首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
利用2014年佛山市8个国控大气自动监测点位的O_3监测数据,分析了佛山市的O_3污染特征,结果表明,2014年O_3日最大8 h平均值的第90百分位数为167μg/m~3,O_3为首要污染物的超标天数为43d,占比46.7%;ρ(O_3)区域变化不大;ρ(O_3)月变化呈现"三峰型",全年高ρ(O_3)集中在6—10月份,其中7月份出现全年最高峰值;ρ(O_3)日变化呈单峰型分布,夜间浓度较低且变化平缓,14:00—16:00左右达到峰值,并存在一定的"周末效应",但并不明显;ρ(O_3)与气温呈显著正相关,与湿度、气压、雨量呈显著负相关,与风向、风速的相关性相对较弱;总体上看,高温、低湿、微风、偏南风、低压、无雨的天气条件下高ρ(O_3)更容易出现。  相似文献   

2.
对2015—2016年盐城市城区4个空气质量自动监测国控站点的O_3监测数据进行分析,探讨盐城市O_3污染水平、时空分布特征及其与前体物、气象因子之间的关系。结果表明,各站点O_3污染水平较为接近,2016年各站点O_3-8h第90百分位数超标天数较2015年分别下降了43.5%,50.0%,8.7%和43.6%;全年O_3逐月值大致呈双峰分布,高ρ(O_3)主要集中在4—10月;O_3日变化曲线呈明显的单峰分布,一般在05:00—07:00最低,13:00—15:00达到峰值;不同季节的O_3日变化情况有所差异,午后O_3峰值与O_3日变化幅度均在春季最大,冬季最低;NO、NO_2和CO的日变化曲线均呈现出早晚双峰分布,受早高峰影响,一般在07:00左右达到一日中的最大值;O_3与NO_x等前体物均显著负相关,高ρ(O_3)往往出现在高ρ(CO)/ρ(NO_2)时;总体上各站点的ρ(O_3)随风速的增大而增大。  相似文献   

3.
对2018—2020年春季江苏省臭氧(O 3)污染特征进行了分析。结果表明,江苏省ρ(O 3)均超过二级标准限值,分别超出5.6%,11.3%和8.8%,沿江区域ρ(O 3)略高于苏北区域;ρ(O 3-1 h)日变化呈“单峰型”,峰值呈逐年上升趋势,非污染日苏北区域ρ(O 3-1 h)均高于沿江区域,主要时间段体现在夜间至次日早晨,污染日中午至傍晚时段,沿江区域ρ(O 3-1 h)高于苏北区域;日ρ(O 3)高频区间为80~120μg/m 3,频率约为20%,沿江区域高频区间为60~120μg/m 3,苏北区域高频区间为80~140μg/m 3,频率均超过15%。沿江和苏北区域日ρ(O 3)在临界区间的出现频率偏差不大,O 3污染潜在风险相当;江苏省ρ(O 3)超标率呈逐年递增趋势,超标现象主要集中在4—5月;O 3作为首要污染物且超标的占比逐年升高,而PM 2.5作为首要污染物且超标的占比逐年降低,江苏省春季空气质量影响因子逐渐从PM 2.5转为O 3;平均>90%的O 3污染日为轻度污染,受O 3影响空气质量达到中度污染的占比较小,平均<10%,未出现因O 3导致的重度或严重污染日。  相似文献   

4.
基于昆明2018-2021年O_(3)日最大8 h滑动平均值[ρ(O_(3)-8 h)]和气象要素数据,采用广义相加模型(GAM)中的平滑样条函数拟合单要素、交互项的平滑回归函数拟合多要素与ρ(O_(3)-8 h)的影响关系。引入相对危险度概念,用分布滞后非线性模型(DLNM)分析气象要素和ρ(O_(3)-8 h)的滞后效应。构造滞后项和交互项的GAM模型,进行ρ(O_(3)-8 h)拟合预测。结果表明:当地面气压>818 hPa或平均风速<2.0 m/s时,ρ(O_(3)-8 h)出现1~3 d的滞后效应;GAM模型的交互项平滑回归函数优于单要素平滑样条函数的效果;干冷、湿热、低压大风、高压小风天气以及适当的气温和适中的水汽压有利于ρ(O_(3)-8 h)的增加;纳入交互项(包含滞后项)的GAM模型的拟合效果好于其他模型。该模型的判定系数达到0.672,广义交叉验证得分为352,拟合误差为13.7μg/m^(3),准确率达71.1%,特别在拟合因变量峰值和谷值时优势明显。  相似文献   

5.
根据2016年徐州市区臭氧(O_3)自动监测数据以及气象观测数据,探讨了徐州市区O_3浓度的变化特征及其与气象要素的关系。结果表明:2016年徐州市区环境空气中O_3-8h浓度超过二级标准共有32天,超标日集中出现在4月~9月;O_3-8h浓度年均值为122μg/m~3,O_3-8h第90百分位浓度为153μg/m~3。O_3浓度呈现夏季﹥春季﹥秋季﹥冬季的季节性变化特征和"单峰型"的日变化特征。O_3浓度与温度呈正相关性,与湿度和气压呈负相关性;当气压﹤1010 hPa,气温﹥25℃,相对湿度﹤50%时,O_3-8h浓度容易出现超标的情况。  相似文献   

6.
利用泉州城区2017年全年连续观测的O_3和气象要素资料,统计了臭氧浓度的分布特征,分析了气象要素对O_3质量浓度的影响,对比了O_3超标日和非超标日的气象要素特征。结果表明:(1)泉州市O_3质量浓度月变化呈双峰形,春季最高,夏季最低;日变化呈单峰形,最大值出现在13:00—14:00,最小值出现在06:00—07:00,上下游站O_3浓度存在明显传输效应。(2)泉州O_3质量浓度与相对湿度呈负相关,其相关性最高;与风速呈正相关,其相关系数最低,且存在明显区位性差异;与气温的相关性比较复杂,既有正相关,也有负相关。(3)各站点O_3小时质量浓度超标时,均对应2个气象要素区间值。(4)对比污染日非污染日发现,污染日相对湿度较低(50%~60%),非污染日较高(70%~80%);污染日温度略低于非污染日;污染日风向总体为西南偏南,非污染日风向为西南-东南。  相似文献   

7.
根据2015—2017年苏州市南门站O_3污染物和相关气象要素数据,分析了太阳辐射、相对湿度、风速风向、气温等气象要素对苏州市O_3污染的影响。结果表明:在太阳总辐射量在300 W/m~2以下时,O_3浓度随太阳总辐射量上升较快,在此后则上升速度趋缓。O_3污染天湿度主要分布在30%~60%,而O_3优良天的湿度主要在50%以上。风速较小时O_3浓度较低,风速较大时O_3浓度相对较高。O_3中度污染时,受东北偏东方向的O_3及其前体物传输影响较大。在日最高气温高于15℃时,可能出现O_3轻度污染;最高气温高于25℃时可能出现O_3中度污染。  相似文献   

8.
京津冀区域臭氧污染趋势及时空分布特征   总被引:15,自引:11,他引:4  
为研究京津冀区域的臭氧(O_3)污染情况及其时空分布特征,对2013—2015年京津冀区域13个城市80个国家环境空气监测点位的监测数据进行了统计分析。结果表明:2013—2015年,京津冀区域O_3污染状况整体呈加重趋势,其中2014年污染状况最为严重。13个城市中O_3污染最严重的城市为北京和衡水,连续3年均超标,且处于上升态势中。区域内不同城市O_3污染趋势并不相同。京津冀区域O_3浓度变化呈明显的季节变化特征,春末和夏季的O_3污染最严重。O_3-8 h(臭氧日最大8 h均值)年均值的高值区主要分布在北京中北部、承德和衡水等,2013—2015年第90百分位O_3-8 h的高值区均集中分布在北京。O_3的浓度峰值时间要晚于NOx2~5 h。O_3在春、夏季呈单峰分布,白天15:00左右出现最大值,在秋、冬季浓度较低,全天波动不大。  相似文献   

9.
运用2013—2016年贵阳市环境空气自动监测站臭氧(O_3)的监测数据以及气象观测资料,分析该地区近地面O_3浓度的时空变化特征及与气象因子的关联性。结果表明,近年来贵阳市近地面O_3小时浓度均值有逐年升高趋势,增速为1. 1~5. 0μg/(m~3·a)。O_3浓度昼间变化呈明显单峰形分布,08:00左右出现最低值,15:00—16:00达到最大峰值,浓度高值主要分布在12:00—18:00。日照时数每增加1 h,则近地面O_3日最大8 h平均浓度增加8μg/m~3左右,日照时数大于8 h,则近地面O_3日最大8 h平均浓度超过100μg/m~3; O_3小时浓度与温度呈正相关(r=0. 724,α=0. 01),与相对湿度呈负相关(r=-0. 531,α=0. 01)。当日照时数大于8 h、温度超过25℃、相对湿度小于60%时,贵阳市近地面O_3容易出现高浓度值。  相似文献   

10.
使用天津市2013—2019年连续污染物监测数据和气象观测数据探讨臭氧污染现状,分析气象条件对臭氧浓度的影响,对不同臭氧污染过程案例进行天气分型,统计出现臭氧污染时的污染气象特征。结果表明:天津市臭氧浓度不降反升,2017—2019年连续3年超过国家二级浓度限值,2019年以臭氧为首要污染物的重污染天约占全年的1/2。春季和秋季臭氧污染日益突出,4月臭氧浓度已明显升高。天津市臭氧日最大8 h滑动平均质量浓度(O3-8 h)在日最高气温超过30℃、相对湿度20%~70%、西南风或东南风风速1~2.5 m/s、白天边界层高度1 400 m以下时较高。将臭氧污染天气形势分为春夏之交、盛夏高温和夏秋静稳3种类型。其中春夏之交天气型易出现臭氧与PM2.5协同污染;盛夏高温天气型平均风速较大,日最高气温大于35℃;夏秋静稳天气型平均风速小、边界层低。  相似文献   

11.
利用在线高分辨率仪器对2014-2018年南京市PM2.5中有机碳(OC)、元素碳(EC)进行了连续监测,结果表明:离线分析法与在线分析法对OC、EC的测定结果具有很好的线性相关性,离线分析的EC、OC浓度高于在线自动监测值;2014-2018年南京OC与EC的平均质量浓度分别为(6. 38±3. 91)μg/m^3和(3. 12±1. 76)μg/m^3,整体呈下降趋势,冬季OC与EC均较高,夏季两者质量浓度较低。OC和EC均呈现夜间高、白天低的日变化规律,OC与EC第一个峰值均出现在08:00左右,OC第二个峰值出现在20:00前后;夏季OC与EC相关性最低,冬季最高,NO2、CO与OC、EC的相关性总体高于SO2,表明燃料燃烧对碳气溶胶有一定贡献,但没有交通源的贡献显著,夏季O3与OC呈现一定程度的正相关性。利用最小相关系数法(MRS)计算大气OC中一次有机碳(POC)和二次有机碳(SOC),结果显示OC中以POC为主,但SOC呈逐年上升趋势,2018年SOC质量浓度达1. 96μg/m3,在OC中占比达31. 9%,后续颗粒物污染治理的重点可能应关注VOCs。  相似文献   

12.
Ground level ozone (O3) concentration was monitored during the period of December 2004 to November 2005 in an urban area in Greater Cairo (Haram, Giza). During the winter and summer seasons, nitrogen dioxide (NO2) and nitric oxide(NO) concentrations and meteorological parameters were also measured. The mean values of O3 were 43.89, 65.30, 91.30 and 58.10 ppb in daytime and 29.69, 47.80, 64.00 and 42.70 ppb in whole day (daily) during the winter, spring, summer and autumn seasons, respectively. The diurnal cycles of O3 concentrations during the four seasons revealed a uni-modal peak in the mid-day time, with highest O3 levels in summer due to the local photochemical production. The diurnal variations in NO and NO2 concentrations during the winter and summer showed two daily peaks linked to traffic density. The highest levels of NOx were found in winter. Nearly, 75%, 100%, 34.78% and 52.63% of the mean daytime concentrations of O3 during spring,summer, autumn and the whole year, respectively, exceeded the Egyptian and European Union air quality standards (60 ppb) for daytime (8-h) O3 concentration. About, 41.14% and 10.39% of the daytime hours concentrations and 14.93% and 3.77% of the daily hour concentrations in summer and the whole year, respectively, exceeded the Egyptian standard (100 ppb) for maximum hourly O3 concentration, and photochemical smog is formed in the study area (Haram) during a periods represented by the same percentages. This was based on the fact that photochemical smog usually occurs when O3 concentration exceeds 100 ppb. The concentrations of O3 precursors (NO and NO2) in weekends were lower than those found in weekdays, whereas the O3 levels during the weekends were high compared with weekdays. This finding phenomenon is known as the "weekend effect". Significant positive correlation coefficients were found between O3 and temperature in both seasons and between O3 and relative humidity in summer season, indicating that high temperature and high relative humidity besides the intense solar radiation (in summer) are responsible for the formation of high O3 concentrations.  相似文献   

13.
采用数值模式与观测资料相结合的方式,对北京市2013年1月9~15日一次空气重污染过程的大气环境背景、气象条件和形成原因进行了初步分析。结果表明,此次重污染过程北京市空气质量从9日的二级跳至10日五级重度污染,11日一13日空气质量维持连续3d严重污染,14日降为重度污染,15日转为轻度污染;重污染过程期间10—14日P(PM2.5)平均值为323μg/m。,平均风速为1.47m/s,平均相对湿度为73.6%,24h变温基本为一2.72~2.68℃,24h平均变压为一3.65~2.63hPa。指出,此次重污染过程与当地气象条件密切相关,稳定的大气环流形势为污染的持续提供了大气环流背景,风速较小、湿度较大、边界层较低、持续逆温是造成重污染的主要原因,地面风场辐合及边界层下沉运动是造成重污染的重要原因。  相似文献   

14.
基于湖北省2018年4-10月臭氧、温度和相对湿度逐小时监测数据以及50 m风场逐小时再分析数据,采用经验正交函数(EOF)和奇异值分解(SVD)方法,分析了2018年湖北省臭氧特征及其高值与气象要素关系。结果表明:湖北省臭氧日最大8 h浓度距平呈现以武汉为正值中心、自鄂东向鄂西递减的主要空间分布型;15:00臭氧与温度呈现较好的正相关关系,以随州、襄阳及其周边最为明显;与14:00相对湿度呈现很好的负相关关系,以孝感、随州、荆门及其周边最为明显;襄阳西部和十堰北部地区15:00 50 m风场的纬向分量对本地臭氧高值有一定影响,武汉北部、黄冈北部以及孝感东部等地15:00 50 m风场的经向分量对本地臭氧高值影响较大。  相似文献   

15.
Surface ozone concentrations in Xi'an, China were monitored from March 23, 2008 to January 12, 2009 using the Model ML/EC9810 ozone analyzer. The daily average O(3) ranged from <1 ppb to 64.2 ppbv with an annual average of 16.0 ppbv. The seasonal average of O(3) in summer (32.5 ppbv) was more than 10 times higher than that in winter (3.0 ppbv). A significant positive correlation was found between ozone concentration and ambient temperature, indicating that the intensity of solar radiation was one of the several major factors controlling surface ozone production. Using the NOAA HYSPLIT 4 trajectory model, the three longest O(3) pollution episodes were found to be associated with the high biogenic volatile organic carbon (BVOC) emissions from the vegetation of Qinling Mountains. No significant weekday and weekend difference in O(3) levels was detected due to the non-significant change in NO(x) emissions. O(3) depletion by NO emission directly emitted from vehicles, low oxygenated VOC concentrations, and low-level solar radiation caused by high aerosol loading all contributed to the low levels of O(3) found in Xi'an compared to other cities and rural areas.  相似文献   

16.
基于2016—2020年台州市区大气污染物监测数据及气象观测资料,分析了台州市区PM2.5和O3的污染特征及受气象因素影响情况,并探究了不同季节下的PM2.5浓度和O3浓度的相关性及相互作用关系。2016—2020年,台州市区PM2.5年均浓度和超标天数呈显著下降趋势,O3-8 h年均浓度和超标天数总体呈上升趋势。PM2.5浓度在冬季最高,且易发生超标;O3浓度在春、夏、秋季均较高,且均会发生超标。通过相关性分析可知:PM2.5浓度与气温、相对湿度、风速、降水量呈负相关,与大气压呈正相关;O3浓度与气温、风速呈正相关,与相对湿度、降水量呈负相关。不同季节下的PM2.5浓度与O3浓度均呈正相关,两者存在协同增长。在春、夏、秋季,二次PM2.5在总PM2.5中的占比随着O3  相似文献   

17.
利用青岛市大气综合观测站的研究性监测数据,分析了2011年采暖期PM2.5和能见度的相关性,结果表明:①能见度在≤3km时,对应的PM2.5浓度超出0.250mg/m^3,属于严重污染;②PM2.5浓度对能见度的影响存在一临界区域,当PM2.5浓度低于该临界区时能见度会随PM2.5浓度减少迅速改善,临界值大致位于PM2.5浓度为0.100mg/m^3处;③相对湿度小于85%时,能见度与PM2.5浓度呈显著负相关。其中,相对湿度在60%-70%时,能见度与PM2.5浓度之间的相关性最好,PM2.5对能见度的影响最直接。  相似文献   

18.
深圳大运会期间一次光化学污染事件成因分析   总被引:1,自引:0,他引:1  
对深圳大运会期间8月20日发生的一次光化学污染过程进行分析。此次过程中,处于工业区的石岩大气成分站测得O3浓度小时平均最大值为213.4μɡ/m3,超过国家环境空气质量二级标准限值(200μɡ/m3),出现时间在当日13:00~14:00时。与处于城区的竹子林站和郊区的西涌站污染物浓度进行对比分析得知,此次光化学污染的主要特点是局地性较强,持续时间较短,影响范围小。同步的风速、风向、温度、相对湿度及紫外辐射等气象要素分析表明,此次光化学污染事件与气象条件关系非常紧密,当日天气晴朗、日照强烈、温度高、相对湿度适中,有利于光化学反应的发生,且不利的风向条件使得来自上风向城区的污染物易于累积。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号