首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
库尔勒市大气颗粒物污染特征与影响因素分析   总被引:1,自引:0,他引:1  
针对库尔勒市PM 10、PM 2.5年均浓度超标现象,基于市区3个环境监测站2013—2017年的逐时观测数据,分析PM 10、PM 2.5污染特征、成因及其主要影响因素。结果表明:①2013—2017年库尔勒市PM 10年均浓度变化较大且无明显趋势,PM 2.5年均浓度整体呈下降趋势;②季节尺度上,库尔勒市PM 10在每年2—5月呈现高浓度,PM 2.5高浓度期则为10月至翌年5月;③城郊的开发区站PM 10浓度最高,老城区的州政府站PM 2.5浓度最高,在PM 10和PM 2.5的高浓度期空间差异尤其显著;④PM 10与风速显著正相关,来自塔克拉玛干沙漠的风蚀沙尘颗粒物是库尔勒地区颗粒污染物的主要来源;⑤库尔勒市PM 10主要为外源输入,PM 2.5则以城市内源为主,相对湿度、风速、风向、温度等气象条件是影响大气颗粒物浓度及分布的重要因素。  相似文献   

2.
大中型商场PM10、PM2.5污染水平与来源分析   总被引:4,自引:0,他引:4  
利用便携式气溶胶监测仪,对平顶山市区的中原商场、商业大楼、食品城总店三家大型商场不同楼层空气PM10和PM2.5进行了现场测定。结果显示,平顶山市大中型商场可吸入颗粒物污染严重,PM10、PM2.5污染平均超标率分别为13.7%和48.0%;PM10、PM2.5的质量浓度在时间和空间分布上存在很大差异;PM10中PM2.5所占比例为83%。  相似文献   

3.
贵阳市夏季大气颗粒物及多环芳烃污染特征研究   总被引:3,自引:2,他引:1       下载免费PDF全文
采集贵阳市老城区夏季5个典型监测点(太慈桥、贵州师范大学、大西门、省政府及省植物园)的样品进行PM2.5、PM10质量浓度分析。同时对PM2.5中PAHs的质量浓度进行分析。结果表明:贵阳市夏季PM2.5和PM10浓度排序均为太慈桥省政府大西门贵州师范大学省植物园,且PM2.5和PM10之间有良好的相关性,PM10=0.931 3 PM2.5+0.019 4,R2=0.996 7,PM2.5污染较重。此外,5个监测点总PAHs和苯并(a)芘的分析结果均为太慈桥省政府大西门贵州师范大学省植物园,苯并(a)芘浓度均未超标。  相似文献   

4.
上海市秋季典型PM2.5污染过程数值预报分析   总被引:12,自引:5,他引:7       下载免费PDF全文
基于2012年10月上海出现的一次典型PM2.5污染案例,验证评估上海市空气质量数值预报系统Model-3/CMAQ预报性能,采用过程分析技术,定量评估不同大气物理化学过程对上海代表性点位PM2.5浓度变化的作用规律。结果表明:Model-3/CMAQ模式系统能较好地反映PM2.5的浓度变化趋势与特点。对于上海市区点位(徐汇上师大)和东南部点位(奉贤海湾和浦东惠南),PM2.5浓度上升主要受本地源排放影响,其贡献比例超过40%,其次是区域大气传输作用的影响。对于西北部点位(崇明监测站和青浦淀山湖),区域大气传输是PM2.5浓度上升的主要原因,贡献比例超过70%,其次是源排放。各点位PM2.5浓度的主要去除途径均为大气传输,贡献比例均超过70%,其次是干沉降。气溶胶过程对PM2.5主要起二次颗粒物生成的作用,特别是市区及东南部点位,贡献比例较西北部点位更高。  相似文献   

5.
为了进一步精准有效地降低细颗粒物浓度,针对长三角区域细颗粒物PM2.5浓度,选取8个省级区域的5种污染物为减排目标,设定5个基准排放情景,采用CMAQ-DDM敏感性技术分别进行敏感性分析。结果表明,冬季长三角区域PM2.5污染受区域内的4个省级区域一次PM2.5排放影响最大,区域外的排放影响主要来自河南省和山东省的氨气和一次PM2.5。分别削减本地60%一次PM2.5的排放,安徽省PM2.5平均质量浓度下降了23. 24μg/m^3,江苏省下降了18. 32μg/m^3,上海市下降了15. 17μg/m^3,浙江省下降了9. 07μg/m3。综合各省(市)浓度响应曲线,最大排放因子均为本地一次PM2.5,削减20%左右存在敏感性最大值,削减60%之后浓度曲线趋于平缓,其他因子削减40%以后PM2.5浓度下降逐渐明显,对最后一位排放因子的响应则比较平缓。  相似文献   

6.
重量法测定环境空气中PM2.5的不确定度   总被引:1,自引:1,他引:0  
依据《环境空气PM10和PM2.5的测定重量法》(HJ 618—2011),对环境空气PM2.5浓度进行重量法手工监测,分析测定过程各环节的影响因素及不确定度,结果显示,影响测定结果的主要因素是采样器、滤膜、天平精确度。  相似文献   

7.
将MODIS数据反演得出的气溶胶光学厚度与无锡市区实测得到的PM2.5质量浓度进行相关性分析,结果两者的直接相关性较低,相关系数为0.283 4。气溶胶光学厚度经垂直分布和湿度修正后,两者相关性显著提高,相关系数为0.565 9。虽然修正过程存在误差,相关性未达预期程度,但该方法得到的气溶胶光学厚度可作为PM2.5监测的有效补充。  相似文献   

8.
北京地区冬季典型PM2.5重污染案例分析   总被引:9,自引:6,他引:3  
对2013年1月10—14日发生的持续性PM2.5重污染过程从污染过程演变、气象条件影响、与气态污染物关系、区域污染背景、PM2.5浓度空间分布演变及其与地面风场的关系、PM2.5组分特征等多个方面进行全面的分析,较为完整地还原了该次重污染案例的形成原因以及主要影响因素。主要结论包括:该次重污染过程是稳定气象条件下导致的局地污染物积累,再叠加华北区域性污染的影响共同造成,其中10、12日北京地区PM2.5浓度的快速增长反映了周边污染传输的显著影响;逆温不但造成污染物难以扩散,且不同的逆温类型对PM2.5浓度水平有显著影响,同时还发现逆温的破坏导致近地面高浓度污染物向上扩散,造成百花山出现峰值高污染浓度现象;NO2与PM2.5浓度水平的高相关性反映交通污染二次转化对PM2.5浓度水平的影响,在较高湿度条件下,SO2浓度水平对湿度敏感且表现为负相关性;该次污染过程中OM、SO2-4、NO-3、NH+4等组分在PM2.5质量浓度中的占比超过70%,说明燃煤、机动车等仍是北京地区最主要的污染来源,同时SO2-4占比最高也说明区域污染传输对该次重污染的显著贡献。  相似文献   

9.
通过采用后向轨迹结合聚类分析方法计算2015—2016年百色市PM2.5潜在源贡献因子(PSCF)和浓度权重轨迹(CWT),分析影响该市冬季PM2.5质量浓度的潜在源区,并探讨不同源区对PM2.5的贡献率。同时,使用CAMx模式模拟百色市各县区及周边区域对该市大气传输的影响。结果表明,影响百色市PM2.5浓度潜在源主要集中在该市和临近的河池、南宁、崇左,以及北部的贵州省;CAMx模式模拟对百色市冬季大气污染物传输的地区来源与该市大气污染物的PSCF分析和CWT分析权重较大的区域较为一致,这些区域对百色市PM2.5的贡献率达73%。  相似文献   

10.
对北京市远郊百花山(海拔1300 m)2007—2017年大气常规6项污染物数据进行了分析,并与代表市区的国控站点均值数据进行了比较。研究发现,百花山SO2、CO、PM2.5浓度为国控站点浓度的35.5%~35.7%,NO2、PM 10、O 3浓度分别为国控站点浓度的14.0%、41.5%、185.5%。11年间,百花山6项常规污染物浓度逐年降低。2013—2017年,百花山PM2.5浓度年均降速为11.4%,低于国控站点13.3%的年均改善水平。百花山和国控站点在污染物季节变化趋势上基本一致,秋季颗粒物浓度差异最大,春季差异最小。百花山6项污染物的日变化峰谷比值为1.21~1.44,其差异小于国控站点。各项污染物浓度在18:00出现峰值,认为主要受城区远距离传输影响。2013—2017年,百花山共出现5个PM2.5重污染天,5级以上重污染小时数为442 h,国控站点有2%的重污染小时与百花山同步。  相似文献   

11.
利用青岛市大气综合观测站的研究性监测数据,分析了2011年采暖期PM2.5和能见度的相关性,结果表明:①能见度在≤3km时,对应的PM2.5浓度超出0.250mg/m^3,属于严重污染;②PM2.5浓度对能见度的影响存在一临界区域,当PM2.5浓度低于该临界区时能见度会随PM2.5浓度减少迅速改善,临界值大致位于PM2.5浓度为0.100mg/m^3处;③相对湿度小于85%时,能见度与PM2.5浓度呈显著负相关。其中,相对湿度在60%-70%时,能见度与PM2.5浓度之间的相关性最好,PM2.5对能见度的影响最直接。  相似文献   

12.
广州市大气细粒子的化学组成与来源   总被引:12,自引:3,他引:12  
对广州市四个不同功能区(石井、荔湾、天河和海珠)的夏季大气PM2.5进行了为期一个月的监测,并测试分析了其化学组成(有机碳/元素碳、水溶性离子和元素)。结果表明,广州市夏季PM2.5的平均浓度为97.54μg/m3,其化学组分有机物、SO42-和EC对PM2.5质量浓度贡献最大,分别占PM2.5质量浓度的42%~52%、25%~47%和10%~17%。化学质量平衡模型研究表明,机动车排放和煤燃烧是对广州市大气PM2.5影响最大的污染源,其贡献率分别为54%~75%和32%~52%。  相似文献   

13.
对长沙市环境空气中PM10、PM2.5质量浓度进行自动监测,并统计分析其分布的均匀性。结果表明,在1 d的4个典型时刻以及日内,PM2.5的质量浓度分布总体上较PM10均匀;从月内日均值及2013年1月—10月的月均值变化情况看,PM2.5质量浓度的相对标准偏差(RSD)总体高于PM10,表明PM2.5在长时间尺度上的分布较PM10更不均匀;就功能区分布而言,PM10、PM2.5质量浓度分布的均匀性没有明显的区域差异,两者的变化幅度与功能区类别没有必然联系。  相似文献   

14.
本研究以乌鲁木齐工业区、交通区、生活区、风景对照区4个典型区域为研究对象,采集了采暖期大气颗粒物TSP、PM10、PM5、PM2.5,并对其进行质量浓度分析。结果表明:在采暖期大气中TSP的浓度范围为87.94~325.61ug/m3;PM10的浓度范围为76.69~299.21ug/m3;PM5的浓度范围为79.68~294.95ug/m3;在PM2.5的浓度范围为71.80~213.30ug/m3。总体来看,乌鲁木齐采暖期TSP、PM10、PM5、PM2.5的浓度存在一定的差异性,各组分浓度分布为工业区交通区生活区风景对照区,这与采样区受污染程度有关。  相似文献   

15.
环境空气质量综合指数计算方法比选研究   总被引:1,自引:0,他引:1  
环境空气质量综合指数是进行逐月城市环境空气质量比较和排序的重要方法,提出了4种涵盖SO2、NO2、PM10、PM2.5、CO、O3等6项污染物的综合指数计算方法,基于2013年74个城市逐月污染物浓度数据使用主成分分析方法进行了对比分析。结果表明,综合指数计算方法中污染物统计指标和标准化方法不同对于主要污染物的判定有重要影响,各种计算方法中PM2.5、PM10、O3是出现频率最多的主要污染物;除O3外其他5项污染物逐月统计指标间均有极显著的正相关性,冬季O3统计指标与SO2、NO2、PM10、PM2.5呈显著负相关,夏季则呈显著正相关;主成分分析结果表明,在去除冗余信息后,PM2.5、PM10的权重被相对削弱,SO2、NO2、CO的权重得到相对强化,O3的权重夏季得到强化、冬季被削弱;综合考虑不同方案下主要污染物频率分布情况和PM2.5、PM10、O3权重变化特征,建议计算逐月环境空气质量综合指数时,SO2、NO2、PM10、PM2.5宜以月均值除以年均值标准进行标准化,CO、O3宜以特定百分位数浓度除以日均值标准(或8 h均值标准)进行标准化;该方法可延伸到季、半年和年度的环境空气质量综合指数计算。  相似文献   

16.
西安市区大气中PM2.5和PM10质量浓度污染特征   总被引:2,自引:1,他引:1  
2013年3月—2014年2月期间,设置1个监测点位,采集了西安市区大气环境中PM10和PM2.5样品,采用重量法测定了PM2.5和PM10质量浓度。结果表明,西安市区PM2.5质量浓度为16~558μg/m3,平均值为128μg/m3,超标率69.1%;PM10质量浓度范围为32~887μg/m3,平均值为249μg/m3,超标率71.8%。虽然PM2.5和PM10质量浓度的逐日变化幅度比较大,但是整体变化趋势非常相似,存在显著的正相关关系(r=0.831 9)。PM2.5和PM10质量浓度存在明显的季节变化,均为冬季最高,春季次之,秋季较低,夏季最低。ρ(PM2.5)/ρ(PM10)为0.245~0.822,平均值为0.510,说明PM2.5在PM10中所占比例大于PM2.5~10;此外,该比值呈现一定的季节变化规律,冬季、夏季较高,秋季次之,春季最低。霾天气发生时,该比值和PM2.5质量浓度明显高于无霾天气。  相似文献   

17.
基于MODIS AOD遥感数据,采用多元线性回归模型对PM2.5地面监测数据进行模拟估算,同时加入降水量、相对湿度等气象因子以提高模型精度,结合GIS空间分析技术,得到2015—2016年京津冀地区空间连续的PM2.5浓度分布。结果表明:利用多元线性回归模型反演PM2.5浓度效果较好,R 2均在0.59~0.84之间。在时间上,京津冀地区PM2.5浓度呈现出夏季最低、秋季稍高、冬春两季最高的变化趋势;在空间上,2015年和2016年京津冀地区PM2.5浓度有明显的区域差异,均呈现出西北低、东南高的分布格局,大致与燕山山脉和太行山脉走向一致。  相似文献   

18.
苏州市区能见度变化特征及影响因素分析   总被引:1,自引:0,他引:1       下载免费PDF全文
近一年的观测结果表明,苏州市区能见度年均值为15.8 km.一年之中,7月能见度水平最高,11月能见度水平最低,月均值为10.5 km.一日之中,早8时左右能见度最差,14时左右最好.导致苏州市区能见度水平下降的主要污染因子为PM2.5,相同PM2.5浓度下,能见度随着湿度的升高而下降.  相似文献   

19.
春节烟花爆竹燃放期间苏州市区PM2.5组分特征分析   总被引:3,自引:1,他引:2  
为了解春节期间烟花爆竹燃放对苏州市空气质量的影响,在苏州市南门监测点利用在线监测仪器(包括颗粒物分析仪、在线离子色谱、OC/EC分析仪和重金属分析仪)对环境空气中的PM2.5浓度水平、颗粒物水溶性离子、有机碳(OC)、元素碳(EC)和重金属浓度进行连续观测。通过比较烟花爆竹燃放时段和正常时段的PM2.5浓度水平和化学组成,分析并探讨烟花爆竹燃放对PM2.5浓度水平及其组分特征的影响。研究结果表明,大量烟花爆竹的集中燃放造成了PM2.5短时严重污染,最高质量浓度达到了571μg/m3,但随烟花爆竹燃放的减少,PM2.5浓度迅速降低。在烟花爆竹燃放高峰时段,SO42-、Cl-、K+、Mg2+和OC出现了明显的浓度峰值,SO42-质量浓度达到了93.2μg/m3,Cl-质量浓度达到了42.3μg/m3,K+质量浓度达到了115.6μg/m3,OC质量浓度达到了53.8μg/m3。另外,重金属浓度也出现了明显的峰值,Fe质量浓度达到了2.426μg/m3,Cu质量浓度达到了0.727μg/m3,Zn质量浓度达到了1.159μg/m3,Ba质量浓度达到了5.168μg/m3,Pb质量浓度达到了1.245μg/m3。烟花爆竹的燃放造成苏州市区环境空气中有毒有害物质的短期急剧上升,有必要限制烟花爆竹的燃放。  相似文献   

20.
空气自动监测中PM2.5与PM10 “倒挂”现象特征及原因   总被引:9,自引:3,他引:6       下载免费PDF全文
采用不同原理的自动监测仪器在不同季节同时测定PM2.5与PM10,对所得数据中的PM2.5与PM10"倒挂"现象进行分析。结果表明,当PM10采用振荡天平法时,PM2.5与PM10的"倒挂"率较高;冬季和夏季"倒挂"现象发生率明显高于其他季节;造成PM2.5与PM10"倒挂"的原因主要有监测过程中的随机误差,PM2.5与PM10的监测方法原理不同,监测方法之间存在显著差异等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号