首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
为了解环境空气臭氧累积规律,利用2017年沈阳市环境空气臭氧浓度数据,统计分析臭氧累积速率,并利用回归方法拟合并优化臭氧浓度及其累积速率的时间序列模型,同时结合气温、风力、臭氧前体物等时序变化情况分析臭氧浓度的影响因素。研究发现:沈阳市臭氧月均浓度年变化、日均浓度年变化以及小时浓度日变化时序曲线均呈现单峰形态;年变化中,6月的臭氧浓度最大,4月臭氧累积速率达到最大值;日变化中,14:00臭氧浓度达到最大值,09:00—11:00臭氧累积速率最大,19:00—20:00臭氧迅速消减。温度、风速同臭氧浓度之间均有较好的正相关性。臭氧前体物二氧化氮、挥发性有机物与臭氧浓度之间均呈明显的负相关性。  相似文献   

2.
广州市近地面臭氧时空变化及其与气象因子的关系   总被引:2,自引:0,他引:2  
利用2012年1月至2016年2月广州市环境空气自动监测数据和气象观测数据,对广州市近地面臭氧的时空分布特征及其与气象因子的关系进行分析。结果表明:2012—2015年广州市臭氧日最大8 h滑动平均值的第90百分位数波动变化,年变化率依次为-14.3%、5.8%、-12.1%;广州市臭氧浓度呈现夏、秋季高,春、冬季低的显著季节变化特征;臭氧日最大8 h平均值的月均值和第90百分位数最高的月份一般分别出现在10月和7—8月;臭氧浓度的日变化曲线为单峰型,最大值一般出现在14:00或15:00;臭氧浓度随垂直高度的升高而增大,从低层(6 m点位或地面站)到中层(118 m和168 m点位)、中层到高层(488 m点位)臭氧日最大8 h滑动平均值的增长率分别为18.3%和39.1%;广州市中心城区臭氧浓度低于南北部城郊,夏、秋季高值区与夏、秋季主导风向相对应;臭氧浓度受降水、气温、相对湿度和风速等气象因子影响,臭氧浓度的超标是多种因素综合作用的结果。  相似文献   

3.
近年来,臭氧已成为许多城市环境空气的主要污染物之一。笔者分析了2020年海口市5个不同方位代表性监测站点逐小时空气质量监测数据及对应站点的气象要素监测数据。研究结果表明:海口市2020年环境空气污染程度为三级以上的天数有11d,其首要污染物均为臭氧。臭氧浓度高值时段主要出现在10-12月。浓度最大值主要出现在每日14:00-17:00,最小值出现在每日05:00-08:00。气象要素日均值与臭氧浓度相关性大小依次为最高温度>平均温度>相对湿度>降水量>日照时数>风速。台风外围下沉气流和东北气流的共同影响是导致海口市臭氧浓度超标的主要因素,下沉气流更有利于低层大气中臭氧的堆积,同时在东北气流影响下,上游区域污染物的传输也会导致海口市臭氧浓度增加。  相似文献   

4.
利用泉州城区2017年全年连续观测的O_3和气象要素资料,统计了臭氧浓度的分布特征,分析了气象要素对O_3质量浓度的影响,对比了O_3超标日和非超标日的气象要素特征。结果表明:(1)泉州市O_3质量浓度月变化呈双峰形,春季最高,夏季最低;日变化呈单峰形,最大值出现在13:00—14:00,最小值出现在06:00—07:00,上下游站O_3浓度存在明显传输效应。(2)泉州O_3质量浓度与相对湿度呈负相关,其相关性最高;与风速呈正相关,其相关系数最低,且存在明显区位性差异;与气温的相关性比较复杂,既有正相关,也有负相关。(3)各站点O_3小时质量浓度超标时,均对应2个气象要素区间值。(4)对比污染日非污染日发现,污染日相对湿度较低(50%~60%),非污染日较高(70%~80%);污染日温度略低于非污染日;污染日风向总体为西南偏南,非污染日风向为西南-东南。  相似文献   

5.
2014年7月和2015年1月分别系统监测淮南市6个功能区夏、冬季大气颗粒物(TSP、PM10、PM2.5)质量浓度并分析其时空分布特征。结果表明:采矿区和工业区污染较严重;采矿区主要受采煤、运输等人为活动的影响,工业区受工业排放影响较大,商业区主要以汽车尾气排放为主,居民区和文教区则以燃煤排放为主;夏季颗粒物浓度日变化趋势均呈现两边凸中间凹的特征,峰值分别出现在7:00和18:00,谷值出现在13:00左右,而冬季变化趋势波动较大。  相似文献   

6.
利用2013—2016年杭州市国控点臭氧观测资料,讨论了杭州市臭氧时空变化特征,并对一次臭氧高浓度过程进行分析。结果显示,近年来杭州市臭氧浓度以10. 3%的升幅渐增,增幅大于北京、上海、广州等城市。千岛湖背景点及位于城区的朝晖五区、下沙、西溪站点臭氧浓度月变化存在2个峰值,第一峰值出现在5月,受降水、温度影响次峰值出现在8—10月;夜间臭氧浓度背景点高于城区点。杭州市10个国控站点臭氧浓度相对标准偏差逐年减小,臭氧污染已呈区域性,城东为重污染区域。2015年8月出现的一次臭氧重污染过程主要是受副热带高压控制下和台风外围的影响,导致杭州市朝晖五区站点臭氧浓度高达228μg/m~3,台风登陆后得以缓解。  相似文献   

7.
乌鲁木齐冬季气溶胶散射吸收特性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用积分式浑浊度仪于2012年1月在乌鲁木齐市中区和市北区对气溶胶的散射系数和吸收系数进行连续观测,分析了市中区与市北区气溶胶散射系数和吸收系数的变化特征,结合同期的相关气象资料对变化特征进行了讨论。结果表明,市中区和市北区气溶胶的散射系数、吸收系数具有相同的变化趋势。总体上呈"W"型;峰值分别出现在0:00和12:00前后,谷值则出现在5:00和17:00前后。散射系数远大于吸收系数,说明大气气溶胶的消光作用主要由散射作用完成。相对湿度与散射系数、吸收系数不具有显著相关性,而风速对散射系数、吸收系数影响较大,且对市北区的影响大于市中区。  相似文献   

8.
于2019年在南通市采用TH-300B大气挥发性有机物(VOCs)在线分析仪对57种VOCs开展在线监测,对比分析了VOCs组分变化、季节变化、日变化特征,并用最大增量反应活性(MIR)估算了VOCs的臭氧生成潜势(OFP),找到了南通市VOCs的优控物种。结果表明,2019年南通市VOCs平均体积分数为15.57×10^(-9),不同组分体积分数排序为:烷烃(9.65×10^(-9))>芳香烃(2.85×10^(-9))>烯烃(1.84×10^(-9))>炔烃(1.23×10^(-9)),总体表现为冬季高、夏季低的特征。和国内其他城市比较,南通市VOCs和各组分体积分数处于较低水平。烯烃和炔烃的日变化特征均呈现较明显的双峰分布,峰值位于7:00-8:00和19:00-21:00;烷烃的日变化特征均呈现较明显的单峰分布,峰值位于6:00-8:00;芳香烃的日变化特征在4个季节变化趋势有所不同。烷烃和芳香烃夜间体积分数均高于白天。VOCs的OFP年均值为108.17μg/m3,季节排序为:冬季(122.70μg/m^(3))>春季(116.15μg/m^(3))>秋季(111.26μg/m^(3))>夏季(82.58μg/m^(3))。VOCs优控物种为丙烷、乙烯、异戊烷、甲苯、间/对二甲苯,因此控制市区臭氧浓度的首要任务是控制机动车排放、加油站油气挥发和溶剂使用。  相似文献   

9.
对2005年北京大气中异戊二烯进行了一年的观测分析。结果表明,异戊二烯体积分数年平均值为0.58×10-9,月平均值为0.1×10-9~1.8×10-9,7月最高,1月最低。春、秋、冬三季,异戊二烯日变化形式呈三峰形,分别在14:00、18:00、02:00;18:00、02:00、08:00;02:00、10:00、16:00出现峰值;夏季异戊二烯体积分数日变化呈现白天高夜晚低且在14:00出现峰值。夏季异戊二烯源排放主要由生物排放控制,其日变化形式受温度、辐射影响大;春季和秋季异戊二烯源排放受汽车尾气和生物排放共同控制,其日变化形式受汽车尾气影响大,温度、辐射也有一定影响;冬季异戊二烯源排放主要由汽车尾气控制,其日变化形式主要受汽车尾气影响。不同季节北京大气中的异戊二烯体积分数日变化形式与PM2.5浓度日变化形式大致相同。  相似文献   

10.
选取衡阳市区和衡山背景站臭氧自动监测数据,分析两地的臭氧污染特征。对空气质量的优良率情况、臭氧作为首要污染物的变化情况、臭氧浓度的日变化特征、典型时段的浓度变化特征、臭氧浓度的月际变化特征和臭氧与PM_(2.5)的关联情况等进行了分析。结果表明,多云及阴雨天气时,衡阳市区的臭氧浓度日变化幅度大于衡山背景站。夏季,衡阳市区和衡山背景站的臭氧浓度的日变化特征规律差异较大,臭氧浓度分布比较分散,前者为典型的单峰形,后者则波动平缓。冬季,日变化幅度不大,但衡阳市区的臭氧浓度明显低于衡山背景站。衡山背景站和衡阳市区的臭氧基本同步变化,但日均值高于衡阳市区。  相似文献   

11.
以沈阳2013—2015年臭氧(O_3)监测数据为基础,从地域差异及时间变化上分析了沈阳O_3浓度变化特征。结果表明:沈阳城市外围O_3浓度高于城市中心;O_3浓度变化具有明显季节特征,夏季O_3浓度最高,冬季最低;O_3浓度日变化呈单峰分布,谷值出现在06:00,峰值出现在14:00;O_3浓度出现明显"周末效应",周末白天O_3浓度高于工作日O_3浓度,夜间差异不大。  相似文献   

12.
京津冀区域臭氧污染趋势及时空分布特征   总被引:15,自引:11,他引:4  
为研究京津冀区域的臭氧(O_3)污染情况及其时空分布特征,对2013—2015年京津冀区域13个城市80个国家环境空气监测点位的监测数据进行了统计分析。结果表明:2013—2015年,京津冀区域O_3污染状况整体呈加重趋势,其中2014年污染状况最为严重。13个城市中O_3污染最严重的城市为北京和衡水,连续3年均超标,且处于上升态势中。区域内不同城市O_3污染趋势并不相同。京津冀区域O_3浓度变化呈明显的季节变化特征,春末和夏季的O_3污染最严重。O_3-8 h(臭氧日最大8 h均值)年均值的高值区主要分布在北京中北部、承德和衡水等,2013—2015年第90百分位O_3-8 h的高值区均集中分布在北京。O_3的浓度峰值时间要晚于NOx2~5 h。O_3在春、夏季呈单峰分布,白天15:00左右出现最大值,在秋、冬季浓度较低,全天波动不大。  相似文献   

13.
2008-2016年臭氧监测试点城市的臭氧污染特征   总被引:2,自引:0,他引:2  
选取臭氧试点城市北京、沈阳、上海和重庆,通过对2008-2016年臭氧监测数据进行分析研究,可以看出4个试点城市中北京的臭氧污染最严重。4个城市的臭氧污染特征均为高浓度臭氧所占比例较大,高值比较高,低浓度臭氧所占比例较小。北京、沈阳和上海的年平均臭氧浓度总体呈上升趋势。北京、上海、重庆、沈阳4个城市9年的超标天数比例分别为15.9%、7.7%、3.9%、6.5%。上海的臭氧浓度在秋季非常高。2012年的臭氧变化趋势比较异常,可能是由于2012年发生的不寻常气候条件导致。4个城市的臭氧浓度变化和气象条件的变化显著相关。  相似文献   

14.
2013—2015年,天津市臭氧(O_3)浓度整体呈下降趋势,污染状况略低于京津冀区域的其他城市。O_3浓度春、夏季高,冬季低,高值主要集中在5—9月,浓度从早上06:00开始升高,至中午14:00达到峰值。污染主要集中在中心城区、西部和北部地区,东部、南部和西南部地区污染相对较轻。O_3浓度在温度303 K以上、相对湿度70%以下或西南风为主导时较高。VOCs/NOx比值低于8,O_3的生成处于VOCs控制区。芳香烃类和烯烃类对天津市O_3生成贡献最大,其中,乙烯和甲苯为O_3生成潜势贡献最大的物种,其次为间/对二甲苯、丙烯、邻二甲苯、异戊二烯、反-2-丁烯、乙苯等,通过控制汽车尾气、化工行业及溶剂使用等对O_3生成潜势贡献大的VOCs排放源可有效控制天津市O_3污染。  相似文献   

15.
海口市臭氧污染特征   总被引:8,自引:7,他引:1  
基于2013—2015年海口市4个空气质量自动监测站点数据,结合气象资料,分析了海口市O_3的污染特征。结果表明:海口市O_3总体优良,优良天数比例为99.4%,污染天数均为轻度污染;在良和污染天数中,O_3作为首要污染物的天数占40%,超过其他5项污染物占比。海口市10月O_3浓度最高。O_3月均浓度与温度呈负相关关系,同时与风向有密切关系:5—8月气温较高,以南风为主,O_3浓度较低;1月北风频率较高,易受外来污染传输作用,O_3浓度相对较高。O_3超标日以东北风为主,日变化并未呈现单峰型特征,12:00—22:00时段O_3浓度在10%范围内小幅变化。台风外围型和北方冷高压底部型是造成海口市O_3超标的2类典型天气形势。  相似文献   

16.
基于2016—2018年安徽省68个国控环境空气质量自动监测站点的臭氧(O_3)监测数据,研究分析了安徽省O_3污染特征及其与气象因子的相关性。结果表明:安徽省O_3污染程度呈现逐年加重趋势,并有显著的季节和月度变化特征。2016—2018年,各年度单月O_3日最大8小时滑动平均质量浓度第90百分位数的最大值分别出现在9月、5月、6月。O_3日变化趋势为典型的单峰形,各年度最低值出现在晨间07:00左右,最高值则是在15:00—16:00。全省O_3浓度总体上呈现出北高南低的空间特征。温度、相对湿度与O_3浓度分别呈现显著正相关、负相关,但在不同季节存在一定差异,其中,春秋季温度与O_3浓度的相关性好于夏冬季,夏季相对湿度与O_3浓度的相关性最为显著。O_3浓度在平均风速为2.1~2.2 m/s时更易出现超标。中部和北部城市在东南风的作用下易出现O_3超标并达到O_3浓度高值,而南部地区在风向为西风时更容易出现O_3超标。  相似文献   

17.
试点城市O3浓度特征分析   总被引:8,自引:7,他引:1  
利用2009年O3试点城市的03监测数据,分析了北京、天津、上海、青岛、沈阳和广东的03浓度变化特征,统计了年超标情况,并结合气象要素数据分析了其对03浓度的影响.结果表明,不同城市各点位间03浓度变化趋势基本一致,但因点位类型不同,浓度存在差异;O3浓度呈单峰型日变化,在13:00-15:00出现最大值,6:00-7:00出现最小值;O3超标主要集中在4-8月份,广州和北京超标现象较多;O3浓度受温度、降水、风速和风向等气象要素影响较大.  相似文献   

18.
利用2014年佛山市8个国控大气自动监测点位的O_3监测数据,分析了佛山市的O_3污染特征,结果表明,2014年O_3日最大8 h平均值的第90百分位数为167μg/m~3,O_3为首要污染物的超标天数为43d,占比46.7%;ρ(O_3)区域变化不大;ρ(O_3)月变化呈现"三峰型",全年高ρ(O_3)集中在6—10月份,其中7月份出现全年最高峰值;ρ(O_3)日变化呈单峰型分布,夜间浓度较低且变化平缓,14:00—16:00左右达到峰值,并存在一定的"周末效应",但并不明显;ρ(O_3)与气温呈显著正相关,与湿度、气压、雨量呈显著负相关,与风向、风速的相关性相对较弱;总体上看,高温、低湿、微风、偏南风、低压、无雨的天气条件下高ρ(O_3)更容易出现。  相似文献   

19.
胡晏玲 《干旱环境监测》2009,23(4):220-222,245
利用2009年夏季乌鲁木齐市近地面大气O3及其前体物的自动监测数据,分析了O3浓度的分布特征和时间变化规律。探讨O3与其主要前体物NO2和CO的相关关系。结果表明,乌鲁木齐市夏季的O3污染较轻;O3浓度呈单峰型分布,O3浓度昼间高,夜间低;昼间O3与其主要前体物都呈负相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号