首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemical fertilizers are used extensively in modern agriculture, in order to improve yield and productivity of agricultural products. However, nutrient leaching from agricultural soil into groundwater resources poses a major environmental and public health concern. The Evros region is one of the largest agricultural areas in Northern Greece, extending over 1.5 million acres of cultivated land. Many of its drinking water resources are of groundwater origin and lie within agricultural areas. In order to assess the impact of agricultural fertilizers on drinking water quality in this region, tap-water samples from 64 different locations were collected and analyzed for the presence of nitrates [Formula: see text], nitrites [Formula: see text], ammonium [Formula: see text], sulfate [Formula: see text] and phosphate [Formula: see text]. These chemicals were selected based on the information that ammonium nitrate, ammonium sulfate and inorganic phosphate were the primary fertilizers used in local crop production. [Formula: see text], [Formula: see text] and [Formula: see text] levels exceeding accepted values were recorded in 6.25, 4.70 and 9.38% of all sampling points, respectively. [Formula: see text] and [Formula: see text] concentrations, on the other hand, were inside the permitted range. The data generated were introduced into a geographic information system (GIS) program for computer analysis and projection maps representing afflicted areas were created. Our results indicate a profound geographic correlation in the surface distribution of primary contaminants in areas of intensified agricultural production. Thus, drinking water pollution in these areas can be attributed to excessive fertilizer use from agricultural sources.  相似文献   

2.
PM(2.5) nitrate [Formula: see text] and sulfate ([Formula: see text]) were measured continuously with R&P8400N and R&P8400S instruments, respectively, and compared with filter-based measurements at the Fresno Supersite from October, 2000 through December, 2005. [Formula: see text] concentrations were higher in winter than summer with a long-term decreasing trend. Correlations between 24-h average continuous and filter-based [Formula: see text] were greater than 0.96 in 4 out of 5 years. Continuous [Formula: see text] was generally lower than filter-based [Formula: see text] although the difference decreased over time, from -52% in 2001 to +13% in 2005. These differences were similar in winter (-23%) and summer (-19%) while the corresponding differences between ambient and instrument temperature were -12 and 0.7 degrees C, respectively. Neither seasonal nor long-term trends in [Formula: see text] can be explained by variations in ambient temperature, the difference between ambient and instrument temperature, or changes in aerosol chemical composition. There were no seasonal or long-term trends in [Formula: see text] concentrations, partially due to low concentrations observed in Fresno. Long-term variability in the performance of R&P8400 [Formula: see text] and [Formula: see text] instruments suggest that collocation with filter measurements is needed for long-term measurements.  相似文献   

3.
Study on chemical characteristics of groundwater and impacts of groundwater quality on human health, plant growth, and industrial sector is essential to control and improve the water quality in every part of the country. The area of the Varaha River Basin is chosen for the present study, where the Precambrian Eastern Ghats underlain the Recent sediments. Groundwater quality is of mostly brackish and very hard, caused by the sources of geogenic, anthropogenic, and marine origin. The resulting groundwater is characterized by Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-)?>?[Formula: see text], Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-)?>?[Formula: see text]?>?[Formula: see text], Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-), and Na(+)?>?Mg(2+)?>?Ca(2+)?:?Cl(-)?>?[Formula: see text]?>?[Formula: see text] facies, following the topographical and water flow-path conditions. The genetic geochemical evolution of groundwater ([Formula: see text] and Cl(-)-[Formula: see text] types under major group of [Formula: see text]) and the hydrogeochemical signatures (Na(+)/Cl(-), >1 and [Formula: see text]/Cl(-), <1) indicate that the groundwater is of originally fresh quality, but is subsequently modified to brackish by the influences of anthropogenic and marine sources, which also supported by the statistical analysis. The concentrations of total dissolved solids (TDS), TH, Mg(2+), Na(+), K(+), [Formula: see text], Cl(-), [Formula: see text], and F(-) are above the recommended limits prescribed for drinking water in many locations. The quality of groundwater is of mostly moderate in comparison with the salinity hazard versus sodium hazard, the total salt concentration versus percent sodium, the residual sodium carbonate, and the magnesium hazard, but is of mostly suitable with respect to the permeability index for irrigation. The higher concentrations of TDS, TH, [Formula: see text], Cl(-), and [Formula: see text] in the groundwater cause the undesirable effects of incrustation and corrosion in many locations. Appropriate management measures are, therefore, suggested to improve the groundwater quality.  相似文献   

4.
Groundwater samples from the shallow unconfined aquifer were collected from fifteen borewells in Kalpakkam nuclear plant site and were analysed for various physico-chemical parameters. The pH, temperature, salinity, TDS and EC were measured in the field. The borewell samples were analysed in the laboratory for Ca(2+), Mg(2+), Na(+), Cl(-), [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]. The Piper Trilinear diagram showed that majority of the borewell samples fall in Na - Cl +SO(4) type and Na - CO(3)+HCO(3) type. The Cl: HCO3 ratio of some borewell samples are categorized under injuriously contaminated to highly injurious type. The higher salinity levels encountered in some borewells emphasized the need for better understanding of groundwater corrosiveness. Accordingly, the Langeliar saturation Index (SI), Aggressivity index (AI) and Larson ratio (LnR) were evaluated for assessing the corrosive nature of the groundwater. The saline water incursion in the southern part of the study area increased the ionic concentration of Cl(-) and [Formula: see text] that made the groundwater corrosive.  相似文献   

5.
Chemical monitoring of aquatic ecosystems describes the chemical exposures of aquatic biota and measures the success of pollution control. However, meeting water quality criteria cannot assure that aquatic biota are protected from the effects of unexpected chemicals, mixtures and interactions between toxicity and environmental stressors.Biological monitoring is an obvious solution since aquatic biota integrate spatial and temporal variations in exposure to many simultaneous stressors. Top predators, typical of specific ecosystems (e.g. lake trout in cold water oligotrophic lakes) indicate whether environmental criteria have been met. The presence of naturally reproducing, self-sustaining and productive stocks of edible fish demonstrates a high quality environment. If these conditions are not met, there is a clear sign of environmental degradation. Specific changes in population structure and performance may also diagnose which life stage is affected and the nature of the stressor.Unfortunately, environmental managers cannot rely solely on populations, communities or ecosystems to indicate chmical effects. The lag between identifying a problem and finding a cause may destroy the resource that we wish to protect, particularly where chemicals are persistent.A solution to this dilemma is the measurement of primary or secondary responses of individual organisms to chemical exposure. Since toxicity at any level of organization must start with a reaction between a chemical and a biological substrate, these responses are the most sensitive and earliest sign of chemical exposure and effect.Application of this idea requires research on molecular mechanisms of chemical toxicity in aquatic biota and adaptation of existing mammalian diagnostic tools. Since relevance of biochemical responses to populations and ecosystems is not obvious, there is a need to study the links between chemical exposure and responses of individuals, populations and ecosystems.The recognition of chemical problems and cause-effect relationships requires the integration of chemical and biological monitoring, using the principles of epidemiology to test the strength of relationships and to identify specific research needs. The contamination of a reservoir with selenium and impacts on fish populations provide an excellent example of this approach.  相似文献   

6.
Bulk samples collected on a daily basis at three principal meteorological stations in central Serbia were analyzed on chloride (Cl(-)), nitrate [Formula: see text], sulfate [Formula: see text], sodium (Na(+)), ammonium [Formula: see text], potassium (K(+)), calcium (Ca(2+)), and magnesium (Mg(2+)) in addition to precipitation amount, pH and conductivity measurements over the period 1998-2004. The data were subjected to variety of analyses (linear regression, principal component analysis, time series analysis) to characterize precipitation chemistry in the study area. The most abundant ion was [Formula: see text] with annual volume weighted mean concentration of 242 microeq L(-1). Neutralization of precipitation acidity occurs both as a result of the dissolution of alkaline compounds containing Ca(2+), Mg(2+), and K(+) as well as the absorption of ammonia. The ratio of [Formula: see text] was above 5, which indicated that the combustion process of low-grade domestic lignite for electricity generation from coal-fired thermal power plants was the main source of pollution in the investigated area. A considerable mean annual bulk wet deposition of SO(4)-S determined by precipitation amount and concentrations of sulfate in the precipitation was calculated to be 12-35 kg ha(-1).  相似文献   

7.
环境监测是水生态健康监测与评估的重要环节,基于物理、化学监测的传统水质监测通常仅能提供独立的数据信息,不能全面、直观地反映水环境状况。基于生物等生命体导向的水生态监测通过生物对环境的响应,能够直接反应复杂水体状况,在水环境健康监测与评估中占据重要地位。基于病原微生物、指示生物介绍了生物监测中的常规生物指标,总结了包括藻类、无脊椎动物和鱼类在内的常见指示生物在不同类型污染水体中的环境指示作用。从生物毒性效应出发介绍了常用的毒性效应测试方法、分析了污染物在不同生物学水平的响应,从而指明生物毒性效应在水环境健康评估中的发展优势。再从生态完整性角度阐述了生态完整性评价的一般方法和新兴分子生物学技术在水生态健康评估中的应用。重点指出环境毒理学和分子生物学在水环境监测的优势,以期为更加科学精确地进行水生态健康监测预警提供支撑。  相似文献   

8.
The application of different multivariate statistical approaches for the interpretation of a complex data matrix obtained during the period 2004-2005 from Uluabat Lake surface water is presented in this study. The dataset consists of the analytical results of a 1 year-survey conducted in 12 sampling stations in the Lake. Twelve parameters (T, pH, DO, [Formula: see text], NH(4)-N, NO(2)-N, NO(3)-N, [Formula: see text], BOD, COD, TC, FC) were monitored in the sampling sites on a monthly basis (except December 2004, January and February 2005, a total of 1,296 observations). The dataset was treated using cluster analysis, principle component analysis and factor analysis on principle components. Cluster analysis revealed two different groups of similarities between the sampling sites, reflecting different physicochemical properties and pollution levels in the studied water system. Three latent factors were identified as responsible for the data structure, explaining 77.35% of total variance in the dataset. The first factor called the microbiological factor explained 32.34% of the total variance. The second factor named the organic-nutrient factors explained 25.46% and the third factor called physicochemical factors explained 19.54% of the variances, respectively.  相似文献   

9.
Synthetic-based drilling muds (SBMs) offer excellent technical characteristics while providing improved environmental performance over other drilling muds. The low acute toxicity and high biodegradability of SBMs suggest their discharge at sea would cause minimal impacts on marine ecosystems, however, chronic toxicity testing has demonstrated adverse effects of SBMs on fish health. Sparse environmental monitoring data indicate effects of SBMs on bottom invertebrates. However, no environmental toxicity assessment has been performed on fish attracted to the cutting piles. SBM formulations are mostly composed of synthetic base oils, weighting agents, and drilling additives such as emulsifiers, fluid loss agents, wetting agents, and brine. The present study aimed to evaluate the impact of exposure to individual ingredients of SBMs on fish health. To do so, a suite of biomarkers [ethoxyresorufin-O-deethylase (EROD) activity, biliary metabolites, sorbitol dehydrogenase (SDH) activity, DNA damage, and heat shock protein] have been measured in pink snapper (Pagrus auratus) exposed for 21 days to individual ingredients of SBMs. The primary emulsifier (Emul S50) followed by the fluid loss agent (LSL 50) caused the strongest biochemical responses in fish. The synthetic base oil (Rheosyn) caused the least response in juvenile fish. The results suggest that the impact of Syndrill 80:20 on fish health might be reduced by replacement of the primary emulsifier Emul S50 with an alternative ingredient of less toxicity to aquatic biota. The research provides a basis for improving the environmental performance of SBMs by reducing the environmental risk of their discharge and providing environmental managers with information regarding the potential toxicity of individual ingredients.  相似文献   

10.
工业废水急性毒性污染的监测,以鱼类毒性试验的应用最为普及。与毒性达标控制的监测监管相比,毒性现状测定更有助于支持毒性污染预警监管的实施。通过对已知物质毒性试验结果的多次验证,证实由鱼类种类决定的方法检出限、实验中使用鱼类的种类形式、同种试验鱼的不同来源和依照"预实验"线性对现状进行的反推等4方面因素中除试验鱼的来源问题外,其余3因素已构成了对实验结果的决定性影响。3种宏观质量影响因素中,反推影响更难于实施质量控制。以现状表述为主要目标的毒性试验应尽可能回避稀释过程。  相似文献   

11.
Environmental health monitoring and surveillance include activities such as collection of information on the production and use of chemicals; preparation of inventories of waste discharges; measurement of physical, chemical and biological agents in air, water and food, at work place and at home; epidemiological investigations, and collection and analysis of environmental, and health statistical data. There are two main objectives of these activities: estimation of human exposure to potentially harmful environmental factors and timely detection of adverse health effects; and the assessment of environmental conditions in relation to established guidelines and standards. Environmental health monitoring and surveillance projects initiated, organized and implemented by the Specialized Agencies and other bodies of the United Nations system include monitoring of air and water quality and of food and animal feed contamination; pilot projects on air pollution exposure assessment and biological monitoring; and ionizing radiation surveillance. Principles of environmental and health monitoring in occupational environment, and of monitoring and surveillance of environmental health effects are outlined. Two examples are provided of national environmental health surveillance systems.Revised and up-dated text of a paper presented at the World congress on Environmental Health in Development Planning, Mexico City, November 1979.Formerly Manager, Environmental Health Criteria and Standards, and Chief Central Unit, International Programme on Chemical Safety, Division of Environmental Health, World Health Organization, Geneva, Switzerland.  相似文献   

12.
鱼类是水生生态系统生物多样性的重要组成部分,为了解江苏省地表水监测断面鱼类群落结构特征,利用环境DNA宏条形码技术对2020年4-5月江苏省148个地表水监测断面的鱼类群落进行了调查.在环境DNA样品中共检测到鱼类可操作分类单元(OTU)418个,共注释到10目14科32属46种,其中鲤形目的鱼类有27种,序列占比达8...  相似文献   

13.
Monitoring of heavy metals was conducted in the Yamuna River considering bioaccumulation factor, exposure concentration, and human health implications which showed contamination levels of copper (Cu), lead (Pb), nickel (Ni), and chromium (Cr) and their dispersion patterns along the river. Largest concentration of Pb in river water was 392 μg L?1; Cu was 392 μg L?1 at the extreme downstream, Allahabad and Ni was 146 μg L?1 at midstream, Agra. Largest concentration of Cu was 617 μg kg?1, Ni 1,621 μg kg?1 at midstream while Pb was 1,214 μg kg?1 at Allahabad in surface sediment. The bioconcentration of Cu, Pb, Ni, and Cr was observed where the largest accumulation of Pb was 2.29 μg kg?1 in Oreochromis niloticus and 1.55 μg kg?1 in Cyprinus carpio invaded at Allahabad while largest concentration of Ni was 174 μg kg?1 in O. niloticus and 124 μg kg?1 in C. carpio in the midstream of the river. The calculated values of hazard index (HI) for Pb was found more than one which indicated human health concern. Carcinogenic risk value for Ni was again high i.e., 17.02?×?10?4 which was larger than all other metals studied. The results of this study indicated bioconcentration in fish due to their exposures to heavy metals from different routes which had human health risk implications. Thus, regular environmental monitoring of heavy metal contamination in fish is advocated for assessing food safety since health risk may be associated with the consumption of fish contaminated through exposure to a degraded environment.  相似文献   

14.
选取不同类型的环境和污染源水样开展了发光细菌毒性测试,针对不同环境管理目标,探讨了急性毒性定量表征方式。发光细菌急性毒性测试在环境应急监测、水源早期生物预警中,采用绘制毒性预警基线图的方式比较可行。在污染源监督监测中,对于发光抑制率低于60%、无法求出EC50的样品,采用等效毒性参照物的质量浓度表征废水的毒性;对于发光抑制率高于60%,采用稀释因子表示样品的毒性更直观可靠。  相似文献   

15.
In order to achieve a more substantial appraisal of lake water quality, the assessment must not be based only on chemical measurements and analyses of the water itself, but even more so on the impact of existing conditions on aquatic biota. This is possible with the use of biotests or biomarkers, e.g. investigations of the developmental parameters (96-h embryotoxicity evaluate) or of the induction of heat shock proteins (proteotoxicity evaluate). To evaluate the suitability of these tests for environmental screening, fertilized zebrafish eggs were exposed to water samples collected from five sites of varying levels of stress from Laguna Lake, Philippines. Reconstituted water was used as laboratory control while water samples from a highly polluted freshwater source was used as positive control. Developmental parameters were noted and described within 48 and 96 h of exposure. Dilution experiments of the positive control were also done to further assess and compare toxicity potentials of Laguna Lake waters with those originating from a polluted freshwater. After the 96-h exposure, the levels of stress proteins (hsp 70) were determined in embryos from all exposure groups. Results showed 100% mortality in embryos exposed to undiluted positive control (PC) within only 12 h. Increasing dilution levels, however, resulted in lower mortality and lower abnormality rates. No detectable developmental differences were noted among embryos exposed to either the laboratory control or Laguna Lake waters at the end of 96 h, regardless of the source. Very high survival rates and high hatching success rates were observed in embryos exposed to lake waters as well as laboratory control, and the data did not differ significantly among the groups. Likewise, no significant malformations were noted among all developing embryos throughout the exposure period. However, the levels of heat shock proteins in the two sites located closest to Manila, the Philippine capital (Northern West Bay and Central West Bay), showed a pronounced elevation relative to the control, indicating that these stress proteins protect the embryos from the detrimental effects of pollutants in the water. Based on the 96-h early life stage (ELS) test, the water quality of the lake is good for fishery propagation despite the current levels of pollutants in the water. This finding is in accordance with the Class C status (i.e. suitable for fish growth and propagation) as given to the lake by the local environmental agency. On the other hand, data on proteotoxicity showed that the fish are under stress, presumably deriving from pollutants. This calls for a continuous monitoring and improvement of the lake water. The present study indicates that the two biomarker methods are very easy to use, practical, rapid, and sensitive for assessing water quality in a tropical lake and recommends for their incorporation into the future monitoring program of Laguna Lake.  相似文献   

16.
To investigate the environmental safety of waste disposal landfill sites and of land reclaimed from such sites, we evaluated the toxicity of leachate from these sites by a combination of bioassays in the Japanese killifish medaka Oryzias latipes. We tested for lethal toxicity in adult and larval medaka and for hatching inhibition of embryos from eggs. As biochemical evidence of the effects of leachate exposure, CYP1A (EROD activity) and vitellogenin (Vtg) were induced. We also bioassayed water-treated leachate and downstream river water. Leachate solution was lethal to larval and adult medaka. Embryo hatchability was inhibited, and abnormal hatching, spinal deformity and anisophthalmia occurred in embryos exposed to leachate solution. CYP1A was induced by exposure to leachate solution diluted to 1.0%, and EROD activity was significantly higher than in control. Vtg and unknown proteins were induced in the sera of male medaka exposed to the diluted leachate solution. Conventional water treatments worked effectively to remove toxic compounds but did not work well to remove element ions, including heavy metals. Treated leachate produced neither lethal toxicity nor hatching abnormalities during the exposure period. Fish toxicity tests for leachate would be useful for monitoring the environmental safety of landfill sites.  相似文献   

17.
The neonicotinoid insecticide imidacloprid (IMI) has been proposed as an alternative to carbaryl for controlling indigenous burrowing shrimp on commercial oyster beds in Willapa Bay and Grays Harbor, Washington. A focus of concern over the use of this insecticide in an aquatic environment is the potential for adverse effects from exposure to non-target species residing in the Bay, such as juvenile Chinook (Oncorhynchus tshawytscha) and cutthroat trout (O. clarki). Federal registration and State permiting approval for the use of IMI will require confirmation that the compound does not adversely impact these salmonids following field applications. This will necessitate an environmental monitoring program for evaluating exposure in salmonids following the treatment of beds. Quantification of IMI residues in tissue can be used for determining salmonid exposure to the insecticide. Refinement of an existing protocol using liquid-chromatography mass spectrometry (LC-MS) detection would provide the low limits of quantification, given the relatively small tissue sample sizes, necessary for determining exposure in individual fish. Such an approach would not be viable for the environmental monitoring effort in Willapa Bay and Grays Harbor due to the high costs associated with running multiple analyses, however. A new sample preparation protocol was developed for use with a commercially available enzyme-linked immunosorbent assay (ELISA) for the quantification of IMI, thereby providing a low-cost alternative to LC-MS for environmental monitoring in Willapa Bay and Grays Harbor. Extraction of the analyte from the salmonid brain tissue was achieved by Dounce homogenization in 4.0 mL of 20.0 mM Triton X-100, followed by a 6 h incubation at 50-55 °C. Centrifugal ultrafiltration and reversed phase solid phase extraction were used for sample cleanup. The limit of quantification for an average 77.0 mg whole brain sample was calculated at 18.2 μg kg(-1) (ppb) with an average recovery of 79%. This relatively low limit of quantification allows for the analysis of individual fish. Using controlled laboratory studies, a curvelinear relationship was found between the measured IMI residue concentrations in brain tissue and exposure concentrations in seawater. Additonally, a range of IMI brain residue concentrations was associated with an overt effect; illustrating the utility of the IMI tissue residue quantification approach for linking exposure with defined effects.  相似文献   

18.
The chemical composition of bulk precipitation and throughfall were analyzed, during a 1-year period (2002), in rural-urban-industry gradients with similar forest cover (Eucalyptus spp.) in southern Brazil (Rio Grande and Porto Alegre cities). Values of pH varied from 5.0-5.1 in rural to 5.4-6.1 in industrial sites, and were intermediate in urban sites. The major ions in bulk precipitation were Na(+), Cl(-), [Formula: see text], [Formula: see text] and [Formula: see text], and concentrations increased in urban and industrial sites. Principal component analysis identified the local main anthropogenic sources. Estimated annual amounts of dry deposition were generally greater in both industrial and urban sites than in rural sites. Areas close to industrial activity showed greater S and N total deposition (10.4-10.9 and 20.2-30.6 kg/ha, respectively) than in urban (3.4-7.3 and 14.6-24.1 kg/ha) and in rural (1.7-2.6 and 8.9-12.1 kg/ha) sites. Annual deposition of Ca and P varied from 0.6 and 3.0 kg/ha in rural to 45.4 and 32.4 kg/ha in industrial sites, maximum values being observed closed to the phosphate fertilizer plant of Rio Grande. Deposition in urban and industrial sites may be balanced by the alkaline cations, as bulk precipitation pH varied from 5.4 to 6.1, and was greater than in rural sites (5.0-5.1).  相似文献   

19.
建立了固相萃取-超高效液相色谱-串联质谱快速测定环境水样中30种极性农药的方法。30种极性农药经过固相萃取(SPE)富集净化,以超高效液相色谱-串联质谱(UPLC-MS-MS)多级监测模式(MRM)外标法进行定性定量分析。结果表明:环境水样中30种极性农药的检出限为0.2~5 ng/L。对同一环境样品进行了低、中、高3个不同浓度水平的加标回收实验,平均回收率为63.7%~105.1%,相对标准偏差为4.4%~21.2%。该方法快速、灵敏、准确,可有效应用于环境水样中30种极性农药的快速监测。  相似文献   

20.
通过全国多家实验室的大量监测数据,研究分析了镉测定的质量控制指标,并与《水质镉的测定双硫腙分光光度法》(GB/T 7471-1987)和《环境水质监测质量保证手册》(第二版)进行了比较,旨在为环境监测工作提供质量控制依据和质量控制指标。研究表明,标准样品的精密度质量控制指标范围:RSD≤5.0%和RSD’≤8.0%;准...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号