首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Possible bioaccumulation of pesticides in crop produce may cause ailing effect on animal and human. Thus there is a need to evaluate these chemicals in the soil and crop produce at harvest. Metsulfuron-methyl is a post-emergence herbicide. It is highly active to control broad-leaf weeds in cererals, pasture and plantation crops. Metsulfuron-methyl was applied at 3, 4, 5, and 8 g a.i. ha(-1) rates, after 30 days of sowing in wheat as post-emergence herbicide. Soil samples treated with metsulfuron-methyl were collected after 30 and 60 days along with control and at harvest after herbicide application and analyzed for residues by High Performance Liquid Chromatography (HPLC) using photo diode array detector at 220 nm. Wheat grains and straw samples were sampled at harvest. At harvest the residue level of metsulfuron-methyl in soil was found below the detection limit at 3-5 g a.i. ha(-1) application rates and 0.002 microg g(-1) at 8 g a.i. ha(-1), respectively. No residues of metsulfuron-methyl were detected in wheat grains at 3-4 g a.i. ha(-1) rates. However 0.002 microg g(-1) residues were detected in wheat straw at 5 and 8 g a.i. ha(-1) application rates. It can be concluded that metsulfuron-methyl application at 3-4 g a.i. ha(-1) can be safely applied to the wheat crop as post-emergence herbicide.  相似文献   

2.
In a field study carried out at three different locations, the dissipation of spiromesifen on cotton and chili was studied and its DT50, and DT99 were estimated at each location. Spiromesifen was sprayed on chili at 96 and 192 g a.i. ha−1 and cotton at 120 and 240 g a.i. ha−1. Samples of chili fruits were drawn at 0, 1, 3, 5, 7, 10, 15, 21, 30 days after treatment and that of cotton seed and lint at first picking and harvest. Soil samples were drawn 30 days after treatment from 0 to 15 and 15 to 30 cm layer. Quantification of residues was done on GC–MS in Selected Ion Monitoring (SIM) mode in mass range 271–274 m/z. The LOQ of this method was found 0.033 μg g−1, LOD being 0.01 μg g−1. The DT50 of spiromesifen when applied at recommended doses in chili fruits was found to be 2.18–2.40 days. Ninety-nine percent degradation was found to occur within 14.5–16.3 days after application. Residues of spiromesifen were not detected in cotton seed and lint samples at the first picking. In soil, no residues of spiromesifen were detectable 15 days after treatment.  相似文献   

3.
Dissipation behaviour of endosulfan and dichlorvos in/on cauliflower, variety Snowball-16, was studied during rabi season (Sep.–March) 2003–2004. Endosulfan and dichlorvos were sprayed @ 350 and 110g a.i. with 115 g a.i., respectively, 80 days after transplanting. Samples were taken at the interval of 0 (1h after spray), 3, 5, 7, and 10 days after spray (DAS) in triplicate and residues were estimated on GC-ECD system equipped with capillary column. The initial deposits of 3.452 and 0.295μgg−1 of endosulfan and dichlorvos dissipated to 0.084 (97.56%) and 0.009 (96.95%), respectively after 10 DAS. Residues of endosulfan reached below maximum residue limit of 2μgg−1 one day after spray and of dichlorvos were below MRL value of 0.5μgg−1 even on 0 day. Dissipation pattern followed first order kinetics for both the insecticides with half life periods of 1.81 and 2.08 days for endosulfan and dichlorvos, respectively.  相似文献   

4.
Status of insecticide contamination of soil and water in Haryana, India   总被引:2,自引:0,他引:2  
Twelve samples each of soil and ground water were collected from paddy-wheat, paddy-cotton, sugarcane fields and tube wells from same or near by fields around Hisar, Haryana, India during 2002–2003 to monitor pesticide residues. Residues were estimated by GC-ECD and GC-NPD systems equipped with capillary columns for organochlorine, synthetic pyrethroid and organophosphate insecticides. In soil, HCH (0.002–0.051 μg g−1), DDT (0.001–0.066 μg g−1), endosulfan (0.002–0.039 μg g−1) and chlordane (0.0002–0.019 μg g−1) among organochlorines, cypermethrin (0.001–0.035 μg g−1) and fenvalerate (0.001–0.022 μg g−1) among synthetic pyrethroids and chlorpyriphos (0.002–0.172 μg g−1), malathion (0.002–0.008 μg g−1), quinalphos (0.001–0.010 μg g−1) among organophosphates were detected. Dominant contaminants were DDT, cypermethrin and chlorpyriphos from the respective groups. In water samples, HCH, DDT, endosulfan and cypermethrin residues were observed frequently. Only chlorpyriphos among organophosphates was detected in 10 samples. On consideration of tube well water for drinking purpose, about 80% samples were found to contain residues above the regulatory limits.  相似文献   

5.
Long term stability of sulfosulfuron was investigated in subsoil under the natural wheat cropping conditions. Experiments were conducted by applying a commercial formulation of sulfosulfuron on soil at 50 g/ha and 100 g/ha. To understand the factors influencing the persistence of residues two different experiments were conducted. In one experiment wheat crop was cultivated once at the beginning of the two years study period and subsequently the plots were kept undisturbed for the remaining period. In another experiment cultivation of subsequent crops were continued during the study period. In both the cases sulfosulfuron was applied only once at the beginning of the study. Representative soil samples were collected from the depths viz., 0–5, 15, 30, 45, 60 and 90 cm on different pre determined sampling occasions 50, 100, 200, 300, 400, 500 and 600 days after the application of the herbicide. The collected soil samples were analyzed for the residues of sulfosulfuron. Under the influence of continuous cropping conditions residues of sulfosulfuron were found to be relatively low when compared with the soil samples collected from the agriculture plots maintained without any cultivation. The residues detected are in the range 0.001 to 0.017 μg/g. Samples collected from the depth, at 30 to 45 cm showed higher residual concentrations. Soil samples were also showed the presence of break down products. The data has been confirmed by LC–MS/MS. The relation between residue content of sulfosulfuron and the factors contributing the stability of herbicide concentration were also studied.  相似文献   

6.
Pesticide residue analysis of soil,water, and grain of IPM basmati rice   总被引:1,自引:0,他引:1  
The main aim of the present investigations was to compare the pesticide load in integrated pest management (IPM) with non-IPM crops of rice fields. The harvest samples of Basmati rice grain, soil, and irrigation water, from IPM and non-IPM field trials, at villages in northern India, were analyzed using multi-pesticide residue method. The field experiments were conducted for three consecutive years (2008–2011) for the successful validation of the modules, synthesized for Basmati rice, at these locations. Residues of tricyclazole, propiconazole, hexconazole, lambda cyhalothrin, pretilachlor chlorpyrifos, DDVP, carbendazim, and imidacloprid were analyzed from two locations, Dudhli village of Dehradun, Uttrakhand and Saboli and Aterna village of Sonepat, Haryana. The pesticide residues were observed below detectable limit (BDL) (<0.001–0.05 μg/g) in all 24 samples of rice grains and soil under IPM and non-IPM trials. Residues were below detection level (<0.001–0.05 μg/L) in irrigation water samples (2008–09). Residues of tricyclazole and carbendazim, analyzed from same locations, revealed pesticide residues as BDL (<0.001–0.05 μg/g) in all 40 samples of Basmati rice grains and soil. It was also observed as BDL (<0.001–0.05 μg/L) for 12 water samples (2009–2010). The residues of tricyclazole, propioconazole, chlorpyrifos, hexaconazole, pretilachlor, and λ-cyhalothrin were also found as BDL (<0.001–0.05 μg/g) in 40 samples of Basmati rice grains and soil and 12 water samples (<0.001–0.05 μg/L) (2010–2011).  相似文献   

7.
The decline and terminal residues of hexaconazole in tomato and soil in open field were studied. Hexaconazole residues were determined by gas chromatography coupled with an electron capture detector. Recoveries were between 89% and 110% with RSD of 2.99–5.88% in tomato and 90–119% with RSD of 1.15–5.76% in soil at spiked levels of 0.01, 0.1, and 1 mg/kg, respectively. The limit of detection of hexaconazole was 6.3 × 10−12 g. The decline rates of hexaconazole were described using first-order kinetics and the mean half-lives of hexaconazole in tomato and soil were 4.3 and 18.1 days, respectively. The terminal residues in tomato at interval of 7 days at the dosage of 150 g.a.i./hm2 for three or four times were all below 0.1 mg/kg. This work would be the guidance of establishing the maximum residue limit of hexaconazole in tomato in China.  相似文献   

8.
Presence of pesticide residues was studied in rain water during 2002 employing multi residue analysis method by gas liquid chromatography equipped with ECD and NPD detectors and capillary columns. The presence of pesticide residues in surface aquatic system triggered the investigation of the presence of pesticides in rain water. A total of 13 pesticides were detected in rain water samples. Among the different groups of pesticides, organochlorines were present in the range of 0.041–7.060 ppb with maximum concentration of p,p’-DDT up to 7.060 μg l−1. Synthetic pyrethroids were present ranging from 0.100 to 1.000 μg l−1 and organophosphates in the range of 0.050–4.000 μg l−1 showing maximum contamination with cypermethrin (1.000 μg l−1) and monocrotophos (4.000 μg l−1) of the respective groups. Almost 80% samples showed the residues above MRL of 0.5 ppb fixed for multi residues and on the basis of single pesticide, 16–50% samples contained residues above the MRL value of 0.1 ppb.  相似文献   

9.
A field study was conducted to determine persistence and bioaccumulation of oxyflorfen residues in onion crop at two growth stages. Oxyfluorfen (23.5% EC) was sprayed at 250 and 500 g ai/ha on the crop (variety, N53). Mature onion and soil samples were collected at harvest. Green onion were collected at 55 days from each treated and control plot and analyzed for oxyfluorfen residues by a validated high-performance liquid chromatography method with an accepted recovery of 78–92% at the minimum detectable concentration of 0.003 μg g???1. Analysis showed 0.015 and 0.005 μg g???1 residues of oxyfluorfen at 250 g a.i. ha???1 rate in green and mature onion samples, respectively; however, at 500 g a.i.ha???1 rates, 0.025 and 0.011 μg g???1 of oxyfluorfen residues were detected in green and mature onion samples, respectively. Soil samples collected at harvest showed 0.003 and 0.003 μg g???1 of oxyfluorfen residues at the doses 250 and 500 g a.i. ha???1, respectively. From the study, a pre-harvest interval of 118 days for onion crop after the herbicide application is suggested.  相似文献   

10.
Persistence of dicofol residues in cotton lint seed, and soil   总被引:1,自引:0,他引:1  
A supervised field trial was conducted at the CCS Haryana Agricultural University, Hisar to assess the residues of dicofol on cotton, during Kharif season, 2008. Dicofol (Kelthane 18.5EC) was applied at 500 g a.i./ha (T(1)) and 1,000 g a.i./ha T(2)) after 105 days of sowing of cotton crop (Varity Cotton/H-1226). Soil samples were collected on 0 (1 h after treatment), 3, 7, 10, 15, 30, and 60 days after spray and cotton samples were collected at harvest. Samples were processed and residues were quantified by GC-ECD system equipped with capillary column. Limit of detection and limit of quantification (LOQ) were 0.001 and 0.010 mg kg(?-1), respectively, for soil and LOQ for cotton lint and seed was 0.020 mg kg(?-1). Initial residues of 0.588 and 1.182 mg kg(?-1) in soil reached below detectable level (BDL) of 0.010 mg kg(?-1) in T(1) and to the level of BDL (0.010 mg kg(?-1)) in T(2) at harvest (60 days after treatment). In 60 days, residues dissipated almost completely (100 and >99%) in both the treatments. Half-life period was calculated as 8.57 days at single dose and 8.69 days at double dose in soil. Residues of dicofol were detected in cotton lint to the levels of 0.292 and 0.653 mg kg(?-1) and in seed 0.051 and 0.090 mg kg(?-1) in T(1) and T(2) doses, respectively at harvest. Residues in cotton seed were below MRL value of 0.01 mg kg(?-1) in both the doses.  相似文献   

11.
In this work assays involving chlorinated water samples, which were previous spiked with humic substances or algae blue green and following the production of the THMs for 30 days is described. To implement the assays, five portions of 1,000 ml of water were stored in glass bottles. The water samples were treated with solutions containing 2, 3, 4 and 5 mg l−1 chlorine. The samples aliquots (60 ml) were transferred into the glass vials, 10 ml were removed to have a headspace and 100 μl of the 10 mg l−1 pentafluortoluene bromide solution was added to each vial. The extraction step was performed by adding 10 g of Na2SO4 followed by 5 ml of n-pentane. The vials were stopped with a TFE-faced septum and sealed with aluminum caps. The generated THMs were determined by gas chromatography with electron capture detector using reference solutions with concentration ranging from 8 to 120 μg l−1 THMs. Three assays were monitored during 30 days and chloroform was the predominant compound found in the water samples, while other species of THMs were not detected. The results showed that when the chlorine concentration was increased in water samples containing algae the concentration of THM varied randomly. Nevertheless, in water samples containing humic substances the increase of the THM concentration presented a relationship with the chlorine concentration. It was also observed that chloroform concentration increased with the elapsed time up to one and six days to water samples spiked with humic substances and algae blue green, respectively and decreased along 30 days. By other hand, assays performed using water samples containing decanted algae material showed that THM was not generated by the chlorine addition.  相似文献   

12.
Facile, selective and sensitive spectrophotometric method has been developed for the determination of carbosulfan in insecticidal formulations, fortified water, food grains, agriculture wastewater and soil samples with newly synthesized reagents. The method was based on acid and alkaline hydrolysis of the carbosulfan pesticide, and the resultant hydrolysis product of carbosulfan was coupled with 2,6-dibromo-4-methylaniline to give a yellow color product with λ max of 464 nm or interaction with 2,6-dibromo-4-nitroaniline to produce yellow colored product with λ max of 408 nm or coupling with 2,4,6-tribromoaniline to form red colored product has a λ max of 471 nm. Under optimal conditions, Beer’s law range for 2,6-dibromo-4-methylaniline (DBMA) was found to be 0.2–12.0 μg ml−1, 0.6–16.0 μg ml−1 for 2,6-dibromo-4-nitroaniline (DBNA) and 0.4–15.0 μg ml−1 for 2,4,6-tribromoaniline (TBA). The molar absorptivity of the color systems were found to be 3.112 × 104 l mol−1 cm−1 for DBMA, 3.214 × 104 l mol−1 cm−1 for DBNA and 3.881 × 104 l mol−1 cm−1 for TBA. Sandell’s of the color reactions are 0.013 μg cm−2 (DBMA), 0.012 μg cm−2 (DBNA) and 0.011 μg cm−2 (TBA) respectively. The effect of the non-target species on the determination of carbosulfan was studied to enhance the selectivity of the proposed methods. The formation of colored derivatives with the coupling agents is instantaneous and stable for 28, 30, and 26 h. Performance of the proposed methods were compared statistically in terms Student’s F and t-tests with the reported methods. An erratum to this article can be found at  相似文献   

13.
Fipronil termiticide belongs to phenyl-pyrazole class of chemical compounds. It has broad-spectrum activity particularly against house hold pests such as cockroaches, mosquitoes, locusts, ticks, and fleas at both larval and adult stages. At high dosage it can be used to control subterranean termites in building foundations. To evaluate long term efficacy against termites the persistence and vertical distribution of fipronil was studied under natural weather conditions of Dehradun, India. Fipronil was applied at four concentrations i.e. 0.05, 0.1, 0.25 and 0.5% a.i ha−1 by drenching 17 × 17 in.2 plot prepared as per modified ground board test. Soil samples were collected after 22, 38 and 56 months of treatment up to the depth of 75 cm. The soil core was cut into five distinct sections i.e. 0–15, 15–30, 30–45, 45–60 and 60–75 cm depth. The residues were extracted by shaking 20 g soil sample with acetone. The acetone extract was concentrated and cleaned-up over florisil column. Fipronil residues were estimated on GLC at 220, 260, and 300°C oven, injector and detector temperature respectively. Fipronil was found to persist beyond 56 months after application. Two metabolites viz. desulfinyl and sulfide-fipronil were detected in sampling after 22 months of application that also dissipated with time. Fipronil residues were found up to 60 cm depth. The residues in deeper layers dissipate slowly with time and after 56 months of treatment residues were detected only up to 30 cm depth.  相似文献   

14.
Cadmium and lead were determined simultaneously in seawater by differential pulse stripping voltammetry (DPSV) preceded by adsoptive collection of complexes with 8-hydroxyquinoline (oxine) on to a hanging mercury drop electrode (HMDE). In preliminary experiments the optimal analytical condition for oxine concentration was found to be 2.10−5 M, at pH 7.7, the accumulation potential was −1.1 V, and the initial scannig potential was −0.8 V. The peak potentials were found −0.652 V for Cd and −0.463 V for Pb At the 60 s accumalation time. The limit of detection (LOD) and limit of quantitatification (LOQ) were found to be by voltammetry as 0.588 and 1.959 μg l−1 (RSD, 5.50%) for Cd and 0.931 and 3.104 μg l−1 (RSD, 4.10%) for Pb at 60 s stirred accumulation time respectively. In these conditions the most of the seawater samples are amenable for direct voltammetric determination of cadmium and lead using a HMDE. An adsorptive stripping mechanism of the electrode reaction was proposed. For the comparison, seawater samples were also analysed by ICP-atomic emission spectrometry method (ICP-AES). The applied voltammetric technique was validated and good recoveries were obtained.  相似文献   

15.
This is the first comprehensive study of sources of variation in metal concentrations within the whole tissues of a shallow burrowing, filter-feeding intertidal clam, Austrovenus stutchburyi. Samples were collected from 12 sites in April, August, November and February in 1993–1994 in the vicinity of Otago Harbour and Peninsula, New Zealand. Total tissue trace metal concentrations (μg g−1 dry weight) were measured in individual animals for the essential metals : Mn, Cu, Zn, Ni and the non-essential Cr using trace-metal clean acid-digestion and ICP-OAES techniques. Average metal concentrations were 3–60 μg g−1 for Cu, 40–118 μg g−1 for Zn, 2–12 μg g−1 for Mn, 5–35 μg g−1 for Ni and 1–44 μg g−1 for Cr. These levels decreased with body weight and differed amongst sites except for Cr in February (mid-summer). Highest concentrations occurred at sites close to a city (Dunedin) and within the central harbour region although the Cu, Zn, Ni and Cr concentrations did not correlate with the environmental gradient or season. At one coastal site, samples of both the blue mussel Mytilus galloprovincialis and cockles gave similar trends in trace metal levels. These results suggest that the cockle could be a useful trace metal biomonitor within NZ estuaries.  相似文献   

16.
Conventional blanket application of nitrogen (N) fertilizer results in more loss of N from soil system and emission of nitrous oxide, a greenhouse gas (GHG). The leaf color chart (LCC) can be used for real-time N management and synchronizing N application with crop demand to reduce GHG emission. A 1-year study was carried out to evaluate the impact of conventional and LCC-based urea application on emission of nitrous oxide, methane, and carbon dioxide in a rice–wheat system of the Indo-Gangetic Plains of India. Treatments consisted of LCC scores of ≤4 and 5 for rice and wheat and were compared with conventional fixed-time N splitting schedule. The LCC-based urea application reduced nitrous oxide emission in rice and wheat. Application of 120 kg N per hectare at LCC ≤ 4 decreased nitrous oxide emission by 16% and methane by 11% over the conventional split application of urea in rice. However, application of N at LCC ≤ 5 increased nitrous oxide emission by 11% over the LCC ≤ 4 treatment in rice. Wheat reduction of nitrous oxide at LCC ≤ 4 was 18% as compared to the conventional method. Application of LCC-based N did not affect carbon dioxide emission from soil in rice and wheat. The global warming potential (GWP) were 12,395 and 13,692 kg CO2 ha−1 in LCC ≤ 4 and conventional urea application, respectively. Total carbon fixed in conventional urea application in rice–wheat system was 4.89 Mg C ha−1 and it increased to 5.54 Mg C ha−1 in LCC-based urea application (LCC ≤ 4). The study showed that LCC-based urea application can reduce GWP of a rice–wheat system by 10.5%.  相似文献   

17.
In this work, water and sediment samples were collected from three different stations located along the Sakarya river between May and September 2003. Lead, copper, chromium, zinc, nickel and cadmium concentrations were determined by using solvent extraction and flame atomic absorption spectrometric method. The results show that differences based upon sampling times, regions, sediment and water samples were observed. The mean levels of copper, nickel, chromium, lead, cadmium, zinc for sediment samples are; 4.630 μg g−1, 13.520 μg g−1, 8.780 μg g−1, 2.550 μg g−1, 9.990 μg g−1 and for water samples are; 0.851 μg g−1, 1.050 μg g−1, 0.027 μg g−1, 1.786 μg g−1, 0.236 μg g−1, 0.173 μg g−1, respectively.  相似文献   

18.
The concentrations of lead, cadmium and copper in roadside soil and plants in Elazig, Turkey were investigated. Soil samples were collected at distances of 0, 25 and 50 m from the roadside. The concentrations of lead, cadmium and copper were measured by Flame Atomic Absorption Spectrophotometry (FAAS). A slotted tube atom trap (STAT) was used to increase the sensitivity of lead and cadmium in FAAS. Lead concentrations in soil samples varied from 1.3 to 45 mg kg−1 while mean lead levels in plants ranged from120 ng g−1 for grape in point-4 to 866 ng g−1 for apple leaves in point-2. Lead analyses showed that there was a considerable contamination in both soil and plants affected from traffic intensity. Overall level of Cd in soil samples lies between 78 and 527 ng/g while cadmium concentration in different vegetations varied in the range of 0.8–98.0 ng g−1. Concentrations of copper in soil and plant samples were found in the range of 11.1–27.9 mg kg−1 for soil and 0.8–5.6 mg kg−1 for plants. Standard reference material (SRM) was used to find the accuracy of the results of soil analyses.  相似文献   

19.
Plants of Eichhornia crassipes grown at various levels of cadmium ranging from 0.1 to 100 μg ml−1 accumulated Cd in a concentration and duration dependent manner. At all levels, Cd accumulation by various plant tissues followed the order roots shoot leaves. Approximately 80% of total Cd was accumulated by plant at highest concentration (100 μg ml−1) used in the experiment. Cadmium induced phytotoxicity appears at 25.0 μg ml−1 resulting into reduced levels of chlorophyll, protein and in vivo nitrate reductase activity of the plant. However, a slight induction of these physiological variables was obtained at lowest Cd (0.1 μg ml−1) concentration. In contrast, carotenoid content increased at highest Cd concentration i.e., 100 μg ml−1. Similar effects at low and high levels of Cd was obtained with respect to mitotic index and micronuclei in root meristem of the plant. It could be inferred that Cd toxicity in plant is differential depending upon the low and high concentration of Cd in the medium.  相似文献   

20.
Total selenium (Se) and water-soluble Se in soil, and Se in a shallow groundwater were hydrogeochemically researched in an alluvial fan area in Tsukui, Central Japan. The water-soluble Se was estimated at average level of 2.6 ± 1.2μg Se kg−1 dry soil (± SD, n = 25), showing less than 1% of the total Se (349–508μg Se kg−1 dry soil) in soil. The monthly Se concentration in groundwater was average 2.2μg,L−1, ranging 1.6–2.4μg,L−1 during 2001–2003. The Se in groundwater significantly decreased with increasing groundwater level after rainfall. This result indicated that Se-bearing water percolated with relatively low Se concentration through the soil layer. According to our prediction model of linear regression curve on the observation data, Se concentration in the groundwater was estimated to be increasing with the very low rate of 4.35 × 10−3μg Se L−1,yr−1. The hydrogeochemical research and the result of the prediction model showed that any explosive increase of Se will hardly occur in this groundwater without an anthropogenic Se contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号