首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overuse of land resources has increasingly contributed to environmental crises in China. To mitigate widespread land degradation, actions have been taken to maintain and restore the ecological environment through efforts such as ecological engineering. By analyzing trends in land use, the impact and effectiveness of ecological engineering can be determined. In this study, such changes in Huanjiang County in China were considered. In the early 1990s, an eco-immigration policy and “returning farmland to forest program” were implemented in the county, drastically impacting land use. Land use/land cover changes were detected and analyzed using remote sensing data recorded over 4 years (1995, 2000, 2005, and 2010). Land transfer flow and the rate of land use change elucidated the extent of changes, while nuclear density analysis indicated spatial agglomeration. The results indicate that, over a period of 15 years, farmland area increased, while forest area decreased initially before subsequently increasing. From 1995 to 2000, the highest transfer flow was observed in the grassland to farmland conversion (79.34%). From 2000 to 2005, the transfer flow of conversions was the highest for forest to farmland (56.79%). Land use changes were not prominent from 2005 to 2010. Direct drivers of land use change exert obvious impacts on land use, and indirect drivers impact direct drivers that are then channeled through direct anthropogenic drivers (e.g., land use policies). We found that ecological engineering has a very significant impact on land use change, and that impact varies from region to region.  相似文献   

2.
In this study we quantified land cover changes in the arid region of Yulin City, Northwest China between 1985 and 2000 using remote sensing and GIS in conjunction with landscape modeling. Land covers were mapped into 20 categories from multitemporal Landsat TM images. Five landscape indices were calculated from these maps at the land cover patches level. It was found that fallow land decreased by 125,148 ha while grassland and woodland increased by 107,975 and 17,157 ha, respectively. Landscape heterogeneity, dominance and fractal dimension changed little during the 15-year period while landscape became more fragmented, with an index rising from 0.56 to 0.58. The major factors responsible for these changes are identified as the change in the government policy on preserving the environment, continued growth in mining, and urbanization.  相似文献   

3.
Human modification of land use and land cover change (LUCC) drives the change of landscape patterns and limits the availability of products and services for human and livestock. LUCC can undermine environmental health. Thus, this study aimed to develop an understanding of LUCC in the Yanqi Basin, Xinjiang, China, an arid area experiencing dramatic water and land resource use. A time series of satellite images (1964, 1973, 1989, 1999, and 2009) were used to calculate the index of landscape patterns to study the processes involved in changes to land uses and landscape patterns and the influence of this changes on landscape patterns. The results show that land uses in the Yanqi Basin have changed dramatically since 1964 with grassland being mainly converted to cropland. Landscape fragmentation and diversity have decreased in the study area, although landscape fragmentation increased from 1964 to 1999 and then decreased by 2009. The index of landscape diversity decreased from 1.64 in 1964 to 0.71 in 2009. The heterogeneity and complexity of the landscape increased during this period. In contrast, the index of dominance decreased from 0.85 in 1964 to 0.83 in 2009. Land use change drives landscape patterns of the development of the watershed toward diversity and a fragmented structure. Population growth, economic development, and industrial policies were the dominant driving forces behind LUCC in the Yanqi Basin. Sustainable use of land resources is a significant factor in maintaining economic development and environmental protection in this arid inland river basin.  相似文献   

4.
The effect of land cover change, from natural to anthropogenic, on physical geography conditions has been studied in Kayisdagi Mountain. Land degradation is the most important environmental issue involved in this study. Most forms of land degradation are natural processes accelerated by human activity. Land degradation is a human induced or natural process that negatively affects the ability of land to function effectively within an ecosystem. Environmental degradation from human pressure and land use has become a major problem in the study area because of high population growth, urbanization rate, and the associated rapid depletion of natural resources. When studying the cost of land degradation, it is not possible to ignore the role of urbanization. In particular, a major cause of deforestation is conversion to urban land. The paper reviews the principles of current remote sensing techniques considered particularly suitable for monitoring Kayisdagi Mountain and its surrounding land cover changes and their effects on physical geography conditions. In addition, this paper addresses the problem of how spatially explicit information about degradation processes in the study area rangelands can be derived from different time series of satellite data. The monitoring approach comprises the time period between 1990 and 2005. Satellite remote sensing techniques have proven to be cost effective in widespread land cover changes. Physical geography and particularly natural geomorphologic processes like erosion, mass movement, physical weathering, and chemical weathering features etc. have faced significant unnatural variation.  相似文献   

5.
This paper investigates the sandy desertification change between 1986 and 2000 in the western Jilin province, North China. Land use and land cover data were obtained from Landsat TM data by using a supervised classification approach. We summarized the total area of desertified land by each county, as well as the area for each of the four categories of desertified land. The changes of different types of land use and land cover between 1986 and 2000 were calculated and analyzed. Taking Tongyu and Qianan as examples, both human and natural driving forces of the sandy desertification were analyzed. Our analyses indicate that the material sources and windy, warm and dry climate are the immanent causes of potential land desertification, while the irrational human activities, such as deforestation, reclaiming and grazing in the grassland, are the external causes of potential land desertification. However, rational human activities, such as planting trees and restoring grassland can reverse the land desertification process. Furthermore, the countermeasures and suggestions for the sustainable development in ecotone between agriculture and animal husbandry in North China are put forward.  相似文献   

6.
This paper developed an approach by the synthesis of remote sensing, landscape metrics, and statistical methods to examine the effects of landscape pattern, land surface temperature, and socioeconomic conditions on the spread of West Nile virus (WNV) caused by mosquitoes and animal hosts in Chicago, USA. Land use/land cover and land surface temperature images were derived from Terra’s Advanced Spaceborne Thermal Emission and Reflection Radiometer imagery. An analytical procedure using landscape metrics was developed, applying configuration analysis of landscape patterns in the study area. The positive reports of mosquitoes and animal hosts for WNV in fall, 2001–2006, were collected from the Cook County Public Health Department. Forty-nine municipalities were found to have WNV-positive records in mosquitoes and animal hosts in fall 2004. Socioeconomic data were obtained from the 2000 US Census. Statistical analysis was applied to WNV data in fall 2004 to identify the relationship between potential predictors and WNV spread. As a result, landscape factors, such as landscape aggregation index and the urban areas and areas of grass and water, showed strong correlations with the WNV-positive records. Socioeconomic conditions, such as the population over 65 years old, also showed a strong correlation with WNV-positive records. Thermal conditions of water showed a less but still considerable correlation to WNV-positive records. This research offers an opportunity to explore the effects of landscape pattern, land surface temperature, and socioeconomic conditions on the spread of WNV caused by mosquitoes and animal hosts. Results can contribute to public health and environmental management in the study area.  相似文献   

7.
Processes of deforestation, known to threaten tropical forest biodiversity, have not yet been studied sufficiently in East Africa. To shed light on the patterns and causes of human influences on protected forest ecosystems, comparisons of different study areas regarding land cover dynamics and potential drivers are needed. We analyze the development of land cover since the early 1970s for three protected East African rainforests and their surrounding farmlands and assess the relationship between the observed changes in the context of the protection status of the forests. Processing of Landsat satellite imagery of eight or seven time steps in regular intervals results in 12 land cover classes for the Kakamega–Nandi forests (Kenya) and Budongo Forest (Uganda) whereas ten are distinguished for Mabira Forest (Uganda). The overall classification accuracy assessed for the year 2001 or 2003 is similarly high for all three study areas (81% to 85%). The time series reveal that, despite their protection status, Kakamega–Nandi forests and Mabira Forest experienced major forest decrease, the first a continuous forest loss of 31% between 1972/1973 and 2001, the latter an abrupt loss of 24% in the late 1970s/early 1980s. For both forests, the temporally dense time series show short-term fluctuations in forest classes (e.g., areas of forest regrowth since the 1980s or exotic secondary bushland species from the 1990s onwards). Although selectively logged, Budongo Forest shows a much more stable forest cover extent. A visual overlay with population distribution for all three regions clearly indicates a relationship between forest loss and areas of high population density, suggesting population pressure as a main driver of deforestation. The revealed forest losses due to local and commercial exploitation further demonstrate that weak management impedes effective forest protection in East Africa.  相似文献   

8.
This study analyzes the significant impacts of typhoons and earthquakes on land cover change and hydrological response. The occurrence of landslides following typhoons and earthquakes is a major indicator of natural disturbance. The hydrological response of the Chenyulan watershed to land use change was assessed from 1996 to 2005. Land use changes revealed by seven remote images corresponded to typhoons and a catastrophic earthquake in central Taiwan. Hydrological response is discussed as the change in quantities and statistical distributions of hydrological components. The land cover change results indicate that the proportion of landslide relative to total area increased to 6.1% after the Chi-Chi earthquake, representing the largest increase during the study period. The study watershed is dominated by forest land cover. Comparisons of hydrological components reveal that the disturbance significantly affects base flow and direct runoff. The hydrological modeling results demonstrate that the change in forest area correlates with the variation of base flow and direct runoff. Base flow and direct runoff are sensitive to land use in discussions of distinction. The proposed approach quantifies the effect of typhoons and earthquakes on land cover changes.  相似文献   

9.
The spatio-temporal changes in the land cover states of the Nyando Basin were investigated for auxiliary hydrological impact assessment. The predominant land cover types whose conversions could influence the hydrological response of the region were selected. Six Landsat images for 1973, 1986, and 2000 were processed to discern the changes based on a methodology that employs a hybrid of supervised and unsupervised classification schemes. The accuracy of the classifications were assessed using reference datasets processed in a GIS with the help of ground-based information obtained through participatory mapping techniques. To assess the possible hydrological effect of the detected changes during storm events, a physically based lumped approach for infiltration loss estimation was employed within five selected sub-basins. The results obtained indicated that forests in the basin declined by 20% while agricultural fields expanded by 16% during the entire period of study. Apparent from the land cover conversion matrices was that the majority of the forest decline was a consequence of agricultural expansion. The model results revealed decreased infiltration amounts by between 6% and 15%. The headwater regions with the vast deforestation were noted to be more vulnerable to the land cover change effects. Despite the haphazard land use patterns and uncertainties related to poor data quality for environmental monitoring and assessment, the study exposed the vast degradation and hence the need for sustainable land use planning for enhanced catchment management purposes.  相似文献   

10.
Forest ecosystems have an important role in carbon cycle at both regional and global scales as an important carbon sink. Forest degradation and land cover changes, caused by deforestation and conversion to non-forest area, have a strong impact on carbon storage. The carbon storage of forest biomass and its changes over time in the Hartlap planning unit of the southeastern part of Turkey have been estimated using the biomass expansion factor method based on field measurements of forests plots with forest inventory data between 1991 and 2002. The amount of carbon storage associated with land use and land cover changes were also analyzed. The results showed that the total forested area of the Hartlap planning unit slightly increased by 2.1 %, from 27,978.7 ha to 28,282.6 ha during the 11-year period, and carbon storage increased by 9.6 %, from 390,367.6 to 427,826.9 tons. Carbon storage of conifer and mixed forests accounted for about 70.6 % of carbon storage in 1991, and 67.8 % in 2002 which increased by 14,274.6 tons. Land use change and increasing forest area have a strong influence on increasing biomass and carbon storage.  相似文献   

11.
This paper intended to examine the seasonal variations in the relationship between landscape pattern and land surface temperature based on a case study of Indianapolis, United States. The integration of remote sensing, GIS, and landscape ecology methods was used in this study. Four Terra's ASTER images were used to derive the landscape patterns and land surface temperatures (LST) in four seasons in the study area. The spatial and ecological characteristics of landscape patterns and LSTs were examined by the use of landscape metrics. The impact of each land use and land cover type on LST was analyzed based on the measurements of landscape metrics. The results show that the landscape and LST patterns in the winter were unique. The rest of three seasons apparently had more agreeable landscape and LST patterns. The spatial configuration of each LST zone conformed to that of each land use and land cover type with more than 50% of overlap in area for all seasons. This paper may provide useful information for urban planers and environmental managers for assessing and monitoring urban thermal environments as result of urbanization.  相似文献   

12.
The aim of this study is to research natural land cover change caused by the permanent effects of human activities in Duzce plain and its surroundings, and to determine the current status of the land cover. For this purpose, two Landsat TM images were used in the study for the years 1987 and 2010. These images are analysed by using data image processing techniques in ERDAS Imagine©10.0 and ArcGIS©10.0 software. Land cover change nomenclature is classified according to the Coordination of Information on the Environment Level 2 Classification (1—urban fabric, 2—industrial, commercial and transport units, 3—heterogeneous agricultural areas, 4—forests, and 5—inland wetlands). Furthermore, the image analysis results are confirmed by the field research. According to the results, a decrease of 33.5 % was recorded in forest areas from 24,840.7 to 16,529.0 ha; an increase of 11.2 % was recorded in heterogeneous agricultural areas from 47,702.7 to 53,051.7 ha. Natural vegetation, which is the large part of land cover in the research area, has been changing rapidly because of rapid urbanisation and agricultural activities. As a result, it is concluded that significant changes have occurred on the natural land cover between the years 1987 and 2010 in the Duzce plain and its surroundings.  相似文献   

13.
Monitoring land use and land cover change (LUCC) and understanding forest cover dynamics is extremely important in sustainable development and management of forest ecosystems. This study analyzed the spatial and temporal pattern of LUCC in the Yaln?zçam and U?urlu forest planning units which are located in the northeast corner of Turkey. The investigation also evaluates the temporal changes of the spatial structure of forest conditions through the spatial analysis of forest-cover type maps from 1972 and 2005 using geographical information systems and FRAGSTATSTM. As an overall change between 1972 and 2005, there was a net increase of 1,823 ha in forested areas, and cumulative forest improvement accounted for 2.06 %. In terms of spatial configuration, the landscape structure in the study area changed substantially over the 33-year study period, resulting in fragmentation of the landscape as indicated by large patch numbers and smaller mean patch sizes, owing to heavy grazing, illegal cutting, and uncontrolled stand treatments.  相似文献   

14.
Quantifying changes in the cover of river-floodplain systems can provide important insights into the processes that structure these landscapes as well as the potential consequences to the ecosystem services they provide. We examined net changes in 13 different aquatic and floodplain land cover classes using photo interpreted maps of the navigable portions of the Upper Mississippi River (UMR, above the confluence with the Ohio River) and Illinois River from 1989 to 2000 and from 2000 to 2010. We detected net decreases in vegetated aquatic area in nearly all river reaches from 1989 to 2000. The only river reaches that experienced a subsequent recovery of vegetated aquatic area from 2000 to 2010 were located in the northern portion of the UMR (above navigation pool 14) and two reaches in the Illinois River. Changes on the floodplain were dominated by urban development, which increased in nearly every river reach studied from 1989 to 2000. Agricultural lands declined in most river reaches from 2000 to 2010. The loss of agricultural land cover in the northern UMR was accompanied by increases in forest cover, whereas in the lower UMR and Illinois River, declines in agriculture were accompanied by increases in forest and shallow marsh communities. The changes in aquatic vegetation occupied between 5 and 20% of the total aquatic area and are likely associated with previously reported regional improvements in water clarity, while smaller (1–15% of the total floodplain area) changes in anthropogenic land cover types on the floodplain are likely driven by broad-scale socio-economic conditions.  相似文献   

15.
Shifts in biological communities are occurring at rapid rates as human activities induced global climate change increases. Understanding the effects of the change on biodiversity is important to reduce loss of biodiversity and mass extinction, and to insure the long-term persistence of natural resources and natures’ services. Especially in remote landscapes of developing countries, precise knowledge about on-going processes is scarce. Here we apply satellite imagery to assess spatio-temporal land use and land cover change (LULCC) in the Bale Mountains for a period of four decades. This study aims to identify the main drivers of change in vegetation patterns and to discuss the implications of LULCC on spatial arrangements and trajectories of floral communities. Remote sensing data acquired from Landsat MSS, Landsat ETM + and SPOT for four time steps (1973, 1987, 2000, and 2008) were analyzed using 11 LULC units defined based on the dominant plant taxa and cover types of the habitat. Change detection matrices revealed that over the last 40?years, the area has changed from a quite natural to a more cultural landscape. Within a representative subset of the study area (7,957.5?km?2), agricultural fields have increased from 1.71% to 9.34% of the total study area since 1973. Natural habitats such as upper montane forest, afroalpine grasslands, afromontane dwarf shrubs and herbaceous formations, and water bodies also increased. Conversely, afromontane grasslands have decreased in size by more than half (going from 19.3% to 8.77%). Closed Erica forest also shrank from 15.0% to 12.37%, and isolated Erica shrubs have decreased from 6.86% to 5.55%, and afroalpine dwarf shrubs and herbaceous formations reduced from 5.2% to 1.56%. Despite fluctuations the afromontane rainforest (Harenna forest), located south of the Bale Mountains, has remained relatively stable. In conclusion this study documents a rapid and ecosystem-specific change of this biodiversity hotspot due to intensified human activities (e.g., deforestation, agriculture, infrastructure expansion). Specifically, the ecotone between the afromontane and the afroalpine area represent a “hotspot of biodiversity loss” today. Taking into consideration the projections of regional climate warming and modified precipitation regimes, LULCC can be expected to become even more intensive in the near future. This is likely to impose unprecedented pressures on the largely endemic biota of the area.  相似文献   

16.
Little is known about the importance of landscape and land cover to the implementation and performance of agricultural conservation projects designed to improve stream quality. In our study, we addressed the potential importance of landscape and land cover to conservation projects by measuring variation across 191 μ-basins (100–2400 ha) and integrating the observed variation into a study design aimed at determining the effectiveness of conservation projects. Our findings indicate that there are strong gradients across which landscape and land cover attributes vary. Land cover varied along a gradient of agricultural intensity, basin morphometry across gradients of stream closure and basin size, basin substrate was described by variation in drumlin formation, glacial landform type, and soil drainage, while agricultural conservation projects varied according to the level of project implementation. Correlation of these gradients found several associations between landscape and land cover, indicating that agricultural intensity was being constrained predominantly by drumlin formation and glacial landform type. Landscape and land cover did not appear to be determining factors in the implementation of conservation projects by land owners. Based on these findings we chose 32 μ-basins which represented the variability along each of the defined gradients for further study. We conclude that landscape scale variables demonstrate important variation and covariation that can and should be integrated into study designs for the assessment of streams and human activities affecting streams.  相似文献   

17.
The rate and intensity of land use land cover (LULC) change has increased considerably during the past couple of decades. Mining brings significant alterations in LULC specifically due to its impact on forests. Parts of Central India are well endowed with both forests and minerals. Here, the conflict between human interests and nature has intensified over time. Monitoring and assessment of such conflicts are important for land management and policy making. Remote sensing and Geographical Information System have the potential to serve as accurate tools for environmental monitoring. Understanding the importance of landscape metrics in land use planning is challenging but important. These metrics calculated at landscape, class, and patch level provide an insight into changing spatiotemporal distribution of LULC and ecological connectedness. In the present study, geospatial tools in conjunction with landscape metrics have been used to assess the impact of coal mining on habitat diversity. LULC maps, change detection analysis, and landscape metrics have been computed for the four time periods (1972, 1992, 2001, and 2006). There has been a significant decline in forest cover especially of the Sal-mixed forests, both in area as well as quality, due to flouted mining regulations. Reclamation of mined lands has also been observed in some of the areas since 2001.  相似文献   

18.
As part of the activities of the Multi-Resolution Land Characteristics (MRLC) Interagency Consortium, an intermediate-scale land cover data set is being generated for the conterminous United States. This effort is being conducted on a region-by-region basis using U.S. Standard Federal Regions. To date, land cover data sets have been generated for Federal Regions 3 (Pennsylvania, West Virginia, Virginia, Maryland, and Delaware) and 2 (New York and New Jersey). Classification work is currently under way in Federal Region 4 (the southeastern United States), and land cover mapping activities have been started in Federal Regions 5 (the Great Lakes region) and 1 (New England). It is anticipated that a land cover data set for the conterminous United States will be completed by the end of 1999. A standard land cover classification legend is used, which is analogous to and compatible with other classification schemes. The primary MRLC regional classification scheme contains 23 land cover classes.The primary source of data for the project is the Landsat thematic mapper (TM) sensor. For each region, TM scenes representing both leaf-on and leaf-off conditions are acquired, preprocessed, and georeferenced to MRLC specifications. Mosaicked data are clustered using unsupervised classification, and individual clusters are labeled using aerial photographs. Individual clusters that represent more than one land cover unit are split using spatial modeling with multiple ancillary spatial data layers (most notably, digital elevation model, population, land use and land cover, and wetlands information). This approach yields regional land cover information suitable for a wide array of applications, including landscape metric analyses, land management, land cover change studies, and nutrient and pesticide runoff modeling.  相似文献   

19.
Based on land ecological classification of the source regions of the Yangtze and Yellow Rivers and field investigation, two phases of TM remote sensing data obtained in 1986 and 2000 were compared. From spatial variations and type transformation trends, the spatial changes and evolutional patterns of land ecosystem in the source regions of the two rivers were analyzed using the analytical method of landscape ecological spatial patterns. Results show that middle and high-cover high-cold steppe areas degraded considerably by 15.82%, high-cover high-cold meadow areas by 5.15%, while high-cold swamp meadow areas decreased by 24.36%. Lake water area was reduced by 7.5%, especially the lakes in the source region of the Yangtze River. Land desertification is developing rapidly and the average of desertified land area has increased by 17.11%. Desertified land in the source region of Yellow River is expanding at an annual rate of 1.83%. Analysis of the evolutional pattern of land ecotypes shows that the general tendencies of spatial evolution in the regions are coverage reduction and desertification of high-cold steppe, cover reduction and steppification of high-cold meadows, and desiccation of swamp meadows. As a result, land ecological spatial distribution pattern in the region is changing and the state of eco-environment declining.  相似文献   

20.
This study analyses forest dynamics and land use/land cover change over a 43-year period using spatial-stand-type maps of temporal forest management plans of Karaisal? Forest Enterprise in the Eastern Mediterranean Region of Turkey. Stand parameters (tree species, crown closures and developmental stages) of the dynamics and changes caused by natural or artificial intervention were introduced and mapped in a Geographic Information System (GIS) and subjected to fragmentation analysis using FRAGSTATS. The Karaisal? Forest Enterprise was first planned in 1969 and then the study area was planned under the Mediterranean Forest Use project in 1991 and five-term forest management plans were made. In this study, we analysed only four periods (excluding 1982 revision plans): 1969, 1991, 2002 and 2012. Between 1969 and 2012, overall changes included a net increase of 3,026 ha in forested areas. Cumulative forest improvement accounted for 2.12 % and the annual rate of total forest improvement averaged 0.08 %. In addition, productive forest areas increased from 36,174 to 70,205 ha between 1969 and 2012. This translates into an average annual productive forest improvement rate of 1.54 %. At the same time, fully covered forest areas with crown closure of “3” (>70 %) increased about 21,321 ha, and young forest areas in developmental stage of “a” (diameter at breast height (dbh)?<?8 cm) increased from 716 to 13,305 ha over the 43-year study period. Overall changes show that productive and fully covered forest areas have increased egregiously with a focus on regenerated and young developmental stages. A spatial analysis of metrics over the 43-year study period indicated a more fragmented landscape resulting in a susceptible forest to harsh disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号