) at Daryaganj, and 1,117.14 ng/m(3) at Dhaulakuan. The seasonal average concentrations were found to be maximum in winter and minimum during the monsoon season. Principal Component Analysis (PCA) of the data was also carried out and the results indicate that diesel and gasoline driven vehicles are the principal sources of PAHs at all the three sites under investigation. Other sources might come from stationary combustion sources such as cooking fuel combustion and industrial emission.  相似文献   

8.
Concentrations of polycyclic aromatic hydrocarbons (PAHs) were examined and potential sources of PAHs were identified from the dated tree-rings of Masson pine (Pinus massoniana L.) near two industrial sites (Danshuikeng, DSK and Xiqiaoshan, XQS) in the Pearl River Delta of south China. Total concentrations of PAHs (∑PAHs) were revealed with similar patterns of temporal trends in the tree-rings at both sites, suggesting tree-rings recorded the historical variation in atmospheric PAHs. The differences of individual PAHs and of ∑PAHs detected in the tree-rings between the two sites reflected the historical differences of airborne PAHs. Regional changes in industrial activities might contribute to the site-specific and period-specific patterns of the tree-ring PAHs. The diagnostic PAH ratios of Ant/(Ant + PA), FL/(FL + Pyr), and BaA/(BaA + Chr)) revealed that PAHs in the tree-rings at both sites mainly stemmed from the combustion process (pyrogenic sources). Principal component analysis further confirmed that wood burning, coal combustion, diesel, and gasoline-powered vehicular emissions were the dominant contributors of PAHs sources at DSK, while diesel combustion, gasoline and natural gas combustion, and incomplete coal combustion were responsible for the main origins of PAHs at XQS. Tree-ring analysis of PAHs was indicative of PAHs from a mixture of sources of combustion, thus minimizing the bias of short-term active air sampling.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants derived from pyrolysis and pyrosynthesis processes. Industrial activity, motor vehicle emission, and domestic combustion are the main sources of PAHs in the urban atmosphere. In this work, samples collected during the day and night in the urban area of Sarajevo are analyzed separately for gaseous and particle-bound PAHs; the possible origin of PAHs at the receptor site was suggested using different methods applied to the solid phase and to the total PAHs (gaseous + particulate phase). Finally, the risk level in Sarajevo associated to the carcinogenic character of the studied PAHs has been assessed. The result of this study suggests that (a) the total PAH concentrations were higher than those reported in other European cities; (b) the PAH daytime concentrations are higher than nocturnal concentrations: the sum of the PAH day/night ratios is 1.52 (gas) and 1.45 (particle phase); (c) stationary combustion and traffic were suggested to be the main sources of PAHs; (d) the average particle-bound benzo(a)pyrene (BaP) concentration (5.4 ng/m3) is higher than EU target annual value (1 ng/m3); and (e) PAH cancer risk exceeds the carcinogenic benchmark level recommended by the EPA mainly due to BaP during both the day and night periods.  相似文献   

10.
The present study proposed to investigate the atmospheric distribution, sources, and inhalation health risks of polycyclic aromatic hydrocarbons (PAHs) in a tropical megacity (Delhi, India). To this end, 16 US EPA priority PAHs were measured in the inhalable fraction of atmospheric particles (PM10; aerodynamic diameter, ≤10 μm) collected weekly at three residential areas in Delhi from December 2008 to November 2009. Mean annual 24 h PM10 levels at the sites (166.5–192.3 μg m?3) were eight to ten times the WHO limit. Weekday/weekend effects on PM10 and associated PAHs were investigated. Σ16PAH concentrations (sum of 16 PAHs analyzed; overall annual mean, 105.3 ng m?3; overall range, 10.5–511.9 ng m?3) observed were at least an order of magnitude greater than values reported from European and US cities. Spatial variations in PAHs were influenced by nearness to traffic and thermal power plants while seasonal variation trends showed highest concentrations in winter. Associations between Σ16PAHs and various meteorological parameters were investigated. The overall PAH profile was dominated by combustion-derived large-ring species (85–87 %) that were essentially local in origin. Carcinogenic PAHs contributed 58–62 % to Σ16PAH loads at the sites. Molecular diagnostic ratios were used for preliminary assessment of PAH sources. Principal component analysis coupled with multiple linear regression-identified vehicular emissions as the predominant source (62–83 %), followed by coal combustion (18–19 %), residential fuel use (19 %), and industrial emissions (16 %). Spatio-temporal variations and time-evolution of source contributions were studied. Inhalation cancer risk assessment showed that a maximum of 39,780 excess cancer cases might occur due to lifetime inhalation exposure to the analyzed PAH concentrations.  相似文献   

11.
In this study, PM10 concentrations and elemental (Al, Fe, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sn, Sb, Ba, Pb, and Bi) contents of particles were determined in Düzce, Turkey. The particulate matter samplings were carried out in the winter and summer seasons simultaneously in both urban and sub-urban sampling sites. The average PM10 concentration measured in the winter season was 86.4 and 27.3 μg/m3, respectively, in the urban and sub-urban sampling sites, while it was measured as 53.2 and 34.7 μg/m3 in the summer season. According to the results, it was observed that the PM10 levels and the element concentrations reached higher levels, especially at the urban sampling site, in the winter season. The positive matrix factorization model (PMF) was applied to the data set for source apportionment. Analysis with the PMF model revealed six factors for both the urban (coal combustion, traffic, oil combustion, industry, biomass combustion, and soil) and sub-urban (industry, oil combustion, traffic, road dust, soil resuspension, domestic heating) sampling sites. Loadings of grouped elements on these factors showed that the major sources of the elements in the atmosphere of Düzce were traffic, fossil fuel combustion, and metal industry-related emissions.  相似文献   

12.
Street dusts collected from 20 locations in the Chang-Zhu-Tan (Changsha, Zhuzhou, and Xiangtan) region, Hunan, China, in May to July 2006, were investigated for sources of polycylic aromatic hydrocarbons (PAHs). The individual PAH concentrations were in the range of 10–4316 ng g?1, and ∑PAHs16 levels were in the range of 3,515–24,488 ng g?1, with a mean of 8,760 ng g?1. The high-molecular-weight PAHs (four to six rings), ranging from 47.51 to 82.11 %, with a mean of 74.79 %, were the dominant PAH compounds in almost all of the dusts. The isomer ratios suggested a rather uniform mixture of coal combustion and petroleum PAH sources. Factor analysis and multiple linear regression analysis indicate that the main sources of the 16 PAHs were coal combustion/vehicle exhaust, coking/petroleum, and plant combustion, with contribution rates of 50.9, 35.01, and 14.08, respectively. The spatial distributions of PAH concentrations were significantly related to the distribution of industries, traffic circulation, and farmland in this region.  相似文献   

13.
Concentrations of 15 polycyclic aromatic hydrocarbons (PAHs) were measured in surface soils collected from Dalian, China, for examination of distributions and composition profiles and their potential toxicity. The sum of 15 PAHs (SigmaPAHs) ranged from 190 to 8595 ng g(-1) dry weight, and showed an apparent urban-suburban-rural gradient in both SigmaPAHs and composition profiles. Using hierarchical cluster analysis (HCA), the sampling sites were grouped into four clusters corresponding to traffic area, park/residential area, suburban and rural areas. The ratios of naphthalene (Nap) and fluorene (Fl) versus fluoranthene (Flu), pyrene (Pyr) and indeno(1,2,3-cd)pyrene (InP) in the four clusters provided evidence of local distillation. The diagnostic ratios indicated the prevalent PAH sources were petroleum combustion and coal combustion in Dalian, and a cross plot of diagnostic ratios distinguished the urban samples from suburban and rural ones. Toxic potency assessment of soil PAHs presented a good relationship with benzo(a)pyrene (BaP) levels, toxic equivalent concentrations based on BaP (TEQ(BaP)) and dioxin-like toxic equivalent concentrations (TEQ(TCDD)). The study highlights that BaP is a good indicator for assessing the potential toxicity of PAHs, and presents a promising toxicity assessment method for soil PAHs.  相似文献   

14.
常州市秋季大气PM2.5中多环芳烃污染水平及来源   总被引:2,自引:0,他引:2  
为了研究常州市秋季大气PM2.5中多环芳烃的污染水平及其来源,在常州市布设了6个采样点,分别代表交通干道区、商业混合区、居民文教区、远郊区、工业区和对照点,于2013年10月进行大气PM2.5的采样,采用微波萃取-高效液相色谱法测定其中16种USEPA优控多环芳烃的浓度值,并分别通过比值法和因子分析法判断其主要来源。结果表明,常州市秋季大气PM2.5中多环芳烃的主要来源为煤燃烧和机动车排放。  相似文献   

15.
Seasonal aerosol samples have been collected by Andersen Hi-Vol pumping system equipped with a five stage cascade impactor and a backup filter (size range: 10–7.2 μ m, 7.2–3.0 μ m, 3.0–1.5 μ m, 1.5–0.95 μ m, 0.95–0.49 μ m, ≤0.49 μ m) in the Liwan district, Guangzhou. n-Alkanes were measured using gas chromatography and PAHs were measured using gas chromatography/mass spectrometry analysis. The bimodal log-normal distributions of n-alkanes and semi-volatile PAHs were found, while for non-volatile PAHs that was unimodal, so much as the mode of semi-volatile PAHs was similar with that of the particles. The n-alkanes and PAHs were preferably associated with fine particles. C max (carbon number maximum) (C22–C26), CPI (carbon preference index) (1.12–1.21), U/R (unresolved to resolved components ratio) (7.42–10.7), wax% (0.9–3.12%) and the diagnostic ratios for PAHs revealed that vehicular emission was the major source of these organic compounds during the study periods, while the contribution of epicuticular waxes emitted by terrestrial plants was minor. CPI2 (values for petrogenic hydrocarbons), CPI3 (values for biogenic n-alkanes) and wax% revealed that the natural preferentially accumulated in the larger aerosol while the anthropogenic in the smaller. In addition, the different MMDs (mass median diameters) for n-alkanes and PAHs were observed in different seasons. The MMDs for n-alkanes and PAHs were higher in autumn/winter than those in spring/summer. The seasonal effect was related to the hydrocarbon content in the individual particulate fractions, showing a preferential association of n-alkanes and PAHs with larger particles in the autumn/winter season.  相似文献   

16.
南京市大气颗粒物中多环芳烃变化特征   总被引:4,自引:2,他引:2  
逐月采集南京市大气中不同粒径的颗粒物,采用HPLC分析了2010年每个月PM_(10)和PM_(2.5)颗粒物样品中的多环芳烃(PAHs)的种类和浓度水平。结果表明:PM_(10)中PAHs年均值为25.07 ng/m~3,范围为11.03~53.56 ng/m3;PM_(2.5)中PAHs年均值为19.04 ng/m~3,范围为10.82~36.43 ng/m~3。PM_(10)和PM_(2.5)中PAHs总体浓度有着相似的变化趋势,呈现凹形变化曲线;在南京市大气颗粒物中吸附的PAHs大部分以5~6环的高环数组分为主,大部分PAHs和∑PAHs的相关性较好,年度变化幅度不大,分析结果表明,颗粒物中PAHs的来源与稳定的排放源相关,机动车排放不容忽视,与北方城市燃煤污染有着较大的区别。  相似文献   

17.
Particle-associated polycyclic aromatic hydrocarbon (PAH) concentrations were investigated at eight sampling sites during cold periods where heating is used (heating period) (February to March, 2005) and warm periods where heating is not required (non-heating periods) (August to September 2006) in the urban area of Anshan, an iron and steel city in northeastern China. Eleven PAH species were measured using GC-MS. The total average concentrations of PAHs ranged from 46.14 to 385.60 ng m(-3) in the heating period and from 5.28 to 146.40 ng m(-3) in the non-heating period. The lowest concentration of ∑PAHs was observed at Qianshan, a monitoring site far from the city and industrial area, and the highest concentration occurred in the site located at the factory area of Anshan Iron and Steel Incorporation. Moreover, ambient PAH profiles were studied and high molecular weight PAH (including 4-6 rings) species occurred in the high fractions. Toxic equivalent factors analysis gave the potential carcinogenic risks in Anshan. For the heating sampling period, BaP equivalent concentration is in the range of 41.98 to 220.83 ng m(-3), and 9.23 to 126.00 ng m(-3) for the non-heating sampling period. By diagnostic ratio analysis, traffic emission and combustion (coal or biomass) were potential sources for PAHs in Anshan. Finally, PCA results indicated the major sources were vehicle emission, steel industry emission, and coal combustion for both heating and non-heating seasons, which agreed with the results from the diagnostic ratio analysis.  相似文献   

18.
Air pollution has become a serious problem in the Pearl River Delta, South China, particularly in winter due to the local micrometeorology. In this study, atmospheric polycyclic aromatic hydrocarbons (PAHs) were monitored weekly in Shenzhen during the winter of 2006. Results indicated that the detected PAHs were mainly of vapor phase compounds with phenanthrene dominant. The average vapor phase and particle phase PAHs concentration in Shenzhen was 101.3 and 26.7 ng m???3, respectively. Meteorological conditions showed great effect on PAH concentrations. The higher PAHs concentrations observed during haze episode might result from the accumulation of pollutants under decreased boundary layer, slower wind speed, and long-term dryness conditions. The sources of PAHs in the air were estimated by principal component analysis in combination with diagnostic ratios. Vehicle exhaust was the major PAHs source in Shenzhen, accounting for 50.0% of the total PAHs emissions, whereas coal combustion and solid waste incineration contributed to 29.4% and 20.6% of the total PAHs concentration, respectively. The results clearly indicated that the increasing solid waste incinerators have become a new important PAHs source in this region.  相似文献   

19.
Sources, partitioning and toxicological risk of 15 priority polycyclic aromatic hydrocarbons (PAHs) in surface sediments from drinking water sources of Taihu Lake, with an area of 2428 km(2) located in the most developed and populated area of China, were studied, and the results were compared with those in other lakes of China and the USA. Concentrations of the 15 PAHs in sediments ranged from 436.6 to 1334.9 ng g(-1) (dw). Gasoline combustion, coal combustion, diesel combustion from shipping and spillage of petroleum were apportioned to be the main sources of PAHs in this area by principal component analysis, which contributed 35.19%, 26.43%, 25.41% and 12.97% to the PAH sources estimated by further multiple linear regression. Levels of PAHs in sediments were negatively correlated with contents of clay and fine silt (<16 μm), while positively with contents of medium silt, coarse silt and sand (>16 μm). Humin with size larger than 16 μm contained the largest part of the burden of PAHs in sediments, but the specific partitioning domain (bound humic acid, lipid or insoluble residue) depended on properties of organic matter reflected by optical absorbance at 465 and 665 nm. Total toxic benzo[a]pyrene equivalent (TEQ(carc)) of the carcinogenic PAHs in sediments varied from 31.8 to 209.3 ngTEQ(carc) g(-1). Benzo[a]pyrene and dibenzo[a,h]anthracene contributed 45.36 and 25.31% to total TEQ(carc), posing high toxicological risk to this area.  相似文献   

20.
Fifty-eight sediment samples were collected in 2009 from the bottom of river mouths near Kaohsiung Harbor (Taiwan) and the harbor channel for the analyses of polycyclic aromatic hydrocarbons (PAHs) using gas chromatography-mass spectrometry (GC-MS). Concentrations of total PAHs varied from 39 to 30,521 ng g(-1) (dry weight); samples collected from the mouths of Love River, Canon River, Jen-Gen River, and Salt River showed the highest PAHs concentrations. This indicates that the major sources of sediment PAHs come from those polluted urban rivers and the harbor channel. In samples collected from the Salt River mouth, approximately 43% of the PAHs are identified as PAHs with 2 or 3 rings. However, samples collected from other locations contain predominantly PAHs with 4 rings (32 to 42%) or 5 and 6 rings (36 to 44%). Emissions from traffic-related sources and waste incineration contribute to the majority of PAHs found in most channel and river mouth sediments. However, coal/oil combustion is the main cause of high concentrations of PAHs observed in the Salt River mouth sediments. Principal component analyses with multivariate linear regression (PCA/MLR) have been used to further quantify the source contributions, and the results show that the contributions of coal/oil combustion, traffic-related and waste incineration are 37%, 33% and 30%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号