首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ambient air quality study was undertaken in two cities (Pamplona and Alsasua) of the Province of Navarre in northern Spain from July 2001 to June 2004. The data were obtained from two urban monitoring sites. At both monitoring sites, ambient levels of ozone, NOx, and SO2 were measured. Simultaneously with levels of PM10 measured at Alsasua (using a laser particle counter), PM10 levels were also determined at Pamplona (using a beta attenuation monitor). Mean annual PM10 concentrations in Pamplona and Alsasua reached 30 and 28 μg m−3, respectively. These concentrations are typical for urban background sites in Northern Spain. By using meteorological information and back trajectories, it was found that the number of exceedances of the daily PM10 limit as well as the PM10 temporal variation was highly influenced by air masses from North Africa. Although North African transport was observed on only 9% of the days, it contributed the highest observed PM10 levels. Transport from the Atlantic Ocean was observed on 68% of the days; transport from Europe on 13%; low transport and local influences on 7%; and transport from the Mediterranean region on 3% of the days. The mean O3 concentrations were 45 and 55 μg m−3 in Pamplona and Alsasua, respectively, which were above the values reported for the main Spanish cities. The mean NO and NO2 levels were very similar in both sites (12 and 26 μg m−3, respectively). Mean SO2 levels were 8 μg m−3 in Pamplona and 5 μg m−3 in Alsasua. Hourly levels of PM10, NO and NO2 showed similar variations with the typically two coincident maximums during traffic rush hours demonstrating a major anthropogenic origin of PM10, in spite of the sporadic dust outbreaks.  相似文献   

2.
This research paper aims at establishing baseline PM10 and PM2.5 concentration levels, which could be effectively used to develop and upgrade the standards in air pollution in developing countries. The relative contribution of fine fractions (PM2.5) and coarser fractions (PM10-2.5) to PM10 fractions were investigates in a megacity which is overcrowded and congested due to lack of road network and deteriorated air quality because of vehicular pollution. The present study was carried out during the winter of 2002. The average 24h PM10 concentration was 304 μg/m3, which is 3 times more than the Indian National Ambient Air Quality Standards (NAAQS) and higher PM10 concentration was due to fine fraction (PM2.5) released by vehicular exhaust. The 24h average PM2.5 concentration was found 179 μg/m3, which is exceeded USEPA and EU standards of 65 and 50 μg/m3 respectively for the winter. India does not have any PM2.5 standards. The 24 h average PM10-2.5 concentrations were found 126 μg/m3. The PM2.5 constituted more than 59% of PM10 and whereas PM10-PM2.5 fractions constituted 41% of PM10. The correlation between PM10 and PM2.5 was found higher as PM2.5 comprised major proportion of PM10 fractions contributed by vehicular emissions.  相似文献   

3.
An air quality sampling program was designed and implemented to collect the baseline concentrations of respirable suspended particulates (RSP = PM10), non-respirable suspended particulates (NRSP) and fine suspended particulates (FSP = PM2.5). Over a three-week period, a 24-h average concentrations were calculated from the samples collected at an industrial site in Southern Delhi and compared to datasets collected in Satna by Envirotech Limited, Okhla, Delhi in order to establish the characteristic difference in emission patterns. PM2.5, PM10, and total suspended particulates (TSP) concentrations at Satna were 20.5 ± 6.0, 102.1 ± 41.1, and 387.6 ± 222.4 μg m−3 and at Delhi were 126.7 ± 28.6, 268.6 ± 39.1, and 687.7 ± 117.4 μg m−3. Values at Delhi were well above the standard limit for 24-h PM2.5 United States National Ambient Air Quality Standards (USNAAQS; 65 μg m−3), while values at Satna were under the standard limit. Results were compared with various worldwide studies. These comparisons suggest an immediate need for the promulgation of new PM2.5 standards. The position of PM10 in Delhi is drastic and needs an immediate attention. PM10 levels at Delhi were also well above the standard limit for 24-h PM10 National Ambient Air Quality Standards (NAAQS; 150 μg m−3), while levels at Satna remained under the standard limit. PM2.5/PM10 values were also calculated to determine PM2.5 contribution. At Satna, PM2.5 contribution to PM10 was only 20% compared to 47% in Delhi. TSP values at Delhi were well above, while TSP values at Satna were under, the standard limit for 24-h TSP NAAQS (500 μg m−3). At Satna, the PM10 contribution to TSP was only 26% compared to 39% in Delhi. The correlation between PM10, PM2.5, and TSP were also calculated in order to gain an insight to their sources. Both in Satna and in Delhi, none of the sources was dominant a varied pattern of emissions was obtained, showing the presence of heterogeneous emission density and that nonrespirable suspended particulate (NRSP) formed the greatest part of the particulate load.  相似文献   

4.
Throughout August and September, 2003, wildfires burned in close proximity to Missoula, Montana, with smoke emanating from the fires impacting the valley for much of the summer. This presented the perfect opportunity to measure the levels of polychlorinated dibenzodioxins and dibenzofurans (PCDD/F) comprising ambient forest fire smoke particles impacting the Missoula Valley. An air sampler at the Montana Department of Environmental Quality's (DEQ) compliance site in Missoula measured hourly averages of PM10 throughout the fire season. Three collocated PM2.5 cyclones collected 24-h smoke samples using quartz filters and Polyurethane Foam (PUF) sorbent cartridges. From the quartz filters, concentrations of Organic and Elemental Carbon (OC/EC) were measured, while PCDD/F were measured from one set of a filter (particle phase) and PUF (vapor phase) aggregate of samples in an attempt to also investigate the different phases of PCDD/F in forest fire smoke impaired communities.Hourly PM10 concentrations peaked at 302.9 μg m−3 on August 15. The highest OC concentration (115.6 μg m−3) was measured between August 21–22, and the highest EC concentration of 10.5 μg m−3 was measured August 20–21. Measurable concentrations of PM2.5 associated PCDD/Fs were not detected from a representative aggregate sample, with the exception of small amounts of 1,2,3,4,6,7,8-heptachlorodibenzodioxin and octachlorodibenzodioxin. PM2.5 samples collected during the smoke events were composed of approximately 65% OC. However, the OC fraction of the particles collected in the smoke impaired Missoula valley was not composed of significant amounts of PCDD/F.  相似文献   

5.
This study monitored atmospheric pollutants during high wind speed (> 7 m s−1) at two sampling sites: Taichung Harbor (TH) and Wuci traffic (WT) during March 2004 to January 2005 in central Taiwan. The correlation coefficient (R 2) between TSP, PM2.5, PM2.5−10 particle concentration vs. wind speed at the TH and WT sampling site during high wind speed (< 7 m s−1) were also displayed in this study. In addition, the correlation coefficients between TSP, PM2.5 and PM2.5−10 of ionic species vs. high wind speed were also observed. The results indicated that the correlation coefficient order was TSP > PM2.5−10 > PM2.5 for particle at both sampling sites near Taiwan strait. In addition, the concentration of Cl, NO3 , SO4 2−, NH4 +, Mg2+, Ca2+ and Na+ were also analyzed in this study.  相似文献   

6.
To analyze polycyclic aromatic hydrocarbons (PAHs) at an urban site in Seoul, South Korea, 24-hr ambient air PM2.5 samples were collected during five intensive sampling periods between November 1998 and December 1999. To determine the PAH size distribution, 3-day size-segregated aerosol samples were also collected in December 1999. Concentrations of the 16 PAHs in the PM2.5 particles ranged from 3.9 to 119.9 ng m−3 with a mean of 24.3 ng m−3.An exceptionally high concentration of PAHs(∼120 ng m−3) observed during a haze event in December 1999 was likely influenced more by diesel vehicle exhaust than by gasoline exhaust, as well as air stagnation, as evidenced by the low carbon monoxide/elemental carbon (CO/EC) ratio of 205 found in this study and results reported by previous studies. The total PAHs associated with the size-segregated particles showed unimodal distributions. Compared to the unimodal size distributions of PAHs with modal peaks at < 0.12 μm measured in highway tunnels in Los Angeles (Venkataraman and Friedlander, 1994), four- to six-ring PAHs in our study had unimodal size distributions, peaking at the larger size range of 0.28–0.53 μm, suggesting the coagulation of freshly emitted ultrafine particles during transport to the sampling site. Further, the fraction of PAHs associated with coarse particles(> 1.8 μm) increased as the molecular weight of the PAHs decreased due to volatilization of fine particles followed by condensation onto coarse particles.  相似文献   

7.
In recent years, suspended particle pollution has become a serious problem in Taiwan. The carbonaceous materials EC and OC are play important roles in various atmospheric processes. The primary OC/EC ratio approach is applied to assess the contribution of secondary organic aerosol (SOA) to the PM2.5 and PM10 mass at the Taichung harbor sampling site. The results indicated that the average EC and OC concentration were 1.06 and 6.50 μg m−3, respectively, in fine particulate. And the average EC and OC concentration were 4.04 and 40.32 μg m−3, respectively, in coarse particulate at Taichung Harbor sampling site. In addition, and the average EC/OC rations was 8.72 in fine particle, respectively, at Taichung Harbor, Taiwan during summer and autumn period of 2005. The fine particle exhibited high particulate concentrations in October, and lower concentration particulate occurred in August. And in this study OC and EC concentrations in this study are compared with those in other cities. The results of EC and OC concentration in this study are also compare with those other cities.  相似文献   

8.
Ambient concentrations of PM2.5 and PM10 are of concern with respect to effects on human health and environment. Increased levels of mortality and morbidity have been associated with respirable particulate air pollution. In India, it is not yet mandatory to monitor PM2.5 levels therefore very limited information is available on PM2.5 levels. To understand the fine particle pollution and also correlate with PM10 which are monitored regularly in compliance with ambient air quality standards. This study was carried out to monitor PM2.5, PM10, and NO2 for about one year in a residential cum commercial area of Mumbai city with a view to understand their correlation. The average PM2.5 concentration at ambient and Kerbsite was 43 and 69 μg/m3. The correlation coefficients between PM2.5 and PM10 at ambient and Kerbsite were 0.83 and 0.85 respectively thus indicating that most of the PM2.5 and PM10 are from similar sources. TSP, PM10 levels exceeded Central Pollution Control Board(CPCB) standard during winter season. PM2.5 levels also exceeded 24 hourly average USEPA standard during winter season indicating unhealthy air quality.  相似文献   

9.
Aerosol samples for dry deposition and total suspend particulates (TSP) were collected from August to November of 2003 in central Taiwan. Ion chromatography was used to analyze the related water-soluble ionic species (Cl, NO3 , SO4 2−, Na+, NH4 +, K+, Mg2+ and Ca2+). The results obtained in this study indicated that the ambient air particulate mass concentrations in the daytime period (averaged 975.4 μg m−3) were higher than the nighttime period (averaged 542.1 μg m−3). And the daytime dry deposition fluxes (averaged 58.12 μg m−2 sec−1) were about 2.2 times as that of nighttime dry deposition fluxes (averaged 26.54 μg m−2 sec−1) of the downward dry deposition. The average values downward and upward of dry deposition fluxes for the weekend period were almost higher than the weekday period for either daytime or nighttime period. Furthermore, the average daytime dry deposition fluxes (averaged 26.37 μg m−2 sec−1) were also about 2.3 times as that of nighttime dry deposition fluxes (averaged 11.52 μg m−2 sec−1). Moreover, the results also indicate that SO4 2− and Ca2+ have higher average composition for total suspended particulates in the daytime period while Ca2+, SO4 2−, and Na+ have the higher average composition for total suspends particulates in the nighttime period.  相似文献   

10.
Atmospheric aerosol particles and metallic concentrations, ionic species were monitored at the Experimental harbor of Taichung sampling site in this study. This work attempted to characterize metallic elements and ionic species associated with meteorological conditions variation on atmospheric particulate matter in TSP, PM2.5, PM2.5–10. The concentration distribution trend between TSP, PM2.5, PM2.5–10 particle concentration at the TH (Taichung harbor) sampling site were also displayed in this study. Besides, the meteorological conditions variation of metallic elements (Fe, Mg, Cr, Cu, Zn, Mn and Pb) and ions species (Cl, NO3 , SO4 2−, NH4 +, Mg2+, Ca2+ and Na+) concentrations attached with those particulate were also analyzed in this study. On non-parametric (Spearman) correlation analysis, the results indicated that the meteorological conditions have high correlation at largest particulate concentrations for TSP at TH sampling site in this study. In addition, the temperature and relative humidity of meteorological conditions that played a key role to affect particulate matter (PM) and have higher correlations then other meteorological conditions such as wind speed and atmospheric pressure. The parameter temperature and relative humidity also have high correlations with atmospheric pollutants compared with those of the other meteorological variables (wind speed, atmospheric pressure and prevalent wind direction). In addition, relative statistical equations between pollutants and meteorological variables were also characterized in this study.  相似文献   

11.
The contribution of fugitive dust from traffic to air pollution can no longer be ignored in China. In order to obtain the road dust loadings and to understand the chemical characteristics of PM10 and PM2.5 from typical road dust, different paved roads in eight districts of Beijing were selected for dust collection during the four seasons of 2005. Ninety-eight samples from 28 roads were obtained. The samples were resuspended using equipment assembled to simulate the rising process of road dust caused by the wind or wheels in order to obtain the PM10 and PM2.5 filter samples. The average road dust loading was 3.82 g m − 2, with the highest of 24.22 g m − 2 being in Hutongs in the rural–urban continuum during winter. The road dust loadings on higher-grade roads were lower than those on lower-grade roads. Attention should be paid to the pollution in the rural–urban continuum areas. The sums of element abundances measured were 16.17% and 18.50% for PM10 and PM2.5 in road dust. The average abundances of OC and EC in PM10 and PM2.5 in road dust were 11.52%, 2.01% and 12.50%, 2.06%, respectively. The abundance of elements, water-soluble ions, and OC, EC in PM10 and PM2.5 resuspended from road dust did not change greatly with seasons and road types. The soil dust, construction dust, dust emitted from burning coal, vehicle exhaust, and deposition of particles in the air were the main sources of road dust in Beijing. Affected by the application of snow-melting agents in Beijing during winter, the amount of Cl −  and Na +  was much higher during that time than in the other seasons. This will have a certain influence on roads, bridges, vegetations, and groundwater.  相似文献   

12.
Simultaneous indoor and outdoor PM10 and PM2.5 concentration measurements were conducted in seven primary schools in the Athens area. Both gravimetric samplers and continuous monitors were used. Filters were subsequently analyzed for anion species. Moreover ultrafine particles number concentration was monitored continuously indoors and outdoors. Mean 8-hr PM10 concentration was measured equal to 229 ± 182 μg/m3 indoors and 166 ± 133 μg/m3 outdoors. The respective PM2.5 concentrations were 82 ± 56 μg/m3 indoors and 56 ± 26 μg/m3 outdoors. Ultrafine particles 8-h mean number concentration was measured equal to 24,000 ± 17,900 particles/cm3 indoors and 32,000 ± 14,200 particles/cm3 outdoors. PM10 outdoor concentrations exhibited a greater spatial variability than the corresponding PM2.5 ones. I/O ratios were close or above 1.00 for PM10 and PM2.5 and smaller than 1.00 for ultrafine particles. Very high I/O ratios were observed when intense activities took place. The initial results of the chemical analysis showed that accounts for the 6.6 ± 3.5% of the PM10 and for the 3.1 ± 1.4%.The corresponding results for PM2.5 are 12.0 ± 7.7% for and 3.1 ± 1.9% for . PM2.5 indoor concentrations were highly correlated with outdoor ones and the regression line had the largest slope and a very low intercept, indicative of no indoor sources of fine particulate . The results of the statistical analysis of indoor and outdoor concentration data support the use of as a proper surrogate for indoor PM of outdoor origin.  相似文献   

13.
The objective of the study is to investigate seasonal and spatial variations of PM10 (particulate matter with aerodynamic diameter less than or equal to 10 μm) and TSP (total suspended particulate matter) of an Indian Metropolis with high pollution and population density from November 2003 to November 2004. Ambient concentration measurements of PM10 and TSP were carried out at two monitoring sites of an urban region of Kolkata. Monitoring sites have been selected based on the dominant activities of the area. Meteorological parameters such as wind speed, wind direction, rainfall, temperature and relative humidity were also collected simultaneously during the sampling period from Indian Meteorological Department, Kolkata. The 24 h average concentrations of PM10 and TSP were found in the range 68.2–280.6 μg/m3 and 139.3–580.3 μg/m3 for residential (Kasba) area, while 62.4–401.2 μg/m3 and 125.7–732.1 μg/m3 for industrial (Cossipore) area, respectively. Winter concentrations of particulate pollutants were higher than other seasons, irrespective of the monitoring sites. It indicates a longer residence time of particulates in the atmosphere during winter due to low winds and low mixing height. Spread of air pollution sources and non-uniform mixing conditions in an urban area often result in spatial variation of pollutant concentrations. The higher particulate pollution at industrial area may be attributed due to resuspension of road dust, soil dust, automobile traffic and nearby industrial emissions. Particle size analysis result shows that PM10 is about 52% of TSP at residential area and 54% at industrial area.  相似文献   

14.
In a field study carried out at three different locations, the dissipation of spiromesifen on cotton and chili was studied and its DT50, and DT99 were estimated at each location. Spiromesifen was sprayed on chili at 96 and 192 g a.i. ha−1 and cotton at 120 and 240 g a.i. ha−1. Samples of chili fruits were drawn at 0, 1, 3, 5, 7, 10, 15, 21, 30 days after treatment and that of cotton seed and lint at first picking and harvest. Soil samples were drawn 30 days after treatment from 0 to 15 and 15 to 30 cm layer. Quantification of residues was done on GC–MS in Selected Ion Monitoring (SIM) mode in mass range 271–274 m/z. The LOQ of this method was found 0.033 μg g−1, LOD being 0.01 μg g−1. The DT50 of spiromesifen when applied at recommended doses in chili fruits was found to be 2.18–2.40 days. Ninety-nine percent degradation was found to occur within 14.5–16.3 days after application. Residues of spiromesifen were not detected in cotton seed and lint samples at the first picking. In soil, no residues of spiromesifen were detectable 15 days after treatment.  相似文献   

15.
The present study deals with the effect of fireworks on ambient air quality during Diwali Festival in Lucknow City. In this study, PM10, SO2, NO x and 10 trace metals associated with PM10 were estimated at four representative locations, during day and night times for Pre Diwali (day before Diwali) and Diwali day. On Diwali day 24 h average concentration of PM10, SO2, and NO x was found to be 753.3, 139.1, and 107.3 μg m−3, respectively, and these concentrations were found to be higher at 2.49 and 5.67 times for PM10, 1.95 and 6.59 times for SO2 and 1.79 and 2.69 for NO x , when compared with the respective concentration of Pre Diwali and normal day, respectively. On Diwali day, 24 h values for PM10, SO2, and NO x were found to be higher than prescribed limit of National Ambient Air Quality Standard (NAAQS), and exceptionally high (7.53 times) for PM10. On Diwali night (12 h) mean level of PM10, SO2 and NO x was 1,206.2, 205.4 and 149.0 μg m−3, respectively, which was 4.02, 2.82 and 2.27 times higher than their respective daytime concentrations and showed strong correlations (p < 0.01) with each other. The 24 h mean concentration of metals associated with PM10 was found to be in the order of Ca (3,169.44) > Fe (747.23) > Zn (542.62) > Cu (454.03), > Pb (307.54) > Mn (83.90) > Co (78.69) > Cr (42.10) > Ni (41.47) > Cd (34.69) in ng m−3 and all these values were found to be higher than the Pre Diwali (except Fe) and normal day. The metal concentrations on Diwali day were found to be significantly different than normal day (except Fe & Cu). The concentrations of Co, Ni, Cr and Cd on Diwali night were found to be significantly higher than daytime concentrations for Pre Diwali (control). The inter correlation of metals between Ca with Pb, Zn with Ni and Cr, Cu with Co, Co with Mn, Ni with Cd, Mn with Cd, Ni with Cd and Cr, and Cr with Cd showed significant relation either at p < 0.05 or P < 0.01 levels, which indicated that their sources were the same. The metals Cu, Co, Ni, Cr and Cd showed significant (p < 0.01) association with PM10. These results indicate that fireworks during Diwali festival affected the ambient air quality adversely due to emission and accumulation of PM10, SO2, NO x and trace metals. ITRC Communication Number 2538  相似文献   

16.
南京市大气颗粒物中多环芳烃变化特征   总被引:4,自引:2,他引:2  
逐月采集南京市大气中不同粒径的颗粒物,采用HPLC分析了2010年每个月PM_(10)和PM_(2.5)颗粒物样品中的多环芳烃(PAHs)的种类和浓度水平。结果表明:PM_(10)中PAHs年均值为25.07 ng/m~3,范围为11.03~53.56 ng/m3;PM_(2.5)中PAHs年均值为19.04 ng/m~3,范围为10.82~36.43 ng/m~3。PM_(10)和PM_(2.5)中PAHs总体浓度有着相似的变化趋势,呈现凹形变化曲线;在南京市大气颗粒物中吸附的PAHs大部分以5~6环的高环数组分为主,大部分PAHs和∑PAHs的相关性较好,年度变化幅度不大,分析结果表明,颗粒物中PAHs的来源与稳定的排放源相关,机动车排放不容忽视,与北方城市燃煤污染有着较大的区别。  相似文献   

17.
The concentrations of criteria air pollutants such as CO, NOx (NO + NO2), SO2 and PM were measured in the period of May 2001 and April 2003 in the city of Bursa, Turkey. The average concentrations for this period were 1115±1600 μg/m3, 29±50 μg/m3, 51±24 μg/m3, 79±65 μg/m3, 40±35 μg/m3, 98±220 μg/m3, for CO, NO, NO2, NOx, SO2 and PM, respectively. Temporal changes in concentrations were analyzed using meteorological factors. Correlations among pollutant concentrations and meteorological parameters showed weak relations nearly in all data. Lower concentrations were observed in the summer months while higher concentrations were measured in the winter months. The increase in winter concentrations was probably due to residential heating. Pollutants were associated with each other in order to have information about their origin. NOx/SO2 ratio was also examined to bring out the source origin contributing on air pollution (i.e., traffic or stationary).  相似文献   

18.
Total selenium (Se) and water-soluble Se in soil, and Se in a shallow groundwater were hydrogeochemically researched in an alluvial fan area in Tsukui, Central Japan. The water-soluble Se was estimated at average level of 2.6 ± 1.2μg Se kg−1 dry soil (± SD, n = 25), showing less than 1% of the total Se (349–508μg Se kg−1 dry soil) in soil. The monthly Se concentration in groundwater was average 2.2μg,L−1, ranging 1.6–2.4μg,L−1 during 2001–2003. The Se in groundwater significantly decreased with increasing groundwater level after rainfall. This result indicated that Se-bearing water percolated with relatively low Se concentration through the soil layer. According to our prediction model of linear regression curve on the observation data, Se concentration in the groundwater was estimated to be increasing with the very low rate of 4.35 × 10−3μg Se L−1,yr−1. The hydrogeochemical research and the result of the prediction model showed that any explosive increase of Se will hardly occur in this groundwater without an anthropogenic Se contamination.  相似文献   

19.
The distributed lag effects of ambient particulate air pollution exposure on respiratory hospital admissions in Kathmandu Valley are modelled using daily time series data. The extended exposure to PM10 is accounted for by assigning weights to daily average PM10 which decline geometrically as the lag period increases in days. Results show that the percent increase in chronic obstructive pulmonary disease (COPD) hospital admissions and respiratory admissions including COPD, asthma, pneumonia, and bronchitis per 10 μg/m3 rise in PM10 are found to be 4.85% for 30 days lag effect, about 15.9% higher than that observed for same-day lag effect and 3.52% for 40 days lag effect, about 28.9% higher than the observed value for same-day lag effect, respectively.  相似文献   

20.
Ambient aerosols were collected during 2000–2001 in Gainesville, Florida, using a micro-orifice uniform deposit impactor (MOUDI) to study mass size distribution and carbon composition. A bimodal mass distribution was found in every sample with major peaks for aerosols ranging from 0.32 to 0.56 μm, and 3.2 to 5.6 μm in diameter. The two distributions represent the fine mode (<2.5 μm) and the coarse mode (>2.5 μm) of particle size. Averaged over all sites and seasons, coarse particles consisted of 15% carbon while fine particles consisted of 22% carbon. Considerable variation was noted between winter and summer seasons. Smoke from fireplaces in winter appeared to be an important factor for the carbon, especially the elemental carbon contribution. In summer, organic carbon was more abundant. The maximum secondary organic carbon was also found in this season (7.0 μg m−3), and the concentration is between those observed in urban areas (15–20 μg m−3) and in rural areas (4–5 μg m−3). However, unlike in large cities where photochemical activity of anthropogenic emissions are determinants of carbon composition, biogenic sources were likely the key factor in Gainesville. Other critical factors that affect the distribution, shape and concentration were precipitation, brushfire and wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号