首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Solid-phase microextraction (SPME) was studied for the measurement of volatile organic compounds (VOCs) in indoor air. An adsorptive PDMS/Carboxen fibre was used and an analytical methodology was developed in order to overcome competitive adsorption. Kinetics and adsorption isotherms were investigated for different sample volumes and model compounds. In order to evaluate competitive adsorption on the fibre, these compounds were studied alone and in mixture. From the results obtained, the operating conditions allowing co-adsorption of the target compounds were determined: the air sample is enclosed in a 250 mL glass bulb where the SPME fibre is exposed until adsorption equilibrium. This procedure was combined with GC/MS analysis for the identification and quantification of VOCs in indoor air. The performances were determined by using a standard gas containing 10 VOCs representative of indoor environments (acetaldehyde, acetone, BTX, alpha-pinene, trichloroethylene, alkanes). The detection limits were determined in single ion monitoring mode and for a signal to noise ratio of 3. Except acetaldehyde (6 microg m(-3)), they are all below 0.5 microg m(-3). Calibration curves are linear up to 10 micromol m(-3) for all the compounds with good correlation coefficients (above 0.99). The reproducibility ranges from 6 to 12% according to the compound. The methodology was then applied to the comparison of the VOCs content in classrooms of two different schools.  相似文献   

2.
采用预冷冻浓缩系统和气相色谱-质谱联用,建立了测定空气中39种挥发性有机物的分析方法,该法用苏玛罐或Tedlar气袋采集空气样品经-160℃液氮预冷冻浓缩后,用GC-MS检测.该方法采样简便,灵敏度、准确度高,已应用于室内空气和环境空气的测定,取得满意的结果.  相似文献   

3.
During a monitoring campaign concentrations of volatile organic compounds (VOCs) were measured in indoor air of 79 dwellings where occupants had not complained about health problems or unpleasant odour. Parameters monitored were the individual concentration of 68 VOCs and the total concentration of all VOCs inside the room. VOCs adsorbed by Tenax TA were then analysed by means of thermal desorption, gas chromatography and mass spectrometry. The analytical procedure and quantification was done according to the recommendation of the ECA-IAQ Working Group 13 which gave a definition of the total volatile organic compound (TVOC) concentration. Using this recommendation TVOC-concentrations ranged between 33 and 1600 microg m(-3) with a median of 289 microg m(-3). Compounds found in every sample and with the highest concentrations were 2-propanol, alpha-pinene and toluene. Save for a few samples, all concentrations measured have been a factor 2 to 10 lower, compared to data from similar studies. Only a few terpenes and aldehydes were found exceeding published reference data or odour threshold concentrations. However, it has been found that sampling and analysing methods do have a considerable impact on the results, making direct comparisons of studies somewhat questionable. 47% of all samples revealed concentrations exceeding the threshold value of 300 microg TVOC m(-3) set by the German Federal Environmental Agency as a target for indoor air quality. Using the TVOC concentration as defined in the ECA-IAQ methodology is instrumental in assessing exposure to VOCs and identifying sources of VOCs. The background concentrations determined in this study can be used to discuss and interpret target values for individual and total volatile organic compounds in indoor air.  相似文献   

4.
An Ion Chromatography-Mass Spectrometry (IC-MS) method was developed for the simultaneous quantification of 14 volatile amines in air. The method includes collection of compounds into two midget impingers in a row filled with 15 ml of ultrapure water. The analytical performances with mass spectrometry detection were compared to those obtained with classical conductivity detection. The use of mass spectrometry detection (in SIM mode) overcomes most of the coelutions encountered with conductivity detection. Although the linearity domain of calibrations is reduced for the MS detection as compared with the CD detection, the detection limits in MS detection are highly lowered allowing the quantification of amines at the levels of μg m(-3) in air with a good accuracy for most compounds (RSD of less than 10%). This method was successfully applied to the analysis of amines released from polyurethane foams. Seven amines were identified and some in high concentrations, like dimethylaminoethanol, NIAX and TEDA.  相似文献   

5.
便携式GC-MS在应急监测中的应用   总被引:2,自引:1,他引:1  
建立了便携式GC-MS测定空气和水体中挥发性有机物(VOCs)的方法,能快速、有效地对空气中37种和水体中54种挥发性有机物进行现场定性和定量。具有相关性好、检出限低、精密度好、准确度高的特点,适用于空气和水体中挥发性有机物的应急监测工作。  相似文献   

6.
Air exchange rates and interzonal flows are critical ventilation parameters that affect thermal comfort, air migration, and contaminant exposure in buildings and other environments. This paper presents the development of an updated approach to measure these parameters using perfluorocarbon tracer (PFT) gases, the constant injection rate method, and adsorbent-based sampling of PFT concentrations. The design of miniature PFT sources using hexafluorotoluene and octafluorobenzene tracers, and the development and validation of an analytical GC/MS method for these tracers are described. We show that simultaneous deployment of sources and passive samplers, which is logistically advantageous, will not cause significant errors over multiday measurement periods in building, or over shorter periods in rapidly ventilated spaces like vehicle cabins. Measurement of the tracers over periods of hours to a week may be accomplished using active or passive samplers, and low method detection limits (<0.025 microg m(-3)) and high precisions (<10%) are easily achieved. The method obtains the effective air exchange rate (AER), which is relevant to characterizing long-term exposures, especially when ventilation rates are time-varying. In addition to measuring the PFT tracers, concentrations of other volatile organic compounds (VOCs) are simultaneously determined. Pilot tests in three environments (residence, garage, and vehicle cabin) demonstrate the utility of the method. The 4 day effective AER in the house was 0.20 h(-1), the 4 day AER in the attached garage was 0.80 h(-1), and 16% of the ventilation in the house migrated from the garage. The 5 h AER in a vehicle traveling at 100 km h(-1) under a low-to-medium vent condition was 92 h(-1), and this represents the highest speed test found in the literature. The method is attractive in that it simultaneously determines AERs, interzonal flows, and VOC concentrations over long and representative test periods. These measurements are practical, cost-effective, and helpful in indoor air quality and other investigations.  相似文献   

7.
针对室内空气挥发性有机物测定方法的不足,本文采用预冷浓缩系统和气相色谱,质谱联用。建立了测定室内空气中39种挥发性有机物的分析方法,该方法采用苏码罐采样,经液氮预冷冻浓缩后,用心城由检测。该方法灵敏度高,操作简便、重现性好、准确度高,适用于室内空气中挥发性有机物的测定。  相似文献   

8.
将挥发性有机污染物在线监测系统与实验室内SUMMA罐采样气质联用法(GC-MS)的挥发性有机物分析进行了标准气体和实际空气样品的分析比对,并对偏差原因作分析,提出在线监测系统的维护建议。结果表明,挥发性有机物在线监测系统的监测结果与实验室方法有一定的可比性,可用于大气中挥发性有机污染物的在线监测。  相似文献   

9.
The aim of this study was to evaluate the indoor (I) and outdoor (O) levels of NO?, speciated volatile organic compounds (VOCs) and carbonyls at fourteen primary schools in Lisbon (Portugal) during spring, autumn and winter. Three of these schools were also selected to be monitored for comfort parameters, such as temperature and relative humidity, carbon dioxide (CO?), carbon monoxide (CO), total VOCs, and both bacterial and fungal colony-forming units per cubic metre. The concentration of CO? and bioaerosols greatly exceeded the acceptable maximum values of 1800 mg m?3 and 500 CFU m?3, respectively, in all seasons. Most of the assessed VOCs and carbonyls occurred at I/O ratios above unity in all seasons, thus showing the importance of indoor sources and building conditions in indoor air quality. However, it has been observed that higher indoor VOC concentrations occurred more often in the colder months, while carbonyl concentrations were higher in the warm months. In general, the I/O NO? ratios ranged between 0.35 and 1, never exceeding the unity. Some actions are suggested to improve the indoor air quality in Lisbon primary schools.  相似文献   

10.
杭州市居室空气中芳香族化合物污染现状及其来源解析   总被引:3,自引:0,他引:3  
用热解吸/气质联用技术研究了杭州市居室空气中芳香族化合物的组成。结果表明,杭州市居室空气中共存在60种芳香族化合物,其中苯系化合物48种,非苯芳香族化合物12种,检出率大于50%的23种;苯、甲苯、乙苯、苯乙烯、邻二甲苯、间(对)-二甲苯等10种化合物的总含量之和大于85.39%,是室内空气中主要的芳香族污染物,除萘外,其他22种污染物的平均浓度值均随装修时间间隔延长而降低;污染物主要来源是室内装修过程中使用的或装修材料中残留的有机溶剂、机动车辆排放的尾气、居民家庭中常用的清洁用品及含萘等成分的防蛀剂。  相似文献   

11.
A method using GC-MS and derivatization with N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) was developed for the analysis of 20 phenolic compounds in atmospheric samples (gas and particles). Air sampling was carried out using a Hi-Vol sampler with glass fibre filter and XAD-2 resin at a flow rate of 60 m(3) h(-1). The particle and gas phases were collected separately over a period of 4 h. Samples were Soxhlet extracted, evaporated to dryness under nitrogen and refilled with acetonitrile. 100 microl of these extracts were derivatized with 100 microl of MTBSTFA at 80 degrees C for 1 h under strong stirring. Phenolic compounds were injected into a GC-MS in splitless mode and quantified as their TBDMS derivatives in the SIM mode. Mass spectral analysis of the derivatives of the 20 compounds studied indicates that the spectra are highly specific showing an ion at [M - 57]+ which is useful for structure confirmation or analysis at low levels using selected ion monitoring. Quantification limits varied between 5 microg l(-1) and 10 microg l(-1) which correspond to 20 pg m(-3) and 40 pg m(-3) for 250 m(3) of air sampled. This method was successfully applied to atmospheric samples.  相似文献   

12.
Indoor and ambient concentrations of 21 volatile organic compounds (including 14 hazardous air pollutants) were measured in the homes of nearly 80 western Montana (Missoula) high school students as part of the 'Air Toxics Under the Big Sky' program during the 2004/2005 and 2005/2006 school years. Target analytes were measured using low flow air sampling pumps and sorbent tubes, with analysis of the exposed samples by thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). The results reported here present the findings of the first indoor/ambient air toxics monitoring program conducted in a semi-rural valley location located in the Northern Rocky Mountain/Western Montana region. Of all of the air toxics quantified in this study, toluene was found to be the most abundant compound in both the indoor and ambient environments during each of the two school years. Indoor log-transformed mean concentrations were found to be higher when compared with ambient log-transformed mean concentrations at P < 0.001 for the majority of the compounds, supporting the results of previous studies conducted in urban areas. For the air toxics consistently measured throughout this program, concentrations were approximately six times higher inside the student's homes compared to those simultaneously measured directly outside their homes. For the majority of the compounds, there were no significant correlations between indoor and ambient concentrations.  相似文献   

13.
气溶胶PM2.5中内分泌干扰物酞酸酯类的研究   总被引:1,自引:0,他引:1  
通过选择17种酞酸脂的目标化合物的特征离子对PM2.5样品进行特征离子的扫描,有效建立了高灵敏度的PM2.5酞酸脂类(PAE)的GC-MS-SIM的测定方法;检出限均达到了ng级的水平。气溶胶PM2.5中酞酸脂类(PAE)的污染特征:清洁对照点以邻苯二甲酸二丁酯(DBP)为主;二类区以邻苯二甲酸二(2-乙基己基)酯(DEHP)和邻苯二甲酸二丁酯(DBP)占主导成分。  相似文献   

14.
The present paper reports on a rapid method for the analysis of gaseous emissions from ceramic industry, based on ion mobility spectrometry (IMS) as a means for on-site monitoring of volatile organic compounds (VOCs) produced during tile baking. IMS was calibrated with a set of reference compounds (i.e. ethyl acetate, ethanol, ethylene glycol, diethylene glycol, acetaldehyde, formaldehyde, 2-methyl-1,3-dioxolane, 2,2-dimethyl-1,3-dioxolane, 1,3-dioxolane, 1,4-dioxane, benzene, toluene, cyclohexane, acetone, acetic acid) via air-flow permeation. The technique was tested on a laboratory-scale kiln and tiles prepared with selected glycol- and resin-based additives. Finally, the analytical method was applied to emissions from two industries in the Modena (Italy) ceramic area. The results of all experimental phases were compared to those obtained by solid phase micro-extraction/gas chromatography/mass spectrometry (SPME/GC/MS). IMS showed potential as a real-time monitoring device for quality assessment in ceramic industry emissions. IMS spectra, SPME/GC/MS data, relationship between additives/baking conditions and produced VOCs and advantages and limitations of both techniques will be discussed.  相似文献   

15.
水中的VOCs经吹扫富集、解吸后,用HP-VOC色谱柱分离,采用全扫描和选择离子监测模式分析,内标法定量。最佳富集条件为:吹扫流速为40 m L/min,吹扫温度为40℃,吹扫时间为15 min,解吸温度为200℃,解吸时间为2 min。该法27种VOCs在一定的质量浓度范围内与其峰面积呈线性关系,相关系数r0.995,检出限为0.02~1.18μg/L。以空白样品为基体进行加标回收试验,测得回收率为79.8%~114%,相对标准偏差为0.3%~12%。  相似文献   

16.
Analysis of endosulfan, chlorpyrifos, and their nonpolar metabolites in extracts from environmental aqueous and soil samples was performed using a gas chromatography-tandem mass spectrometry (GC–MS/MS) technique. Full-scan GC–MS analysis showed poor sensitivity for some of the metabolites (endodiol and endosulfan ether). A multisegment MS/MS method was developed and MS/MS parameter isolation time, excitation time, excitation voltage, and maximum excitation energy were optimized for chosen precursor ions to enhance selectivity and sensitivity of the analysis. The use of MS/MS with optimized parameters quantified analytes with significantly higher accuracy, and detection limits were lowered to ~1/6th compared with the full-scan method. Co-eluting compounds, chlorpyrifos and chlorpyrifos oxon, were also analyzed successfully in the MS/MS mode by choosing exclusive precursor ions. Analysis of soil and water phase samples from contaminated soil slurry bioreactors showed that the MS/MS method could provide more reliable estimates of these pesticide and metabolites (especially those present in low concentrations) by annulling interferences from soil organic matter.  相似文献   

17.
Ambient air spiked with 1-10 ppbv concentrations of 41 toxic volatile organic compounds (VOCs) listed in US Environmental Protection Agency (EPA) Compendium Method TO-14A was monitored using solid sorbents for sample collection and a Varian Saturn 2000 ion trap mass spectrometer for analysis. The adsorbent was a combination of graphitic carbon and a Carboxen-type carbon molecular sieve. The method detection limits (MDLs) for 11 samples were typically 0.5 parts per billion by volume (ppbv) and lower except for bromomethane and chloromethane, both of which exhibited breakthrough. Thirty-day sample storage on the sorbents resulted in less than a 20% change for most compounds, and water management was required for humid samples to avoid major anomalous decreases in response during analyses. The adsorbent-based system, a system using canister-based monitoring, and a semi-continuous automated GC/MS (autoGC) monitoring system with a Tenax GR/Carbotrap B/Carbosieve S-III adsorbent preconcentrator were compared using spiked ozone concentrations as a variable. In this comparison, the target compounds included a number of n-aldehydes as well as those listed in TO-14A. The effects of ozone on the TO-14A compounds were relatively minor with the exception of negative artifacts noted for styrene and 1,1,2,2-tetrachloroethane. However, a small, systematic decrease in response was evident for a number of aromatic VOCs and 1,1,2,2-tetrachloroethane when ozone was increased from 50 to 300 ppbv. Method averages for multiple runs under the same conditions were typically within +0.25 ppbv of their mean for most compounds. For n-aldehydes, strong positive artifacts using the autoGC preconcentrator and strong negative artifacts for the canister-based and carbon sorbent approaches caused major disagreement among methods. These artifacts were mostly eliminated by using MnO2 ozone scrubbers, although loss of the n-aldehydes for all methods occurred after a single sample collection of 1 h duration, apparently due to the interaction of the n-aldehydes and products of the O3, MnO2 reaction on the scrubber.  相似文献   

18.
Analytical results obtained by thermal desorption GC/MS for 24 h diffusive sampling of 11 volatile organic compounds (VOCs) are compared with results of time-averaged active sampling at a known constant flow rate. Air samples were collected with co-located duplicate diffusive sampling tubes and one passivated canister. A total of eight multiple-component sampling events took place at fixed positions inside and outside three private homes. Subsequently, a known amount of sample air was transferred from the canister to an adsorbent tube for analysis by thermal desorption GC/MS. Results for the 11 most prevalent compounds--Freon 11, 1,3-butadiene, benzene, toluene, tetrachloroethene, ethylbenzene, m,p-xylene, o-xylene, 4-ethyltoluene, 1,3,5-trimethylbenzene, and p-dichlorobenzene--show that the ratio of average study values (diffusive sampling to active sampling) is 0.92 with 0.70 and 1.14 extreme ratios. Absolute percent difference for duplicate samples using diffusive sampling was <10% for the four most prevalent compounds. Agreement between the two sampling approaches indicates that the prediction of approximately constant diffusive sampling rates based on previous laboratory studies is valid under the field conditions.  相似文献   

19.
运用热脱附/GC/MS分析研究室内空气中TVOC浓度及种类分布   总被引:4,自引:0,他引:4  
利用热脱附/GC/MS联用技术定性、定量(半定量)分析了多组有代表性的室内空气样品。结果表明,室内空气挥发性有机气体的主要成分是苯系物、烃类、醛酮类、酯类等;装修后3个月内的家居室内空气中的苯25%超标,甲苯58%超标,二甲苯79%超标,TVOC 100%超标;一年后,仅TVOC还有11%的超标。办公室情况类似。  相似文献   

20.
By using a dynamic dilution system, the atmospheric measurement of 11 selected toxics VOCs (ethylene, acetylene, propene, 1-butene, 1,3-butadiene, 1-pentene, 1-hexene, benzene, toluene, ethylbenzene, m+p-xylene) from the list WHO of 1996 and TO-14 method of US EPA by preconcentration by thermal desorption (TD), analysis by gas chromatography (GC), identification and quantification with a flame ionisation detector (FID) was developed and validated in term of metrology, especially the techniques of sampling of these VOCs with adsorbents cartridges "Air Toxics" when used with an "UMEG sampler" equipped in the inlet with a nafion membrane. In particular the influence of climatic conditions (temperature and relative humidity) and the influence of chemical factors like ozone, on the representativity of sampling were studied. Experiments made with various humidities showed that the addition of a nafion membrane in the inlet of the sampling system was required. Without this membrane, losses of compounds were observed for RH >50%. With this membrane, storage for 2 weeks in a refrigerator, as for canisters, did not induce a loss of compounds. No significative decrease of concentrations of the studied VOCs after 14 days storage, which are known to react with ozone, were observed with an ozone concentrations of 55 ppb. One explanation is that nafion membrane, placed in the inlet of the sampler, will neutralize ozone before entering the sampling tubes. This observation is in accordance with literature which states that the sampling of VOCs on Carbotrap cartridges without ozone scrubber induce a loss of compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号