首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
基于河南省常规空气污染物、颗粒物组分等数据,开展烟花爆竹燃放对空气质量影响的定量评估。结果表明:2023年元宵节期间,河南省PM2.5质量浓度小时峰值为226μg/m3,仅次于2019年的239μg/m3,明显高于2022年的86μg/m3,正月十六重度及以上污染天数为历史最高值;烟花爆竹燃放造成K+、SO42-、Cl-浓度快速上升,对K+浓度影响最为显著,河南省K+小时峰值浓度较基准时刻平均上升了26.6倍;烟花爆竹燃放对河南省正月十五、十六PM2.5日均值贡献分别为31.5%、31.8%,使PM2.5质量浓度分别上升39μg/m3和57μg/m3,2 d的烟花爆竹燃放可使河南省2023年PM2.5年均质量浓度上升0.26μg/m3,造成...  相似文献   

2.
基于2016—2020年台州市区大气污染物监测数据及气象观测资料,分析了台州市区PM2.5和O3的污染特征及受气象因素影响情况,并探究了不同季节下的PM2.5浓度和O3浓度的相关性及相互作用关系。2016—2020年,台州市区PM2.5年均浓度和超标天数呈显著下降趋势,O3-8 h年均浓度和超标天数总体呈上升趋势。PM2.5浓度在冬季最高,且易发生超标;O3浓度在春、夏、秋季均较高,且均会发生超标。通过相关性分析可知:PM2.5浓度与气温、相对湿度、风速、降水量呈负相关,与大气压呈正相关;O3浓度与气温、风速呈正相关,与相对湿度、降水量呈负相关。不同季节下的PM2.5浓度与O3浓度均呈正相关,两者存在协同增长。在春、夏、秋季,二次PM2.5在总PM2.5中的占比随着O3  相似文献   

3.
于2018年冬季在广州城区磨碟沙站点开展细颗粒物(PM2.5)样品采集,并获得PM2.5中水溶性离子、含碳组分、稳定碳氮同位素的组成及时间变化特征,重点讨论了PM2.5浓度升高时段的化学组成特征变化,进而利用稳定碳氮同位素变化特征探究了主要污染来源。结果表明:采样期间,研究站点PM2.5平均质量浓度为22.1μg/m3,共出现两个PM2.5浓度水平升高时段,所对应的平均质量浓度分别达46.0μg/m3和63.0μg/m3。风速降低、温度升高等不利气象条件是导致上述时段PM2.5浓度上升的重要原因。在上述时段,伴随着PM2.5浓度的升高,NO-3和NH+4浓度均出现显著升高,NO-3与SO2-4的摩...  相似文献   

4.
为了解襄阳市秋冬季PM2.5的污染特征及来源,基于2020年11月至2021年1月在线监测数据,对PM2.5质量浓度、气象因素、化学组分、来源及潜在源区进行了分析。结果表明,襄阳市秋冬季污染天首要污染物均为PM2.5,且随污染程度加重,PM2.5与PM10质量浓度比呈上升趋势,二次颗粒物的形成对PM2.5的贡献更高。在PM2.5化学组分中,水溶性离子占比最大,随着污染程度加重,二次离子(SNA)快速增长,二次离子的生成转化是污染的重要成因。轻度、中度污染时,湿度高、风速小、气温低,有利于污染的积累,重度污染时湿度大、风速回升,有利于上游污染的输送与二次转化。PMF模型解析出襄阳市PM2.5主要来源及贡献率为二次源58.0%、工业企业源22.6%、机动车源10.7%、扬尘源8.7%。襄阳市潜在源区主要分布在河南省中北部、河北省南部、山东省西部、安徽省北部、江汉平原东部及南部区域,极少量分布在襄阳区域,长距离区域传输...  相似文献   

5.
基于2014—2020年重庆市中心城区北碚区环境监测数据及地面观测气象要素,分析了北碚区大气污染特征,利用KNN算法建立大气污染的评估模型,对空气质量改善效果进行评估。结果表明,重庆市中心城区北碚区的PM2.5浓度逐年呈明显下降趋势,O3浓度除夏季有一个弱的下降趋势外,其余3个季节和年平均值整体均呈上升趋势。全年以优良天气为主且呈增加趋势。O3与气温、日照时间呈正相关,与相对湿度呈负相关性,PM2.5与气温、降水及风速呈负相关。基于KNN算法对空气质量改善状况评估表明,减排对O3污染平均贡献率在-4.7%左右,对PM2.5污染平均贡献率为-52%,气象条件对O3污染的平均贡献率在17%左右,对PM2.5污染的平均贡献率在-7%左右。该大气污染评估模型能够有效地评估空气改善效果。  相似文献   

6.
基于伊宁市“十三五”期间大气国控监测点位数据,分析伊宁市“十三五”期间环境空气质量变化特征并提出建议对策。结果表明:“十三五”期间,伊宁市空气优良率在78.9%~86.3%,重污染天气在3~17 d,重污染天气仍频发;PM2.5年均浓度在38~47μg/m3,年均值均超标。影响空气质量的主要污染物为PM2.5、PM10和CO。与三大区域相比,伊宁市SO2和CO污染程度相对较重,燃煤型的污染特征显著。此外伊宁市采暖季空气污染较重,PM2.5、SO2、CO等污染物浓度显著高于非采暖季,采暖季主要污染物呈现双峰变化特征。  相似文献   

7.
基于2018—2020年合肥、芜湖和马鞍山3个城市国控站点的PM2.5逐日监测数据和同期地面气象观测资料,利用Kolmogorov-Zurbenko(KZ)滤波对PM2.5日浓度的原始时间序列进行分解,获取短期分量、季节分量和长期分量,并进行多元线性逐步回归构建各分量与气象因子的模型,最后依据短期分量和基线分量的回归模型和残差分析,对序列进行重建,获取消除气象条件影响的PM2.5长期分量。KZ滤波分析结果表明:2018—2020年气象条件对江淮区域PM2.5污染改善影响存在波动,在2018—2019年为负贡献,而在2020年秋冬季则变为正贡献;江淮地区3个城市2018年和2020年PM2.5修正后的长期分量均值表明气象条件对各市PM2.5改善影响存在差异较大,气象条件对合肥PM2.5改善的贡献仅为1.0%,芜湖为7.8%,马鞍山为21.0%;NAQPMS数值模式情景分析结果显示,减排措施对江淮之间PM2.5浓度改...  相似文献   

8.
基于漯河市大气灰霾站在线观测数据,分析2022年10月12—19日PM2.5-O3复合污染过程中VOCs的污染特征及来源,以期判别复合污染过程中需要优先管控的VOCs物种及来源,为PM2.5和O3协同管控提供依据。结果表明:污染期间VOCs平均质量浓度(96.7μg/m3)显著高于污染前(49.4μg/m3)和污染后(54.8μg/m3),以烷烃和卤代烃占比较高;整个污染过程中质量浓度较高的物种包括乙醛、乙烷、丙烷、异戊烷、氟利昂-12、二氯甲烷、甲苯、苯、一氯甲烷、氟利昂-11、正丁烷和1,2-二氯乙烷;污染期间正丁烷、异戊烷、丙烷、二氯甲烷、一氯甲烷和苯的质量浓度增幅均超过100%。漯河市VOCs的O3生成潜势(OFP)以OVOC和烯烃占比较高,二次有机气溶胶生成潜势(SOAp)以芳香烃占比最高。OFP贡献较高物种为乙醛、乙烯、甲苯和丙烯,SOAp贡献较高物种为甲苯、苯、间、对二甲苯、乙苯和邻二甲苯;污染期间...  相似文献   

9.
利用2020年12月1日至2021年2月28日合肥市细颗粒物(PM2.5)、有机碳(OC)和元素碳(EC)等环境空气质量监测数据和气象观测数据,分析了合肥市大气PM2.5中OC和EC的污染特征,并探讨了其来源以及气象因素影响。结果表明:合肥市冬季碳质气溶胶是PM2.5中主要组分,随着污染程度的加重,碳质气溶胶的质量浓度逐步增加,但其在PM2.5中的占比先减小后增加。在以PM2.5为首要污染物的不同污染级别天气条件下,OC和EC的相关性说明不同程度下碳质气溶胶来源复杂。OC/EC表明机动车尾气和燃煤源排放是碳质气溶胶的主要来源。二次有机碳(SOC)会随着污染程度的加重而呈现升高趋势。OC和EC在冬季受温度影响较小;较大的相对湿度对OC和EC具有一定的清除作用,明显降水或连续降水的清除作用更加显著;而风速对含碳气溶胶的影响主要出现在污染天气背景下。  相似文献   

10.
为探究中国第十四届运动会(简称“十四运”)期间西安大气PM2.5中水溶性无机离子浓度水平及来源,利用高分辨率MARGA ADI 2080离子在线分析仪对西安“十四运”前、“十四运”期间和“十四运”后水溶性无机离子进行实时观测,分析了不同时段水溶性无机离子组分污染特征、pH变化及污染来源。结果表明,“十四运”前、“十四运”期间和“十四运”后PM2.5质量浓度分别为13.4、11.9、32.6μg/m3,SNA(NO-3、SO42-和NH+4三者统称)质量浓度分别为5.8、5.4、13.3μg/m3,占总水溶性无机离子的91.6%~93.6%。“十四运”前和“十四运”期间NO-3与SO42-质量浓度比分别为0.7和0.9,表明移动源的比例增加,主要受交通管控的影响。“十四运”后NO  相似文献   

11.
成都PM2.5与气象条件的关系及城市空间形态的影响   总被引:4,自引:2,他引:2  
2013年2月1日至3月20日、2013年7月10日至8月10日对成都市大气中细颗粒物(PM2.5)进行连续监测,同步记录气象数据。将PM2.5质量浓度与城市气象条件进行相关性分析,研究气象条件对PM2.5质量浓度的影响。2月1日至3月20日PM2.5质量浓度平均为147.38μg/m3,7月10日至8月10日平均为50.19μg/m3,大气细颗粒物污染最严重的时间出现在2月1—6日。成都市各气象条件中,PM2.5质量浓度与能见度、风速呈现显著负相关,而与其他气象要素相关性较弱,降水对PM2.5质量浓度影响也很大。改善城市通风有利于成都市大气中PM2.5的稀释和消散。通过建立3D模型并运用计算流体力学(CFD)软件模拟成都市选定的一处密集的建成区域,分析城市空间形态对通风的影响。研究发现,在假设等温的情况下,多层密集的区域对城市通风影响小,而高层对城市通风影响很大,建筑高度相近的街道与风向平行的风速大于与风向成角度的,与风向平行的街道沿线为高层的风速高于沿线为多层的,较大的开敞空间及背景风速更有利于城市通风环境。  相似文献   

12.
利用2018年261个乡镇环境空气自动监测站监测数据,结合GIS空间分析技术,对石家庄市PM10和PM2.5的时空污染特征进行了研究。结果表明,石家庄地区PM10和PM2.5污染的空间分布整体表现为西北部山区好于东南部的平原地区,主城区好于周边县(市、区)的特征。采暖期PM10和PM2.5的污染程度明显重于非采暖期。PM2.5稳定性差于PM10,PM10和PM2.5的稳定性与污染程度具有一定的负相关性,表现出污染越轻的区域稳定性越差。两者的日均值浓度变化在时间序列上呈极强正相关,且污染越重的区域时间相关性越强。与日均值相关性不同,污染程度越轻的区域PM10和PM2.5年均值的线性相关性越强。  相似文献   

13.
利用2018—2021年安徽省空气质量监测数据分析了PM2.5和O3时空分布特征及其引发的健康风险。结果表明:从时间分布来看,2018—2021年安徽省PM2.5年均值下降25.5%,而O3-8 h年均值则保持持平;PM2.5和O3-8 h月均值具有明显的季节变化特征,PM2.5月均质量浓度和超标天数均在冬季达到最大值,O3-8 h月均值和超标天数则在夏季达到最大值。从空间分布来看,PM2.5、O3-8 h年均值和超标天数均为皖北最高,其次为皖中,最后为皖南。夏季O3是主要的健康风险因子,冬季PM2.5是主要的健康风险因子。当PM2.5超标时,除2021年皖北地区外(PM10是主要的健康风险因子),PM2.5均是主要的健康风险因子;当O3-8 h超标时,O3是主要的健康风险因子。  相似文献   

14.
为了解石家庄市NO2时空分布特征及影响因素,结合GIS和相关性分析,对2018年环境空气自动监测站监测数据、气象数据和社会经济数据进行统计分析。结果表明:261个乡镇NO2年均质量浓度范围为11~68 μg/m3,超标率为47.9%,仅有49个乡镇NO2日均质量浓度达到国家二级标准。主城区NO2质量浓度高于周边县(市、区),NO2总体呈圆环形带状分布。月变化方面,1-3月、10-12月污染较重,峰值出现在1月。NO2日变化呈"高-低-高"的变化趋势,区域差异明显。NO2与温度、湿度、风速呈负相关,与大气压呈正相关,气象条件的月际差异是导致NO2月差异的重要因素,NO2空间分布主要受地形、人口密度和机动车排放等因素影响。研究结果提示秋冬季是NO2治理的关键时期,主城区为重点防控治理区域。  相似文献   

15.
2013年北京市PM2.5重污染日时空分布特征研究   总被引:3,自引:2,他引:1  
根据2013年北京市环境保护监测中心监测的PM2.5数据,系统分析了北京市重污染日PM2.5污染的时空分布特征,并利用克里格插值初步统计了全年和重污染日PM2.5不同浓度区间的国土面积。2013年全市PM2.5年均浓度为89.5μg/m3,重污染日平均浓度为218μg/m3,重污染日主要集中在冬季;PM2.5年均浓度呈现明显的南高北低梯度分布特征,而重污染日空间分布较均匀,南部及城六区存在明显的高污染区,平均浓度在180μg/m3以上;2013年北京市重污染日PM2.5平均浓度为150~250μg/m3,其对应的国土面积约为12 656 km2,PM2.5平均浓度在250μg/m3以上的国土面积约为883 km2,而全年无PM2.5平均浓度在150μg/m3以上所对应的国土面积。  相似文献   

16.
北京市主要水污染物排放特征及水质改善对策   总被引:3,自引:1,他引:2  
污染排放信息是环境决策的重要依据。分析了北京市水环境质量的现状,基于最新源排放清单,解析北京市当前主控污染物COD、氨氮排放的结构特征和空间特征,以期为北京市开展基于流域综合治理的水污染控制和水环境管理提供依据。按照工业源、农业源、生活源和集中处理设施的环境统计口径,2013年,COD、氨氮的排放构成分别为2.7%、37.1%、35.0%、25.3%和1.5%、20.1%、54.8%、23.6%。其中,农业源中畜禽养殖排放是主要来源,COD、氨氮总排放分别占农业源总排放量的94.7%和87.0%。在北京市五大水系中,北运河流域排放量最大,COD、氨氮排放量分别占全市总排放量的53.3%和57.4%。为改善北京市水环境质量,建议从加快污水处理厂提标改造、推动面源污染治理、加强水利联通、合理规划城市规模布局等4个方面入手。  相似文献   

17.
2016—2017年,选取烟台市3个代表性点位采集了PM_(2.5)样品,分析了其质量浓度和化学组成特征,并利用化学质量平衡(CMB)模型对环境空气受体进行了来源解析。结果表明:PM_(2.5)浓度呈现出盛泉工业园点位[(68.9±30.5)μg/m~3]福山环保局点位[(64.5±25.5)μg/m~3]百盛商城点位[(58.8±19.2)μg/m~3]的空间分布特征。水溶性离子、碳组分(OC和EC)和地壳类元素表现出不同的分布特征,与各点位所代表的不同功能区有关。形成机制上,NO~-_3在福山环保局点位主要以NH_4NO_3形式存在,而在盛泉工业园点位存在一定的Ca(NO_3)_2形式占比。源解析结果显示,3个点位均受到海盐源的影响,福山环保局点位二次颗粒物污染最为严重(43.9%),盛泉工业园点位燃煤源贡献突出(16.4%)。  相似文献   

18.
Spatial patterns of various criteria air pollutants,like SO2, NO2, O3, and TSP were studied atShahdara National Ambient Air Quality Monitoring stationin Delhi (India) in July 1999. The minimum pollutantconcentrations were observed during morning hours,whereas the highest concentrations were found during thelate night hours, which seem to be related with thevehicular emission. Pre-monsoon daily ambient airquality spatial pattern was compared with the spatialpattern during initial and subsequent rain shower ofmonsoon. These spatial patterns were found to beessentially the same before and during rain, however asignificant decrease in SO2, NO2 and TSPconcentrations (40-45%) was observed after initial andsubsequent rains of the monsoon, demonstrating theimportance of rainfall in the scavenging of thesecriteria air pollutants.  相似文献   

19.
依托北京市、廊坊市和保定市高密度的地面空气质量监测、气象要素监测以及PM2.5化学组分监测和后向轨迹分析等手段,对2017年上半年三地的空气质量进行分析。研究发现:三地中北京市空气质量较好,保定市较差。分污染物来看,保定市SO2浓度水平明显高于廊坊市和北京市,颗粒物PM10和PM2.5也呈现保定市最高、北京市最低的规律。从污染物日变化来看,CO、SO2、NO2、PM10和PM2.5呈双峰型分布,O3呈单峰型分布。从区域整体分布规律来看,PM2.5和SO2呈现明显的"南高北低"特征。PM2.5化学组分分析结果表明:1—4月燃煤对该区域空气质量的影响较大,5—6月机动车排放的影响更为凸显。后向轨迹分析结果表明:在2017年上半年到达北京市的气流中有24%来自于北京市南部,且这些气流多为低空传输,表明区域传输对于北京市空气质量具有一定的影响。  相似文献   

20.
以2017—2018年安徽省133个空气质量监测站(国控点66个,省控点67个)228万条PM2.5质量浓度数据为基础,基于空间自相关和地统计方法对该区PM2.5浓度的时空分异特征进行分析。结果显示:安徽省年平均PM2.5质量浓度为49.63 μg/m3,88%的监测站点PM2.5质量浓度超过国家环境空气质量标准二级限值;PM2.5浓度呈现明显的冬季高、夏季低、春秋季适中的特征,日变化曲线呈双峰结构,峰值在09:00和22:00前后,低值在16:00—17:00;全省PM2.5浓度全局Moran指数为0.673 6,月度指数为0.389 6~0.745 6,均表现为空间聚集性,且冬季PM2.5浓度的空间聚集性更强;局部空间自相关指数表明全省PM2.5浓度呈西北高-高集聚、东南低-低集聚的特点,低值集聚区稳定在黄山市及其周边;全省PM2.5浓度总体表现为由北向南递减的趋势,但受局部地形的影响,PM2.5浓度在西部大别山和皖南山区出现明显的下降趋势。研究结果综合了国控点和省控点监测数据,更加详细地表征区域PM2.5浓度的时空分异特征,为该区实施有效的环境污染防控提供重要参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号