首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
Supervised field trials were conducted at the research farms of four agricultural universities located at different agro-climatic zones of India to find out the harvest time residues of flubendiamide and its des-iodo metabolite on pigeon pea (Cajanus cajan) during the year 2006-2007. Two spray applications of flubendiamide 20 WDG at 50 g (T(1)) and 100 g (T(2)) a.i./ha were given to the crop at 15-days interval. The foliage samples at different time intervals were drawn at only one location, however, the harvest time samples of pigeon pea grain, shell, and straw were drawn at all the four locations. The residues were estimated by HPLC coupled with UV-VIS variable detector. No residues of flubendiamide and its des-iodo metabolite were found at harvest of the crop at or above the LOQ level of 0.05 μg/g. On the basis of the data generated, a pre-harvest interval (PHI) of 28 days has been recommended and the flubendiamide 20 WDG has been registered for use on pigeon pea by Central Insecticide Board and Registration Committee, Ministry of Agriculture, Government of India and the MRL has been fixed by Ministry of Health and Family Welfare, Government of India under Prevention of Food and Adulteration as 0.05 μg/g on pigeon pea grains.  相似文献   

2.
Supervised field trials were conducted at four different agro-climatic zones in India to evaluate the dissipation pattern and risk assessment of flubendiamide on tomato. Flubendiamide 480 SC was sprayed on tomato at 48 and 96 g active ingredient (a.i.) ha?1. Samples of tomato fruits were drawn at 0, 1, 3, 5, 7, 10, 15, and 20 days after treatment. Quantification of residues was done on a high-performance liquid chromatography (HPLC) device with a photo diode array detector. The limit of quantification (LOQ) of this method was found to be 0.01 mg kg?1 while limit of detection (LOD) being 0.003 mg kg?1. Residues of flubendiamide were found below the determination limit of 0.01 mg kg?1 in 20 days at both the dosages in all the locations. The half-life of flubendiamide at an application rate of 48 g a.i.?ha?1 varied from 0.33 to 3.28 days and at 48-g a.i. ranged from 1.21 to 3.00 days. On the basis of data generated under the All India Network Project on Pesticide Residues, a preharvest interval (PHI) of 1 day has been recommended, and the flubendiamide 480 SC has been registered for its use on tomato by the Central Insecticide Board and Registration Committee, Ministry of Agriculture, Government of India. The maximum residue limit (MRL) of flubendiamide on tomato has been fixed by the Ministry of Health and Family Welfare, Government of India under Food Safety Standard Authority of India, as 0.07 μg g?1 after its risk assessment.  相似文献   

3.
Residues of fubendiamide and its metabolite desiodo flubendiamide were estimated in cabbage and soil using high-performance liquid chromatography with UV–vis detector. The initial deposits of flubendiamide residues on cabbage were found to be 0.16 and 0.31 μg g?1 following two applications of flubendiamide 20 WG at 12.5 (standard dose) and 25 (double dose) g a.i. ha?1 respectively at 10-days interval. The half-life values (t 1/2) of flubendiamide on cabbage ranged from 3.4 to 3.6 days. When flubendiamide applied at both the standard and double dose, no detectable residues were found in cabbage and soil at harvest. Thus, a waiting period of 1.63 days was suggested for the safe consumption of flubendiamide-treated cabbage. These data could provide guidance for the proper and safe use of this pesticide on cabbage crops in India.  相似文献   

4.
Supervised field trials were conducted at four different agro-climatic locations of India to evaluate the dissipation pattern and risk assessment of spiromesifen on tomato. Spiromesifen 240 SC was sprayed on tomato at 150 and 300 g a.i.?ha?1. Samples of tomato fruits were drawn at 0, 1, 3, 5, 7, 10 and 15 days after treatment and soil at 15 days after treatment. Quantification of residues was done on gas chromatograph–mass spectrophotometer in selective ion monitoring mode in the mass range of 271–274 (m/z). The limit of quantification of the method was found to be 0.05 mg kg?1, while the limit of determination was 0.015 mg kg?1. Residues were found below the LOQ of 0.05 mg kg?1 in 10 days at both the doses of application at all the locations. Spiromesifen dissipated with a half-life of 0.93–1.38 days at the recommended rate of application and 1.04–1.34 days at the double the rate of application. Residues of spiromesifen in soil were detectable level (<0.05 mg kg?1) after 15 days of treatment. A preharvest interval (PHI) of 1 day has been recommended on tomato on the basis of data generated under All India Network Project on Pesticide Residues. Spiromesifen 240 SC has been registered for its use on tomato by Central Insecticide Board and Registration Committee, Ministry of Agriculture, Government of India. The maximum residue limit (MRL) of spiromesifen on tomato has been fixed by Food Safety Standard Authority of India, Ministry of Health and Family Welfare, Government of India as 0.3 μg/g after its risk assessment.  相似文献   

5.
Metaflumizone is a novel sodium channel blocker insecticide of semicarbazone class. It provides good to excellent control of most of the economically important lepidopterous pests and certain pests in the orders Coleoptera, Hemiptera, Hymenoptera, Diptera, Isoptera, and Siphonaptera. Although metaflumizone has been marketed globally for several years and got registered in India in the year 2009, specifically for the control of DBM on cabbage, to our knowledge, no food safety aspects of metaflumizone residue on cabbage have ever been reported in the literature in India or elsewhere. The present study was undertaken to evaluate the persistence of metaflumizone on cabbage and soil, vis-a-vis its risk assessment, following two spray applications of metaflumizone 220 SC (Verismo®), each at recommended and double dose of 200 and 400 g?a.i.?ha?1 respectively. Initial residue deposits of metaflumizone on cabbage were 0.46 and 0.51 mg?kg?1 at recommended and 0.76 and 0.85 mg?kg?1 at double the recommended dose following the first spray and second spray application. The residues persisted beyond 5 days from both the treatments and dissipated with the half-life ranging from 1.7–2.1 days. Initial deposits of metaflumizone on soil ranged from 0.23–0.37 mg?kg?1 and degraded with a half life ranging from 4.0–4.8 days. No degradation product of metaflumizone was detected in cabbage and soil at any point of time. Soil samples collected from the treated field after 7 days were free from any residue of metaflumizone or its metabolites. A pre-harvest waiting period of 3 days after application was suggested based on calculation of theoretical maximum daily intake.  相似文献   

6.
A supervised open field trial was conducted to evaluate the dissipation pattern and risk assessment of flubendiamide in gherkin fruits following foliar application of Fame 480 SC at 60 and 120 g a.i.?ha?1. Samples of gherkin fruits were drawn at different time intervals and quantified by HPLC-DAD. The maximum initial deposits of flubendiamide on gherkin were found to be 0.79 and 1.52 mg kg?1, respectively, at recommended and double the recommended doses. The dissipation pattern of flubendiamide followed a first-order kinetics with half-lives of 1.87 to 2.16 days at 60 and 120 g a.i.?ha?1, respectively. The limit of quantification of flubendiamide and desiodo flubendiamide was observed to be 0.01 mg kg?1 for gherkin fruit and soil substrates. Theoretical maximum residue contribution (TMRC) for flubendiamide was calculated and found to be well below the maximum permissible intake (MPI) on gherkin fruits. Thus, the application of flubendiamide at the recommended dose on gherkin fruits presents no human health risks and safe to consumers.  相似文献   

7.
A field experiment was conducted at Anand Agricultural University, Anand during Sept-Dec, 2009 to study the rate of degradation of flubendiamide in/on brinjal fruits following foliar application of Fame 480 SC at 90 (standard dose) and 180 (double dose) g a.i. ha(?-1). The residues estimated using HPLC revealed persistence of flubendiamide in/on brinjal till 3rd and 7th day after the last spray at standard and double dose, respectively. The residues of flubendiamamde were reported as parent compound, and no desiodo metabolite was detected. The initial deposits of 0.17 and 0.42 μg g(?-1) in/on brinjal fruits reached below determination level of 0.05 μg g(?-1) on the 5th and 10th day at standard and double dose, respectively. The half life of flubendiamide on brinjal fruits ranged from 2.68 to 2.55 days. Soil samples analyzed on the 15th day after the last spray revealed residues at below determination level (0.05 μg g(?-1)) at either dose of application.  相似文献   

8.
Residues of flubendiamide and desiodo flubendiamide were studied following three applications of flubendiamide 480 SC at 7 days interval at 90 and 180 g a.i. ha(-1) in/on brinjal fruits. An average initial deposit of 0.33 and 0.61 mg kg(-1) of flubendiamide was observed respectively after application at single and double dosages. The residues of flubendiamide dissipated quickly at both the dosages, and after 3 days, the extent of dissipation was found to be about 76% and 79% at the single and double dosages, respectively. Brinjal fruit samples analysed at different time intervals did not show the presence of desiodo flubendiamide. The half-life of flubendiamide was observed to be 0.62 and 0.54 days at single and double dosages, respectively. The limit of determination of flubendiamide and desiodo flubendiamide was observed to be 0.05 mg kg(-1). Soil samples analysed after 15 days of the last application did not reveal the presence of flubendiamide and desiodo flubendiamide at their determination limit of 0.05 mg kg(-1). An assessment of the total intake of flubendiamide resulting through the consumption of brinjal fruits and its comparison with acceptable daily intake seems to be quite safe from consumer point of view.  相似文献   

9.
Degradation of flubendiamide as affected by microbial population count in two Indian soils (red and alluvial) varying in physicochemical properties was studied under sterile and non-sterile conditions. Recovery of flubendiamide in soil was in the range of 94.7–95.9 % at 0.5 and 1.0 μg g?1, respectively. The DT50 of flubendiamide at the level of 10 μg g?1 in red soil under sterile and non-sterile conditions was found to be 140.3 and 93.7 days, respectively, and in alluvial soil under sterile and non-sterile condition was 181.1 and 158.4 days, respectively. Residues of flubendiamide dissipated faster in red soil (non-sterile followed by sterile) as compared to alluvial (non-sterile soil followed by sterile soil). A wide difference in half-life of red and alluvial soil under sterile and non-sterile conditions indicated that the variation in physicochemical properties of red and alluvial soil as well as the presence of microbes play a great role for degradation of flubendiamide. The results revealed that slower-degrading alluvial soil possessed microbes with degradative capacity. The degradation rate in this soil was significantly reduced by some of its physicochemical characteristics, despite sterile and non-sterile conditions, which was faster in red soil.  相似文献   

10.
Dissipation and decontamination of chlorantraniliprole (Coragen 18.5 SC) in brinjal and okra fruits were studied following field application at single and double doses of 30 and 60 g ai ha?1, and the residues of the insecticide was estimated using LC-MS/MS. Initial residues of chlorantraniliprole at single and double doses on the fruits of brinjal were 0.72 and 1.48 mg kg?1, while on okra fruits, the residues were 0.48 and 0.91 mg kg?1, respectively. The residues reached below detectable level of 0.01 mg kg?1 on the 10th day. Half-life of chlorantraniliprole at 30 and 60 g ai ha?1 on brinjal was 1.58 and 1.80 days with the calculated waiting period of 0.69 and 2.38 days, whereas on okra, the values were 1.60 and 1.70 and 0 and 1.20 days, respectively. The extent of removal of chlorantraniliprole using simple decontaminating techniques at 2 h and 3 days after spraying was 40.99–91.37 % and 29.85–89.12 %, respectively, from brinjal fruits and 47.78–86.10 % and 41.77–86.48 %, respectively, from okra fruits.  相似文献   

11.
The dissipation kinetics and method for estimation of residues of chlorpyrifos and lambda-cyhalothrin in cardamom were studied and developed. The limit of detection and limit of quantitation arrived for the compounds were 0.01 and 0.025 μg?g?1, respectively. Gas chromatographic response of chlorpyrifos and lambda-cyhalothrin residues was linear in the range of 0.01–0.50 μg?g?1 and the mean recovery obtained was 97.3 % for chlorpyrifos and 98.9 % for lambda-cyhalothrin with satisfactory relative standard deviation values. The mean initial residues of chlorpyrifos applied at a concentration of 0.05 % in cardamom was 2.5 μg?g?1 and the residue was 8.1 μg?g?1 after processing, with a processing factor of 3.24, while lambda-cyhalothrin when applied at 0.0025 % resulted in initial residues of 1.63 μg?g?1 that magnified to 4.86 μg?g?1 on curing, with a processing factor of 2.98. The half-life of chlorpyrifos was in the range of 5.1–5.24 days while that of lambda-cyhalothrin was in the range of 4.40–4.55 days. The processing factor arrived at in the above experiment lead to the conclusion that the residues of chlorpyrifos got magnified to 3.24–3.68 times and that of lambda-cyhalothrin got magnified to 2.98–3.46 times of initial residues, consequent to loss of weight due to dehydration during curing.  相似文献   

12.
Persistence of cypermethrin, deltamethrin, profenofos, and triazophos in cauliflower curd was studied, following application of two premix formulations viz: Roket 44EC (profenofos 40 % + cypermethrin 4 %) and Anaconda Plus 36EC (triazophos 35 % + deltamethrin 1 %) at recommended (1.0 L ha?1) and double doses (2.0 L ha?1). In the case of Roket 44EC, residues of cypermethrin dissipated with the half-life values of 1.5–2.1 days, whereas residues of profenofos dissipated with the half-life of 2.9–3.3 days on cauliflower curd. In the case of Anaconda, residues of triazophos and deltamethrin dissipated from curd with the half-life values of 2.6–3.0 and 2.2–2.6 days, respectively. Both the combination mix significantly reduced the aphid population up to 14 days after spray and increased the yield by 155–160 % over control. Anaconda (2.0 L ha?1) treated plots yielded the highest number of marketable curds. Based on risk assessment analysis, safe waiting period of 3 and 5 days has been suggested for Roket 44EC and Anaconda Plus 36EC, respectively, in cauliflower at recommended dose of application.  相似文献   

13.
Chlorantraniliprole, an anthranilic diamide insecticide with novel mode of action is found effective against several lepidopteran as well as coleopteran, dipteran, and hemipteran pests. The present studies were carried out to study the dissipation pattern of chlorantraniliprole on cauliflower and to suggest suitable waiting period for the safety of consumers. Quick, easy, cheap, effective, rugged, and safe method was used for the extraction and cleanup of samples and the residues of chlorantraniliprole were estimated using high-performance liquid chromatograph (HPLC) and confirmed by liquid chromatograph–mass spectrometer and high-performance thin layer chromatograph. Following three applications of chlorantraniliprole (Coragen 18.5 SC) at recommended dose (9.25 g a.i.?ha?1) and double the recommended dose (18.50 g a.i.?ha?1), the average initial deposits of chlorantraniliprole were observed to be 0.18 and 0.29 mg kg?1, respectively. These deposits were found to be less than the maximum residue limit of 2.0 mg kg?1 prescribed by the Codex Alimentarius Commission. These residues dissipated below the limit of quantification of 0.10 mg kg?1 after 3 and 5 days at recommended and double the recommended dosages, respectively. The half-life value (T 1/2) of chlorantraniliprole was worked out to be 1.36 days following its application at recommended dosages. Hence, the use of this pesticide at recommended dosages does not seem to pose any risk, and a waiting period of 1 day is suggested for safe consumption of cauliflower curds.  相似文献   

14.
The metabolic degradation and persistence of imidacloprid in paddy field soil were investigated following two applications of imidacloprid at 20 and 80 g a.i. ha?1 at an interval of 10 days. The soil samples were collected at various time intervals. The limit of quantification for the analysis of imidacloprid and its metabolites was obtained at the concentration of 0.01 mg kg?1. The initial deposits of total imidacloprid were found to be 0.44 and 1.61 mg kg?1 following second applications. These residues could not be detected after 60 and 90 days following second applications of imidacloprid at lower and higher dosages, respectively. In soil, urea metabolite was found to be the maximum, followed by olefine, nitrosimine, 6-chloronicotinic acid, 5-hydroxy and nitroguanidine. The half-life values (t 1/2) of imidacloprid were worked out to be 12.04 and 11.14 days, respectively, when applied at lower and higher doses, respectively.  相似文献   

15.
The persistence and metabolism of imidacloprid in soil under sugarcane were studied following application of imidacloprid at 20 and 80 g active ingredient (a.i.) ha?1. Soil samples were collected at different time intervals (7, 15, 30, 45, 60 and 90 days after application), and the residues of imidacloprid and its metabolites (6-chloronicotinic acid, nitrosimine, imidacloprid-NTG, olefin, urea and 5-hydroxy) were quantified by high-performance liquid chromatography. In soil, the total imidacloprid residues were mainly constituted by the parent compound followed by 6-chloronicotinic acid, nitrosimine and imidacloprid-NTG metabolites. Maximum residues of imidacloprid and its metabolites were 4.29 and 7.81 mg kg?1 in soil samples collected 7 days after the application of imidacloprid at 20 and 80 g a.i. ha?1, respectively. At both doses, these residues declined to below the detectable limit in soil after 90 days of application. Olefin, urea and 5-hydroxy metabolites were not detected in soil. Dissipation of total imidacloprid residues did not follow the first-order kinetics with a coefficient of determination value of 0.883 and 0.838 for the recommended dose and four times the recommended dose, respectively. The half-life (T 1/2) value of total imidacloprid was observed to be 10.64 and 10.10 days for the recommended dose and four times the recommended dose, respectively.  相似文献   

16.
A field study was conducted to determine persistence and bioaccumulation of oxyflorfen residues in onion crop at two growth stages. Oxyfluorfen (23.5% EC) was sprayed at 250 and 500 g ai/ha on the crop (variety, N53). Mature onion and soil samples were collected at harvest. Green onion were collected at 55 days from each treated and control plot and analyzed for oxyfluorfen residues by a validated high-performance liquid chromatography method with an accepted recovery of 78–92% at the minimum detectable concentration of 0.003 μg g???1. Analysis showed 0.015 and 0.005 μg g???1 residues of oxyfluorfen at 250 g a.i. ha???1 rate in green and mature onion samples, respectively; however, at 500 g a.i.ha???1 rates, 0.025 and 0.011 μg g???1 of oxyfluorfen residues were detected in green and mature onion samples, respectively. Soil samples collected at harvest showed 0.003 and 0.003 μg g???1 of oxyfluorfen residues at the doses 250 and 500 g a.i. ha???1, respectively. From the study, a pre-harvest interval of 118 days for onion crop after the herbicide application is suggested.  相似文献   

17.
Fipronil belongs to phenylpyrazole class of chemical compounds. Degradation of fipronil in sandy loam soil was investigated under field conditions by applying fipronil (Regent 5 % SC) at 50 (T 1) and 100 g a.i. ha?1 (T 2) in field. Samples were drawn periodically in triplicate on 0 (1 h after treatment), 1, 3, 7, 10, 15, 30, 60, and 90 days after treatment and analyzed on GC-ECD system equipped with capillary column. The residues of fipronil in both the doses dissipated in the range of 93.33–100 % in 90 days. Limit of detection (LOD) and limit of determination (LODe/LOQ) were 0.0003 and 0.001 mg kg?1, respectively. Dissipation followed a biphasic first-order kinetics with half-life values of 10.81 and 9.97 days for fipronil alone and 8.14 and 13.05 days for fipronil along with metabolites in soil at (T 1) and (T 2) treatments, respectively.  相似文献   

18.
Quizalofop ethyl, a phenoxy propionate herbicide, is used for postemergence control of annual and perennial grass weeds in broad-leaved crops in India. The experiments were designed to study the dissipation kinetics of quizalofop ethyl on onion for two seasons. A simple, rapid, and sensitive method for estimation of quizalofop ethyl residues in onion and soil was developed and validated. The recoveries of quizalofop ethyl residues from onion and soil at different spiking level range from 84.81 to 92.68 %. The limit of quantification of this method was found to be 0.01 μg g?1. The risk assessment through consumption of the onion in comparison to its acceptable daily intake which is an important parameter for the safety of the consumer was also evaluated. Standardized methodology supported by recovery studies was adopted to estimate residues of quizalofop ethyl on onion and soil. The average initial deposits of quizalofop ethyl on onion were observed to be 0.25 and 0.33 mg kg?1, following single application of the herbicide at 50 g active ingredient (a.i.) ha?1 during 2009 and 2010, respectively. The half-life values (T 1/2) of quizalofop ethyl on onion crop were worked out to be 0.85 and 0.79 days, respectively, during 2009 and 2010. At harvest time, the residues of quizalofop ethyl on onion and soil were found to be below the determination limit of 0.01 mg kg?1 following single application of the herbicide at 50 and 100 g a.i. ha?1 for both the periods.  相似文献   

19.
A simple and accurate method for the determination of bismerthiazol and its metabolite 2-amino-5-mercapto-1,3,4-thiadiazole was developed in Chinese cabbage and soil by high-performance liquid chromatography-diode array detection in this study. The limits of detection were 0.06 mg/kg for bismerthiazol and 0.03 mg/kg for 2-amino-5-mercapto-1,3,4-thiadiazole, respectively. Recoveries of cabbage and soil were investigated at three spiking levels and were in the range of 84.0–96.0 % for bismerthiazol and 71.0–74.6 % for 2-amino-5-mercapto-1,3,4-thiadiazole, with relative standard deviations below 7.0 %. For field experiments, the half-life of bismerthiazol was 2.4–2.5 days in Chinese cabbage and 2.5–4.8 days in soil at the two experimental locations in China. Dissipation residues of 2-amino-5-mercapto-1,3,4-thiadiazole were lower than 0.72 mg/kg. Terminal residues of bismerthiazol and its metabolite were less than 3.0 and 0.3 mg/kg in Chinese cabbage, respectively. No bismerthiazol or metabolite residues were detected in soil on days 5, 7, 10, and 14 after the last spraying at the two dosage levels.  相似文献   

20.
A field dissipation study was conducted to evaluate the pre-harvest interval (PHI) and processing factor (PF) for kresoxim methyl (Ergon 44.3 SC) residues in grapes and during raisin making process at recommended dose (RD) and double the recommended dose (DRD). Kresoxim methyl residues dissipated following 1st-order kinetics with a half-life of 10 and 18 days at RD and DRD, respectively. The PHIs with respect to the European Union maximum residue limit (EU-MRL) of 1 mg kg?1 for grapes were 13 and 30 days at RD and DRD, respectively. The degradation data during grape to raisin making process were best fitted to nonlinear 1st?+?1st-order kinetics with a half-life ranging between 4 and 8 days for both shade drying and with raisin dryer at different doses. The PFs were 1.19 and 1.24 with shade drying and 1.09 and 1.10 with raisin dryer, respectively, which indicates concentration of the residues during raisin making process. The dietary exposure of kresoxim methyl on each sampling day was less than the respective maximum permissible intake both at RD and DRD. The residues of kresoxim methyl in market samples of grapes and raisins were well below the EU-MRL and were also devoid of any risk of acute toxicity related to dietary exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号