首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycyclic Aromatic Hydrocarbon (PAH) concentrations were measured in Total Suspended Particulate Matter (TSPM) from December 2005 to August 2006 at Nunhai, an industrial site in Agra (India). Particulate matter samples were collected on glass fibre filters using High Volume Sampler (HVS-430) and were extracted using dichloromethane with ultrasonication and analyzed by GC. Total PAH concentration varies between 0.04 to 2.5 microg m(-3) accounting only 1.6 x 10(-3)% of TSPM. The mass distribution in air was dominated by high molecular weight DbA, BghiP, BaP, BkF and IP. Combustion PAH (CPAH) except BeP represents 58% of the total PAH mass and IARC classified total carcinogenic PAH accounting 63% of TPAH concentration. Correlation studies between PAH revealed the contribution of low molecular weight PAH was mainly due to primary emission from diesel exhaust while high molecular weight PAH were formed during combustion. The presence of specific tracers and calculation of characteristic molecular diagnostic ratios Fla/(Fla + Pyr), BaP/(BaP + Chy), BaA/(BaA + Chy), IP/(IP + BghiP), BaP/BghiP and IP/BghiP) were used to identify the sources of the emissions of PAHs in the atmospheric samples. Seasonal variation in atmospheric PAH showed four fold increase in winter concentration than summer. The BaP and relative BaP amount calculated from the measurements suggested that photo-oxidation may also be responsible for the variation in PAH concentrations during winter and summer. Seasonal trends in atmospheric PAH concentration in the study area were influenced by fossil fuel usage for domestic heating, boundary height and temperature.  相似文献   

2.
Costal sediment samples from Great Kwa River as well as adjoining termite nest and soil samples were analyzed for quantitative determination of polycyclic aromatic hydrocarbons (PAHs) and sterols using gas chromatography–mass spectrometry (GC–MS) in order to access the possibility of transport of biologically produced PAHs/sterols from termite nest to the sediments. The total PAH concentrations (sum of parent and alkyl) for the sediments ranged between 131.96 and 139.35 ng/g dry weight (dw) while those for the nest and soil samples were in the range 9.51–9.71 and 71.85–77.26 ng/g dw, respectively. These levels of PAHs in sediments were relatively low compared to other urban/industrial Asian and American countries. No evidence of the usual biologically produced PAHs was found, thus reducing the likelihood of transport of these compounds from the nest to the sediments. The absence of parent and alkyl PAHs in central compartment of the nest may reflect the selective fern leaves feeding pattern of the dominant termite species prevalent in the vicinity of the study site. Utilization of six selected PAH ratios such as Fla/(Fla + Pyr) (0.4–0.5), Ant/(Ant + Phe) (0.25–0.90), BaA/(BaA + Chrys) (0.45–0.61), MP/P (0.05–6.81), 1,7/(1,7?+?2,6)-DMP (0.61–0.95), and LPAH/HPAH ( 2.80–3.80) allows discrimination of PAH sources for the samples to be made with a mixed source dominance observed. Examination of sterol distributions in the samples shows relatively high abundance of cholest-5-en-3β-ol in central compartment of the nest, considered here as a consequence of metabolic conversion of phyto-/fungi sterols in the tissues of the termite species. The relatively reduced levels of stanol compounds in central compartment of the nest may be associated with their utilization by the termites for growth and development.  相似文献   

3.
Nineteen soil samples were collected in and around Songshan coking plant in Guangdong province of China and analyzed for eighteen polycyclic aromatic hydrocarbons (PAHs) by gas chromatography-mass spectrometry (GC-MS). The total concentration of PAHs ranged from 2.36 to 1146.39 mg kg(-1) dry weight, varying significantly among the sampling sites, most individual PAHs were correlated with each other. A cluster analysis was performed to examine the correlation of PAH distribution, five groups were observed with sample types in the coking plant. 2-3 ring PAHs were predominant in group I and II, while 4-5 ring PAHs showed great abundance in group III, IV and V, which contributed to the distance from the emission sources in the coking plant and the behaviors of particle-bound and gaseous PAHs. The ratios of Flu?:?(Flu + Pyr), BaA?:?(BaA + Chr), InP?:?(InP + BgP) and Ant?:?(Ant + Phen) ratios were 0.51-0.87, 0.16-0.89, 0.47-0.68 and 0.03-0.60, respectively. The total index of all studied soils was > 6, indicating that the source of the PAHs in coking plant soils were from the pyrolysis processes. Health risk assessments were carried out by dermal PAH exposure data to quantify cancer risk. The resultant lifetime exposure levels due to TEQ(BaP) desorbed onto skin for workers ranged from 2.25 × 10(-7) to 7.86 × 10(-5) mg kg(-1) per day, and the estimated cancer risks were between 8.45 × 10(-6) and 2.94 × 10(-3), indicating that the dermal exposures of PAHs to coking workers might be acceptable in most soil sites.  相似文献   

4.
Distribution and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in drinking water resources have been carried out for the first time in Henan Province, China. Water samples collected from four river systems and their tributaries, as well as groundwater resources, were analyzed according to EPA method 525.2. Total of 68 water samples were collected in 18 cities in Henan province in May, August and November, 2001. Concentrations of sum of 16 priority PAHs in water samples ranged from 15 to 844 ng/L with a mean value of 178 +/- 210 ng/L (n = 68). The spatial and temporal distribution of PAHs showed that the Huanghe and the Huaihe river systems had relatively higher concentrations of total PAHs. Higher concentrations of total PAHs were observed in August and November than in May, with respective mean values of 262, 232 and 33.6 ng/L. Ratios of Ant/(Ant + Phe) and Flur/(Flur + Pyr) were calculated to evaluate the possible sources of PAH contamination, which indicated that the coal combustion sources were the main contributors to PAHs in most drinking water resources. Some petrogenic (or pyrolytic) sources of PAHs were also found. The toxic equivalency factors (TEFs) were used to calculate benzo[a]pyrene equivalents (BaPE) for water samples. The average value of BaPE was 0.6 ng/L. The values in most stations were much lower than the guideline values in drinking water of Chinese Environmental Protection Agency (CEPA, 2.8 ng/L) and the US Environmental Protection Agency (US EPA, 200 ng/L). Overall, the drinking water resources in Henan province showed some carcinogenic potential.  相似文献   

5.
The concentrations of polycyclic aromatic hydrocarbons (PAHs) were determined in groundwater and soil profiles from upland field and paddy field in the Hunpu wastewater-irrigated area of northeast China. In the study area, the peak concentrations of total PAHs were within or just below the topsoil, and the contents decline with depth at various trend verified by the Spearman's rank correlation test. The total PAH concentrations in upland soil layers ranged from 46.8 to 2,373.0 microg/kg (dry wt.), while the concentrations in paddy soil layers ranged from 23.1 to 1,179.1 microg/kg (dry wt.). The 16 priority PAHs were all detected in the analyzed soil samples, and naphthalene (Nap), phenanthrene (Phe), fluoranthene (Fla), chrysene (Chr), and benzo[a]pyrene (Bap) were selected for further study in terms of their vertical distributions. The concentrations of both total and individual PAHs in upland soil were generally higher than those in the corresponding layers of paddy soil. The concentrations of total and individual PAH were notably different between the corresponding horizons in upland and paddy soil were probably attribute to the different sources and properties of the PAHs and soil; different methods of soil tillage and plant growing. Special PAH compound ratios, such as phenanthrene/anthracene, fluoranthene/pyrene, LMW/HMW, and parent PAH ratios (Ant/178, Fla/202, BaA/228, and Ilp/276) were used to identify the source of soil PAHs. The data suggests that the possible sources of PAHs in the Hunpu wastewater-irrigation area are the incomplete combustion of coal, petroleum and crude oil, automobile exhausts. These sources lead to pollution of the soil and groundwater by wet/dry deposition and vertical downward migration.  相似文献   

6.
This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19–97% of various PAHs, vehicular emissions 0–70%, diesel based sources 0–81% and other miscellaneous sources 0–20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R 2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAHs) in coastal surface sediments from Rizhao offshore area were analyzed by gas chromatography–mass spectrometry. A chemical mass balance (CMB) model developed by the U.S. Environmental Protection Agency (EPA), CMB8.2, was used to apportion sources of PAHs. Seven possible sources, including coal residential, coal power plant, diesel engines exhaust, gasoline engines exhaust, coke oven, diesel oil leaks, and wood burning, were chosen as the major contributors for PAHs in coastal surface sediments. To establish the fingerprints of the seven sources, source profiles were collected from literatures. After including degradation factors, the modified model results indicate that diesel oil leaks, diesel engines exhaust, and coal burning were the three major sources of PAHs. The source contributions estimated by the EPA’s CMB8.2 model were 9.25%, 15.05%, and 75.70% for diesel oil leaks, diesel engines exhaust, and coal burning, respectively.  相似文献   

8.
As a heavy industrial city, Liuzhou has been facing a serious pollution problem. It is necessary to take steps to control and prevent environmental pollution wherever possible. Surface soil samples were collected from four communities in Liuzhou City, to determine the concentrations, distributions, sources, and toxicity potential of polycyclic aromatic hydrocarbons (PAHs) present. The mean concentrations of total PAHs in the surface soil are 756.43 ng/g for the heavy industrial area, 605.06 ng/g for the industrial area, 481.24 ng/g for the commercial–cum–residential area, and 49.93 ng/g for the rural area. Both the isomer ratio and principal component analyses for the PAHs prove that these pollutants originate mainly from coal, diesel, gasoline, and natural gas combustion. The pollution hierarchies and toxic equivalency factor of BaP prove that the city is subject to heavy pollution caused by industry, transportation, and daily human activities.  相似文献   

9.
于非采暖季和采暖季分别采集某石化化工行业聚集城市中心城区室内外PM_(2.5)样品,采用高效液相色谱法分析PM_(2.5)上载带的16种PAHs,对其分布特征、来源以及室外PAHs污染对室内污染的贡献进行了初步探讨。结果表明,研究区域非采暖季和采暖季室外PM_(2.5)中ΣPAHs浓度日均值分别为36.3、294 ng/m~3,室内PM_(2.5)中ΣPAHs浓度分别为14.8、84.6 ng/m~3,均以4、5环PAHs为主;室内PAHs主要来自室外渗透污染,但同时明显存在室内排放源贡献;PAHs来源分析进一步证实研究区域PAHs主要来自煤炭、石油等不完全燃烧,采暖季煤炭燃烧源贡献更突出。  相似文献   

10.
Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) in Delhi were evaluated to study particulate PAHs profiles during the different seasons of 2003. Samples of urban suspended particulate matter were collected during January 2003 to December 2003 at three locations (Okhla, Dhaulakuan and Daryaganj), using a high volume sampler provided with glass fiber filters. Samples were analyzed using the gas chromatography technique. The annual average concentrations of total PAHs were found as 1,049.3 ng/m(3) at Okhla, 1,344.37 ng/m(3) at Daryaganj, and 1,117.14 ng/m(3) at Dhaulakuan. The seasonal average concentrations were found to be maximum in winter and minimum during the monsoon season. Principal Component Analysis (PCA) of the data was also carried out and the results indicate that diesel and gasoline driven vehicles are the principal sources of PAHs at all the three sites under investigation. Other sources might come from stationary combustion sources such as cooking fuel combustion and industrial emission.  相似文献   

11.
The study deals with the combined contribution of polycyclic aromatic hydrocarbons (PAHs) and metals to health risk in Delhi soils. Surface soils (0–5 cm) collected from three different land-use regions (industrial, flood-plain and a reference site) in Delhi, India over a period of 1 year were characterized with respect to 16 US Environmental Protection Agency priority PAHs and five trace metals (Zn, Fe, Ni, Cr and Cd). Mean annual ∑16PAH concentrations at the industrial and flood-plain sites (10,893.2?±?2826.4 and 3075.4?±?948.7 μg/kg, respectively) were ~15 and ~4 times, respectively, higher than reference levels. Significant spatial and seasonal variations were observed for PAHs. Toxicity potentials of industrial and flood-plain soils were ~88 and ~8 times higher than reference levels. Trace metal concentrations in soils also showed marked dependencies on nearness to sources and seasonal effects. Correlation analysis, PAH diagnostic ratios and principal component analysis (PCA) led to the identification of sources such as coal and wood combustion, vehicular and industrial emissions, and atmospheric transport. Metal enrichment in soil and the degree of soil contamination were investigated using enrichment factors and index of geoaccumulation, respectively. Health risk assessment (incremental lifetime cancer risk and hazard index) showed that floodplain soils have potential high risk due to PAHs while industrial soils have potential risks due to both PAHs and Cr.  相似文献   

12.
Atmospheric fine and coarse particles were collected in Teflon filters in three cities of the region of the Lower Sinos River Basin of Rio Grande do Sul in the year 2010. The filters were Soxhlet extracted, and 14 priority PAHs were analyzed using a gas chromatograph coupled to a mass spectrometer (GC/MS). The principal emission sources of these compounds were assessed by using diagnostic ratios and receptor model: positive matrix factorization (PMF 3.0) of the US Environmental Protection Agency. The results of PAHs concentration for the studied year showed significant levels of high molecular weight (HMW) PAH, Ind, and BghiP, in PM2.5 in the winter season, showing the influence of mobile sources. The application of receptor model PMF 3.0 revealed that the main sources of PAHs were vehicle fleet (both diesel and gasoline), followed by coal combustion, wood combustion, and resuspension of dust. The results of the receptor modeling are in agreement with the data obtained by the ratio diagnostic.  相似文献   

13.
Sources, partitioning and toxicological risk of 15 priority polycyclic aromatic hydrocarbons (PAHs) in surface sediments from drinking water sources of Taihu Lake, with an area of 2428 km(2) located in the most developed and populated area of China, were studied, and the results were compared with those in other lakes of China and the USA. Concentrations of the 15 PAHs in sediments ranged from 436.6 to 1334.9 ng g(-1) (dw). Gasoline combustion, coal combustion, diesel combustion from shipping and spillage of petroleum were apportioned to be the main sources of PAHs in this area by principal component analysis, which contributed 35.19%, 26.43%, 25.41% and 12.97% to the PAH sources estimated by further multiple linear regression. Levels of PAHs in sediments were negatively correlated with contents of clay and fine silt (<16 μm), while positively with contents of medium silt, coarse silt and sand (>16 μm). Humin with size larger than 16 μm contained the largest part of the burden of PAHs in sediments, but the specific partitioning domain (bound humic acid, lipid or insoluble residue) depended on properties of organic matter reflected by optical absorbance at 465 and 665 nm. Total toxic benzo[a]pyrene equivalent (TEQ(carc)) of the carcinogenic PAHs in sediments varied from 31.8 to 209.3 ngTEQ(carc) g(-1). Benzo[a]pyrene and dibenzo[a,h]anthracene contributed 45.36 and 25.31% to total TEQ(carc), posing high toxicological risk to this area.  相似文献   

14.
对2008年05至11月淮南市5个采样点大气可吸入颗粒物(PM10)样品进行分析,总结了研究区内PM10及其中16种PAHs的浓度特征、季节变化规律和来源解析。研究区内16种PAHs浓度总和的范围在15.20~111.58ng.m-3之间,平均值为40.40ng.m-3,中位数为33.34ng.m-3。PAHs总量的季节变化与采样时环境温度显示出较好的负相关性,即秋季>春季>夏季;运用多环芳烃比值综合判断,淮南市大气PM10中PAHs主要以燃煤和机动车尾气混合来源为主,石油源和木材燃烧来源的贡献较小。  相似文献   

15.
利用高效液相色谱分析技术对福建省茶园土壤中16种多环芳烃进行了定量分析,结果表明,PAHs的总量在0.622~812.0μg/kg之间,平均值为48.4μg/kg。其组成以3环的为主,4环次之,主成分分析和PAHs特征参数分析发现,福建省茶园土壤中多环芳烃主要以燃油、木柴和煤燃烧来源为主,部分样点存在油类排放污染。生态风险评价结果显示,福建省茶园土壤中多环芳烃已具有不利生物影响效应。  相似文献   

16.
Particle-associated polycyclic aromatic hydrocarbon (PAH) concentrations were investigated at eight sampling sites during cold periods where heating is used (heating period) (February to March, 2005) and warm periods where heating is not required (non-heating periods) (August to September 2006) in the urban area of Anshan, an iron and steel city in northeastern China. Eleven PAH species were measured using GC-MS. The total average concentrations of PAHs ranged from 46.14 to 385.60 ng m(-3) in the heating period and from 5.28 to 146.40 ng m(-3) in the non-heating period. The lowest concentration of ∑PAHs was observed at Qianshan, a monitoring site far from the city and industrial area, and the highest concentration occurred in the site located at the factory area of Anshan Iron and Steel Incorporation. Moreover, ambient PAH profiles were studied and high molecular weight PAH (including 4-6 rings) species occurred in the high fractions. Toxic equivalent factors analysis gave the potential carcinogenic risks in Anshan. For the heating sampling period, BaP equivalent concentration is in the range of 41.98 to 220.83 ng m(-3), and 9.23 to 126.00 ng m(-3) for the non-heating sampling period. By diagnostic ratio analysis, traffic emission and combustion (coal or biomass) were potential sources for PAHs in Anshan. Finally, PCA results indicated the major sources were vehicle emission, steel industry emission, and coal combustion for both heating and non-heating seasons, which agreed with the results from the diagnostic ratio analysis.  相似文献   

17.
Polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in 25 surface sediments in three cities (Nantong, Wuxi, and Suzhou) in the Yangtze River Delta, eastern China were measured. The mean concentrations were 378, 45.8, 1.98, 4,002 ng/g for PBDEs, OCPs, PCBs, and PAHs, respectively. Their levels in the sediments in the three cities were generally consistent with the city industrialization. PBDEs and OCPs were markedly dominated by deca-BDE (>90 %) and DDTs (>70 %). A principle component analysis of the analytes identified three major factors suggesting different sources of the contaminants in the sediments. PBDEs and the organic carbon in the sediments have common sources from industrial activities; whereas OCPs and PCBs, correlated with the second factor, were mainly from historical sources. The third factor with loadings of PAHs is indicative of various combustion sources. Ecological risk assessment indicated that the potential highest risk is from DDTs, for which 22 sites exceed the effects range low (ERL) values and three sites exceed the effects range median (ERM) value.  相似文献   

18.
商丘市包河表层沉积物中多环芳烃污染初步研究   总被引:2,自引:0,他引:2       下载免费PDF全文
对包河表层沉积物6个位点的样品中多环芳烃进行了研究,分析其含量、分布特征及其生态风险评价,并结合采样点的情况对其进行源解析,共检测出6种多环芳烃,含量范围为0~9. 50 ng/g。按城市分布情况来看,工业厂附近多环芳烃的含量相对较高。比值法和因子分析法结果显示,多环芳烃污染主要来源于煤炭的燃烧,目前包河表层沉积物中多环芳烃含量处于低风险水平,尚未对生物造成显著的负面影响.  相似文献   

19.
Surface soil (0-5 cm) samples from 17 sampling sites including different functional areas at Ji'nan city in Shandong Province of China were collected and analyzed for 16 EPA priority polycyclic aromatic hydrocarbons (PAHs). The total PAH concentrations were in the range from 1.31 mg kg(-1) to 254.08 mg kg(-1) (dry weight), and the average level of total PAHs was 23.25 mg kg(-1). The highest total PAHs concentrations were found in steel and iron plant at industrial areas. The total PAHs concentrations in industrial areas were markedly higher than those in other different functional areas. According to comparing total PAHs concentration in Ji'nan city to that of other urban areas, it was found that total PAHs concentrations were 6 to 137 times higher than other areas because of some specific sampling sites such as steel and iron plant and one main roadside. The results showed that PAHs in topsoil of Ji'nan city were suffered from strong pyrogenic influence, especially in industrial areas. However about 52.9% soil samples were mainly originated from both pyrogenic and petrogenic mixed sources based on Flu/Pyr ratios and Phe/Ant ratios. Furthermore, It was found that all individual PAHs except Fle were significantly correlated (P < 0.01) with LMW, HMW, total PAHs and SOM, and individual PAHs except Fle in soils were significantly correlated (P < 0.01) with each other. The nemerow composite index to assess the environmental quality showed that the soil sample of steel and iron plant in industrial areas and one main roadside were heavy pollution of PAHs, and about 47% soil sampling sites were safety, about 53% soil sampling sites were got different grades of PAHs pollution.  相似文献   

20.
东北地区城市大气颗粒物中多环芳烃的污染特征   总被引:10,自引:5,他引:5  
2008年4月至2009年1月期间,在东北三省(辽宁、吉林、黑龙江)设立30个观测点位,研究了东北城市大气颗粒物中PAHs的浓度水平、分布及来源.结果表明,不同季节14种PAHs总浓度的变化范围是16.3 ~712.1 ng/m3,呈冬季高、夏季低的季节变化特征;PAHs组成以4~5环化合物为主,3~4环化合物受温度的影响较大,表现出较强的季节波动;8个城市中抚顺和吉林PAHs污染最重,城市不同功能区中以工业区污染较重;燃煤和机动车尾气是区域PAHs的主要来源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号