首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Status of insecticide contamination of soil and water in Haryana, India   总被引:2,自引:0,他引:2  
Twelve samples each of soil and ground water were collected from paddy-wheat, paddy-cotton, sugarcane fields and tube wells from same or near by fields around Hisar, Haryana, India during 2002–2003 to monitor pesticide residues. Residues were estimated by GC-ECD and GC-NPD systems equipped with capillary columns for organochlorine, synthetic pyrethroid and organophosphate insecticides. In soil, HCH (0.002–0.051 μg g−1), DDT (0.001–0.066 μg g−1), endosulfan (0.002–0.039 μg g−1) and chlordane (0.0002–0.019 μg g−1) among organochlorines, cypermethrin (0.001–0.035 μg g−1) and fenvalerate (0.001–0.022 μg g−1) among synthetic pyrethroids and chlorpyriphos (0.002–0.172 μg g−1), malathion (0.002–0.008 μg g−1), quinalphos (0.001–0.010 μg g−1) among organophosphates were detected. Dominant contaminants were DDT, cypermethrin and chlorpyriphos from the respective groups. In water samples, HCH, DDT, endosulfan and cypermethrin residues were observed frequently. Only chlorpyriphos among organophosphates was detected in 10 samples. On consideration of tube well water for drinking purpose, about 80% samples were found to contain residues above the regulatory limits.  相似文献   

2.
Determination of imazosulfuron persistence in rice crop and soil   总被引:1,自引:0,他引:1  
Imazosulfuron is a new post-emergence sulfonylurea herbicide. It is highly active at low application rates to control annual and perennial broad-leaf weeds and sedges in rice. There is increasing concerned about the persistence of pesticide residues in soils, crop produce and subsequent contamination of groundwater. Thus persistence of imazosulfuron residues under field condition was evaluated. Imazosulfuron was applied at 30, 40, 50 and 60 a. i. g ha −1 rates, 4 days after transplanting of rice as post-emergence herbicide. Soil and plant samples treated with imazosulfuron were collected at 60, 90 and 120 days after herbicide application and analyzed for residues. Rice grains and straw samples were sampled at harvest (120 days). Residues of imazosulfuron in soil were not found after 90 and 120 DAS (days after spraying). Rice grains contained 0.006, 0.009 μg g−1 residues at 50 and 60 g ha −1 application rates. 0.009 and 0.039 μg g−1 residues of imazosulfuron were detected at 50 and 60 g/ha rates respectively in rice straw. Residues of imazosulfuron were not detected applied at 30 and 40 g ha−1 in rice grains and straw, respectively and can be safely applied to the transplanted rice.  相似文献   

3.
Heavy metal pollution of water resources can be apprehended in East Singhbhum region which is a highly mineralised zone with extensive mining of copper, uranium and other minerals. Ten groundwater samples were collected from each site and the heavy metal analysis was done by atomic absorption spectrophotometer. Analysis of the results of the study reveals that the concentration of iron, manganese, zinc, lead, copper and nickel in groundwater of Bagjata mining area ranged 0.06–5.3 mg l − 1, 0.01–1.3 mg l − 1, 0.02–8.2 mg l − 1, 1.4–28.4 μg l − 1, 0.78–20.0 μg l − 1 and 1.05–20.1 μg l − 1, respectively. In case of Banduhurang mining area, the range was 0.04–2.93 mg l − 1, 0.02–1.1 mg l − 1, 0.01–4.68 mg l − 1, 1.04–33.21 μg l − 1, 1.24–18.7 μg l − 1 and 1.06–14.58 μg l − 1, respectively. The heavy metals were found to be below the drinking water standards (IS:10500 1993) except iron (0.3 mg l − 1) and manganese (0.1 mg l − 1). The hazard quotients of the heavy metals for drinking water were below 1 posing no threat due to intake of water to the people for both the areas.  相似文献   

4.
In a field study carried out at three different locations, the dissipation of spiromesifen on cotton and chili was studied and its DT50, and DT99 were estimated at each location. Spiromesifen was sprayed on chili at 96 and 192 g a.i. ha−1 and cotton at 120 and 240 g a.i. ha−1. Samples of chili fruits were drawn at 0, 1, 3, 5, 7, 10, 15, 21, 30 days after treatment and that of cotton seed and lint at first picking and harvest. Soil samples were drawn 30 days after treatment from 0 to 15 and 15 to 30 cm layer. Quantification of residues was done on GC–MS in Selected Ion Monitoring (SIM) mode in mass range 271–274 m/z. The LOQ of this method was found 0.033 μg g−1, LOD being 0.01 μg g−1. The DT50 of spiromesifen when applied at recommended doses in chili fruits was found to be 2.18–2.40 days. Ninety-nine percent degradation was found to occur within 14.5–16.3 days after application. Residues of spiromesifen were not detected in cotton seed and lint samples at the first picking. In soil, no residues of spiromesifen were detectable 15 days after treatment.  相似文献   

5.
Total selenium (Se) and water-soluble Se in soil, and Se in a shallow groundwater were hydrogeochemically researched in an alluvial fan area in Tsukui, Central Japan. The water-soluble Se was estimated at average level of 2.6 ± 1.2μg Se kg−1 dry soil (± SD, n = 25), showing less than 1% of the total Se (349–508μg Se kg−1 dry soil) in soil. The monthly Se concentration in groundwater was average 2.2μg,L−1, ranging 1.6–2.4μg,L−1 during 2001–2003. The Se in groundwater significantly decreased with increasing groundwater level after rainfall. This result indicated that Se-bearing water percolated with relatively low Se concentration through the soil layer. According to our prediction model of linear regression curve on the observation data, Se concentration in the groundwater was estimated to be increasing with the very low rate of 4.35 × 10−3μg Se L−1,yr−1. The hydrogeochemical research and the result of the prediction model showed that any explosive increase of Se will hardly occur in this groundwater without an anthropogenic Se contamination.  相似文献   

6.
Presence of pesticide residues was studied in rain water during 2002 employing multi residue analysis method by gas liquid chromatography equipped with ECD and NPD detectors and capillary columns. The presence of pesticide residues in surface aquatic system triggered the investigation of the presence of pesticides in rain water. A total of 13 pesticides were detected in rain water samples. Among the different groups of pesticides, organochlorines were present in the range of 0.041–7.060 ppb with maximum concentration of p,p’-DDT up to 7.060 μg l−1. Synthetic pyrethroids were present ranging from 0.100 to 1.000 μg l−1 and organophosphates in the range of 0.050–4.000 μg l−1 showing maximum contamination with cypermethrin (1.000 μg l−1) and monocrotophos (4.000 μg l−1) of the respective groups. Almost 80% samples showed the residues above MRL of 0.5 ppb fixed for multi residues and on the basis of single pesticide, 16–50% samples contained residues above the MRL value of 0.1 ppb.  相似文献   

7.
Seasonal variation of the concentrations of trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were measured by ICP-AES in the water and sediment from the Saricay Stream, Geyik Dam and Ortakoy Well in the same basin. Comparisons between trace metal concentrations in water and sediment in three sources (Stream, Dam and Well) were made. The concentrations of a large number of trace metals in the water and sediment were generally higher in the Stream than in the Well and Dam, particularly in summer. Trace metal concentration ranges in sediments of the Saricay Stream and its sources showed very wide ranges (as mass ratio): Co: 5–476 μg g−1, Cr: 15–1308 μg g−1, Cu: 7–128 μg g−1, Fe: 1120–13210 μg g−1, Mn: 150–2613 μg g−1, Ni: 102–390 μg g−1, Pb: 0.7–31.3 μg g−1 and Zn: 18–304 μg g−1, whereas Cd was not detected. Trace metal concentration ranges found in waters were: Co: 9.5–20.7 μg L−1, Cr: 20.3–284 μg L−1, Cu: 170–840 μg L−1, Fe: 176–1830 μg L−1, Mn: 29.3–387 μg L−1, and Ni: 4.3–21.9 μg L−1. Among the trace metals studied, Cd and Zn in two seasons and Pb in winter were usually not detected or in the recommended levels. In addition, Cd was not detected in the sediment during the winter season. The analysis of variance (one-way ANOVA) and correlation matrix was employed for the sediment and water samples of the two field surveys (summer and winter) comparison. The three sources showed differences in metal contents. The metal levels in sediments displayed marked seasonal and regional variations, which were attributed to anthropogenic influences and natural processes. In the Saricay Stream, high values of metals during the dry season showed an anthropological effect from small industry firms, e.g.: an olive mill and a dairy farm or water dilution during summer seasons. Finally, the pollution in this basin probably originated from small industrial, low quality coal-burned thermal power plants, and particularly agricultural and domestic waste discharges.  相似文献   

8.
In this study, the relationship between some physico-chemical properties of soils and lead contamination in soil due to emission from industrial operations in Samsun province of Turkey was investigated. The extent of timely contamination was studied by comparing the obtained results with the results of the study conducted in the same region in 1998. An area of 225 km2 (15 km × 15 km), which was divided into 1000 × 1000 m grid squares (16 lines in the east and south directions), was selected within the industrial area. The total of 256 grid points was obtained and soil samples were collected from three depths (0–5, 5–15, and 15–30 cm) of each grid center in 2004. The total Pb concentrations of soil samples were determined as 65.84–527.04 μg g−1 at 0–5 cm in depth, 58.50 – 399.54 μg g−1 at 5–15 cm in depth, and 44.65–330.07 μg g−1 at 15–30 cm in depth. DTPA-extractable Pb concentrations of soils were found to be in the range of 1.52–9.03 μg g−1, 0.54–7.09 μg g−1, 0.19–6.13 μg g−1 at 0–5, 5–15, and 15–30 cm depths, respectively. There were significant relationships between both total or DTPA-extractable Pb concentrations and selected physico-chemical properties of soil. According to enrichment factor (EF) values calculated from the total Pb concentrations, 11.3% of the study area (225 km2) was enriched with Pb in high level, but 77% of the area was in significant enrichment level with Pb. The average total and DTPA-extractable Pb concentrations increased as 11 and 13%, respectively in comparison with the results of 1998.  相似文献   

9.
In the present paper, seven heavy metals (Pb, Cd, Ni, Cu, Zn, Cr and Fe) in canned salmon, sardine and tuna fish were determined by using atomic absorption spectroscopy. Cadmium and lead levels were determined by graphite tube AAS whereas Ni, Cu, Cr and Fe were determined by flame AAS. Analytical results were validated by spiking the samples with various concentrations of these metals for recovery. The metal contents, expressed in μg/g, wet weight, varied depending upon the specie studied. The levels of Pb ranged from 0.03–1.20 μg-g−1 with an average of 0.313 μg-g−1 for salmon; 0.03–0.51 μg-g−1 with an average of 0.233 μg-g−1 for tuna and 0.13–1.97 μg-g−1 with an average of 0.835 μg-g−1 for sardines. The levels of Cd ranged from 0.02–0.38 μg-g−1 with an average of 0.161 μg-g−1 for salmon; 0.07–0.64 μg-g−1 with an average of 0.227 μg-g−1 for tuna and 0.010–0.690 μg-g−1 with an average of 0.183 μg-g−1 for sardines. Comparative evaluation of these metals in three varieties of fish showed that average concentration of lead in sardines is about 4 times and Ni about 3 times higher as compared to tuna. Generally, the levels of these metals follow the order sardine > salmon > tuna. The data generated in the present study compared well with the similar studies carried out in different parts of the world. The results indicate that canned fish, in general and tuna in particular, have concentrations within permissible limits of WHO/FAO levels for these heavy metals. Therefore, their contribution to the total body burden of these metals can be considered as negligibly small.  相似文献   

10.
This study reports the concentration levels and distribution pattern of the organochlorine pesticide (OCPs) residues in the soil and surface water samples collected from the northern Indo-Gangetic alluvial plains. A total of 31 soil and 23 surface water samples were collected from the study region in Unnao district covering an area of 2150 km2 and analyzed for aldrin, dieldrin, endrin, HCB, HCH isomers, DDT isomers/metabolites, endosulfan isomers (α and β), endosulfan sulfate, heptachlor and its metabolites, α-chlordane, γ-chlordane and methoxychlor. In both the soil and surface water samples β- and δ-isomers of HCH were detected most frequently, whereas, methoxychlor was the least detected pesticide. The results showed contamination of soil and surface water of the region with several persistent organic pesticides. The total OCPs level ranged from 0.36–104.50 ng g–1 and 2.63–3.72 μg L–1 in soil and surface water samples, respectively.  相似文献   

11.
This is the first comprehensive study of sources of variation in metal concentrations within the whole tissues of a shallow burrowing, filter-feeding intertidal clam, Austrovenus stutchburyi. Samples were collected from 12 sites in April, August, November and February in 1993–1994 in the vicinity of Otago Harbour and Peninsula, New Zealand. Total tissue trace metal concentrations (μg g−1 dry weight) were measured in individual animals for the essential metals : Mn, Cu, Zn, Ni and the non-essential Cr using trace-metal clean acid-digestion and ICP-OAES techniques. Average metal concentrations were 3–60 μg g−1 for Cu, 40–118 μg g−1 for Zn, 2–12 μg g−1 for Mn, 5–35 μg g−1 for Ni and 1–44 μg g−1 for Cr. These levels decreased with body weight and differed amongst sites except for Cr in February (mid-summer). Highest concentrations occurred at sites close to a city (Dunedin) and within the central harbour region although the Cu, Zn, Ni and Cr concentrations did not correlate with the environmental gradient or season. At one coastal site, samples of both the blue mussel Mytilus galloprovincialis and cockles gave similar trends in trace metal levels. These results suggest that the cockle could be a useful trace metal biomonitor within NZ estuaries.  相似文献   

12.
Elevated levels of selenium have been found in water and aquatic biota downstream from two open-pit coal mines in the Rocky Mountain foothills of Alberta. Birds are particularly sensitive to excessive dietary selenium. However, there is relatively little information on selenium accumulation in birds' eggs on fast-flowing mountain streams. We determined levels of selenium in water samples, caddisfly larvae and eggs of American dippers (Cinclus mexicanus) nesting on the Gregg River, downstream from the mines, and on reference streams in the same general vicinity. Selenium levels (mean, 95% confidence limits) in water samples and caddisflies collected from sites near dipper nests on the Gregg River (water: 4.26, 1.90–9.56 μg L−1; caddisflies: 8.43, 7.51–9.46 μg g dry wt−1) were greater than those collected from sites near nests on reference rivers (water: 0.38, 0.21–0.71 μg L−1; caddisflies: 4.65, 4.35–4.97 μg g dry wt−1). The mean (± 1SE) selenium level in dipper eggs from the Gregg River (6.3 ± 0.2 μg g−1 dry wt) was significantly higher than it was in eggs from reference streams (4.9 ± 0.2 μg g−1 dry wt). Concentrations of selenium in eggs were significantly correlated with those in water samples (r = 0.45). The maximum selenium level in eggs from the Gregg River (9.0 μg g−1) may have been high enough to warrant concern from an ecotoxicological perspective. The American dipper can serve as a useful bioindicator of selenium contamination in mountainous, lotic ecosystems.  相似文献   

13.
Facile, selective and sensitive spectrophotometric method has been developed for the determination of carbosulfan in insecticidal formulations, fortified water, food grains, agriculture wastewater and soil samples with newly synthesized reagents. The method was based on acid and alkaline hydrolysis of the carbosulfan pesticide, and the resultant hydrolysis product of carbosulfan was coupled with 2,6-dibromo-4-methylaniline to give a yellow color product with λ max of 464 nm or interaction with 2,6-dibromo-4-nitroaniline to produce yellow colored product with λ max of 408 nm or coupling with 2,4,6-tribromoaniline to form red colored product has a λ max of 471 nm. Under optimal conditions, Beer’s law range for 2,6-dibromo-4-methylaniline (DBMA) was found to be 0.2–12.0 μg ml−1, 0.6–16.0 μg ml−1 for 2,6-dibromo-4-nitroaniline (DBNA) and 0.4–15.0 μg ml−1 for 2,4,6-tribromoaniline (TBA). The molar absorptivity of the color systems were found to be 3.112 × 104 l mol−1 cm−1 for DBMA, 3.214 × 104 l mol−1 cm−1 for DBNA and 3.881 × 104 l mol−1 cm−1 for TBA. Sandell’s of the color reactions are 0.013 μg cm−2 (DBMA), 0.012 μg cm−2 (DBNA) and 0.011 μg cm−2 (TBA) respectively. The effect of the non-target species on the determination of carbosulfan was studied to enhance the selectivity of the proposed methods. The formation of colored derivatives with the coupling agents is instantaneous and stable for 28, 30, and 26 h. Performance of the proposed methods were compared statistically in terms Student’s F and t-tests with the reported methods. An erratum to this article can be found at  相似文献   

14.
Concentrations of heavy metals were determined in the water column (including the sea-surface microlayer, subsurface, mid-depth and bottom water) and sediments from Singapore’s coastal environment. The concentration ranges for As, Cd, Cr, Cu, Ni, Pb and Zn in the seawater dissolved phase (DP) were 0.34–2.04, 0.013–0.109, 0.07–0.35, 0.23–1.16, 0.28–0.78, 0.009–0.062 and 0.97–3.66 μg L−1 respectively. The ranges for Cd, Cr, Cu, Ni, Pb and Zn in the suspended particulate matter (SPM) were 0.16–0.73, 6.72–53.93, 12.87–118.29, 4.34–60.71, 1.10–6.08 and 43.09–370.49 μg g−1, respectively. Heavy metal concentrations in sediments ranged between 0.054–0.217, 37.48–50.52, 6.30–21.01, 13.27–26.59, 24.14–37.28 and 48.20–62.36 μg g−1 for Cd, Cr, Cu, Ni, Pb and Zn, respectively. The lowest concentrations of metals in the DP and SPM were most frequently found in the subsurface water while the highest concentrations were mostly observed in the SML and bottom water. Overall, heavy metals in both the dissolved and particulate fractions have depth profiles that show a decreasing trend of concentrations from the subsurface to the bottom water, indicating that the prevalence of metals is linked to the marine biological cycle. In comparison to data from Greece, Malaysia and USA, the levels of metals in the DP are considered to be low in Singapore. Higher concentrations of particulate metals were reported for the Northern Adriatic Sea and the Rhine/Meuse estuary in the Netherlands compared to values reported in this study. The marine sediments in Singapore are not heavily contaminated when compared to metal levels in marine sediments from other countries such as Thailand, Japan, Korea, Spain and China.  相似文献   

15.
Citation of cyanobacterial cultures from the shores of south west coast of Gujarat, India and their relationship with sea water quality, influenced by extensive pollutant runoff is reported in this study. Intensity of pollution was evaluated by physico-chemical analysis of water. Higher load of suspended solids (60–1000 mg l−1) and nutrients (PO4 P: 1.3–4 μmole l−1 and NO3 N: 12.5–17.8 μmole l−1) were persistent throughout the analysis. Community structure is seen to be influenced by such persistent pollution. Twenty nine cyanobacterial species were isolated belonging to 9 genera of 4 families, with an elevated occurrence of Oscillatoria and Lyngbya species. No heterocystous cyanobacteria were isolated throughout the study.  相似文献   

16.
In this work, water and sediment samples were collected from three different stations located along the Sakarya river between May and September 2003. Lead, copper, chromium, zinc, nickel and cadmium concentrations were determined by using solvent extraction and flame atomic absorption spectrometric method. The results show that differences based upon sampling times, regions, sediment and water samples were observed. The mean levels of copper, nickel, chromium, lead, cadmium, zinc for sediment samples are; 4.630 μg g−1, 13.520 μg g−1, 8.780 μg g−1, 2.550 μg g−1, 9.990 μg g−1 and for water samples are; 0.851 μg g−1, 1.050 μg g−1, 0.027 μg g−1, 1.786 μg g−1, 0.236 μg g−1, 0.173 μg g−1, respectively.  相似文献   

17.
N-Ethyl-3-cabazolecarboxaldehydethiosemicarbazone (ECCT) is proposed as a new, sensitive and selective complexing reagent for the separation and extractive spectrophotometric determination of palladium(II) at pH: 4.0 to form a yellowish orange colored 1:1 chelate complex, which is very well extracted in to n-butanol. The absorbance was measured at a maximum wavelength, 410 nm. This method obeys Beer’s law in the concentration range 0.0–6.6 μg mL−1 and the correlation coefficient of Pd(II)-ECCT complex is 0.998, which indicates an excellent linearity between the two variables with good molar absorptivity and Sandell’s sensitivity, 1.647 × 104 l mol−1cm−1, 6.49 × 10−3 μg cm−2, respectively. The instability constant of complex calculated from Edmond’s method, 2.724 × 10−5 was in good agreement with the value calculated from Asmus’ method 2.624 × 10−5, at room temperature. The precision and accuracy of the method is checked with calculation of relative standard deviation (n = 5), 0.839. Edmond’s method was observed to be a more selective method in the presence of EDTA, oxalate and phosphate ions. The method was successfully applied for the determination of Pd(II) in water samples, synthetic mixtures and hydrogenation catalysts, employing an atomic absorption spectrometer for comparing these results.  相似文献   

18.
A sensitive spectrophotometric method has been developed for determination of ametryn in agricultural samples. The proposed method was based on reaction with pyridine and further coupling with sulfanilic acid to form a colored product. The absorbance was measured at 400 nm with a molar absorptivity of 2.1 × 105 L mol−1 cm−1. The method shows a linear range from 0.2–20 μg mL−1 with limit of detection and limit of quantification 0.16 and 0.54 μg mL−1, respectively. The method has been successfully applied to the determination of ametryn in sugarcane juice and commercial formulations after separation of ametryn from triazine herbicides based on solvent extraction. Recovery values were found to be in the range of 96.0 ± 0.2% to 98.4 ± 0.1%.  相似文献   

19.
Fly ash samples were taken from solid waste incinerators with different feeding waste, furnace type, and air pollution control device in six cities of Zhejiang province. The solid waste incinerators there constitute one fifth of incinerators in China. Heavy metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in the fly ash. Moreover, the fly ash samples were extracted by toxicity characteristic leaching procedure (TCLP). The biotoxicity of the leachate was evaluated by Chlorella pyrenoidosa. High variation and contents were found for both the heavy metals and PCDD/Fs. The contents of Zn, Cu, As, Pb, Cd, Cr, Ni, and Hg in the fly ash samples varied from 300 to 32,100, 62.1–1175, 1.1–57, 61.6–620, 0.4–223, 16.6–4380, 1.2–94.7, and 0.03–1.4 μg g−1 dw, respectively. The total contents of 17 PCDD/Fs varied from 0.1128 to 127.7939 μg g−1 dw, and the 2,3,7,8-TeCDD toxic equivalents (TEQ) of PCDD/Fs ranged from 0.009 to 6.177 μg g−1 dw. PCDF congeners were the main contributor to the TEQ. The leachate of the fly ash showed biotoxicity to C. pyrenoidosa. A significant correlation was found between the Cd and EC50 values. Further research is required to investigate the environmental impact of the various pollutants in the fly ash.  相似文献   

20.
Ambient aerosols were collected during 2000–2001 in Gainesville, Florida, using a micro-orifice uniform deposit impactor (MOUDI) to study mass size distribution and carbon composition. A bimodal mass distribution was found in every sample with major peaks for aerosols ranging from 0.32 to 0.56 μm, and 3.2 to 5.6 μm in diameter. The two distributions represent the fine mode (<2.5 μm) and the coarse mode (>2.5 μm) of particle size. Averaged over all sites and seasons, coarse particles consisted of 15% carbon while fine particles consisted of 22% carbon. Considerable variation was noted between winter and summer seasons. Smoke from fireplaces in winter appeared to be an important factor for the carbon, especially the elemental carbon contribution. In summer, organic carbon was more abundant. The maximum secondary organic carbon was also found in this season (7.0 μg m−3), and the concentration is between those observed in urban areas (15–20 μg m−3) and in rural areas (4–5 μg m−3). However, unlike in large cities where photochemical activity of anthropogenic emissions are determinants of carbon composition, biogenic sources were likely the key factor in Gainesville. Other critical factors that affect the distribution, shape and concentration were precipitation, brushfire and wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号