首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fischer–Tropsch Synthesis (FTS) is a primary pathway for gas-to-liquid (GTL) technology. In order to overcome commercial problems associated with reaction and transport phenomena, the use of supercritical solvents has been proposed to enhance conversion, catalyst stability and improve temperature control in fixed-bed reactors. One of the major challenges in designing the supercritical FTS reactor unit is selecting appropriate solvents of critical properties within the required reaction operating conditions. Numerous alternatives exist and should be screened based on relevant criteria. The main aim of this paper is to develop a screening methodology to identify an optimum supercritical solvent or a mixture of solvents that meet the aforementioned criteria while minimizing the cost and more importantly satisfying the safety constraints. A safety metric system was developed in order to compare the risk issues associated with using different solvents. In addition, an economic analysis of using the different solvents was performed. Finally, a case study was solved to illustrate the use of the proposed metrics and the selection of solvents based on safety and techno-economic criteria.  相似文献   

2.
The implementation of inherently safer design concepts is considered beneficial to avoid hazards during early stages of design. The application of existing process design and modeling techniques that aid ‘substitution’, ‘intensification’ and ‘attenuation’ has been shown in this work. The techniques have been applied to solvent processes because of the inherent hazards associated with them, such as large inventories, and presence of highly toxic and flammable materials. For ‘substitution’, computer aided molecular design technique has been applied to select inherently safer solvents for a solvent operation. For ‘intensification’ and ‘attenuation’, consequence models and regulatory guidance from EPA RMP have been integrated into process simulation. Combining existing techniques provides a design team with a higher level of information to make decisions based on process safety. A case study has been shown for liquid extraction of acetic acid–water mixture. Suitable solvents were identified using ICAS 11.0-ProCAMD, and consequence models were integrated into Aspen plus simulator using a calculator sheet. Solvents such as 5-nonanone, 2-nonanone and 5-methyl-2-hexanone provide inherently safer options, but conventionally-used solvent, ethyl acetate, provides higher degree of separation capability. A conclusive decision regarding feasible solvents and operating conditions would depend on design requirements, regulatory guidance, and safety criteria specified for the process. Inherent safety has always been an important consideration to be implemented during early design steps, and this paper presents a methodology to incorporate the principles and to obtain inherently safer alternatives.  相似文献   

3.
Biodiesel production from waste oil feedstocks by solid acid catalysis   总被引:4,自引:0,他引:4  
Biodiesel is a non-toxic and biodegradable substitute for petroleum-based diesel. However, it is impractical to use refined edible oils to produce biodiesel due to its high cost and priority for food products, especially in China, while waste oils with high free fatty acids (FFAs) can be considered as the raw materials. In the present work, a solid acid catalyst comprising SO42−/TiO2–SiO2 was prepared, characterized and studied for its activity for the production of biodiesel from several low cost feedstocks with high FFAs. The solid acid catalyst can be recycled, easily removed and can simultaneously catalyze esterification and transesterification. The influence of reaction parameters was studied, and the optimized reaction parameters are reaction temperature 200 °C, molar ratio of methanol to oil 9:1 and catalyst concentration 3 wt.%. The catalyst showed good stability. A continuous process for biodiesel production from cheap raw feedstocks was proposed, and a 10,000-tonnes/year biodiesel production demonstration plant has been built.  相似文献   

4.
Selection problems are common in process engineering. In most cases, it is necessary to rank alternatives based on multiple criteria (e.g., cost, safety, environmental impact), which are often conflicting. In addition, some criteria may be fundamentally difficult to quantify due to data scarcity, in which case subjective assessments need to be used as a proxy. Decision analysis tools such as the analytic hierarchy process (AHP) are useful to ensure decision-making is done rationally. In this work, we propose a fuzzy AHP variant, wherein pairwise comparison of decision elements by domain experts is expressed with triangular fuzzy numbers. This approach allows the degree of confidence of the expert to be quantified explicitly; it also allows inconsistencies in judgment to be reconciled within the bounds of the fuzzy numbers to generate reasonable values for the weighting factors. We demonstrate the methodology on three case studies, involving the comparison of different types of chlor-alkali electrolytic cells, CO2 capture techniques in cement plants and wastewater treatment options for municipal wastewater.  相似文献   

5.
Biodiesel production in the United States is anticipated to double by 2010. Biodiesel's characteristics and performance as a fuel vary depending on its composition, and the fuel composition has to be stringently monitored to avoid adverse impacts on the environment and engines. The final biodiesel composition depends on the initial feedstock, as well as on the reaction conversions and process separation efficiencies. The thermo-physical properties depend upon factors such as chain length, branching, and degree of saturation. Impurities in biodiesel, either due to side-reactions, unreacted feedstock, or non-fatty acid constituents, may increase pollutants. This paper focuses on chemical composition of commonly used feedstocks for biodiesel manufacturing and provides an overview of the process chemistry.  相似文献   

6.
Engineering for sustainable development (ESD) is an integrated systems approach, which aims at developing a balance between the requirements of the current stakeholders without compromising the ability of the future generations to meet their needs. This is a multi-criteria decision-making process that involves the identification of the most optimal sustainable process, which satisfies economic, ecological, social criteria as well as safety and health requirements. Certain difficulties are encountered when ESD is applied such as ill-defined criteria, scarcity of information, lack of process-specific data, metrics and the need to satisfy multiple decision makers. To overcome these difficulties ESD can be broken down into three major steps, starting with the life cycle assessment (LCA) of the process, followed by generation of non-dominating alternatives, and finally selecting the most sustainable process by employing an analytic hierarchical selection process. This methodology starts with the prioritization of the sustainability metrics (health and safety, economic, ecological and social components). Then the alternatives are subjected to a pair-wise comparison with respect to each Sustainable Development (SD) indicator and prioritized depending on their performance. The SD indicator priority score and each individual alternative's performance score together are used to determine the most sustainable alternative. In this paper, the analysis approach and metrics for ESD are applied to bio-diesel production.  相似文献   

7.
Solvents are very commonly used in industrial facilities for a multitude of reasons. Traditionally, solvent selection has been based on minimizing the process operating cost while satisfying a set of operational requirements. Regrettably, safety considerations have typically been overlooked during the design phase. In this paper, a systematic approach is introduced to integrate safety issues into solvent selection and provides a computationally effective method for establishing tradeoffs between the economic and safety objectives. In order to quantify the risk associated with the solvent, we focus on the potential spillage of the solvent and introduce a risk index that is a function of the amount of solvent used and stored, as well as the Permissible Exposure Limit (PEL) dictated by regulatory directives. An optimization formulation is developed and the associated mathematical program solved to select optimal solvents and blends while incorporating economic, technical, and safety considerations. Tradeoff (Pareto) curves are developed to represent the multi-objective optimization results and tradeoffs. Furthermore, economic-data uncertainty and variability over expected ranges are included in the optimization formulation to conduct an insightful sensitivity analysis. Finally, an illustrative case study is considered via increasing levels of complexity in order to evaluate the proposed optimization method which considers both operating cost and safety risk implications in the presence of economic uncertainties.  相似文献   

8.
This paper presents details of an integrated inherent safety index (I2SI). The conceptual framework of this index was presented at the 37th Annual Loss Prevention Symposium of the AIChE (2003) and published in Process Safety Progress (volume 23(2), 136–148, 2004). In addition to the framework, the current paper discusses additional features of the index such as the cost model and system design model, which were not presented or discussed earlier. I2SI is called an integrated index because the procedure considers the life cycle of the process with economic evaluation and hazard potential identification for each option. I2SI is comprised of sub-indices which account for hazard potential, inherent safety potential, and add-on control requirements. In addition to evaluating these respective characteristics, there are also indices that measure the economic potential of the option. To demonstrate the applicability and efficacy of I2SI, an application of the index to three acrylic acid production options is also discussed in the paper.  相似文献   

9.
10.
Solvent extraction was used to recover oil from waste sludge generated from the storage of crude petroleum. Different solvent-to-sludge mass ratios were used for two solvents, methyl ethyl ketone (MEK) and LPG condensate (LPGC). Several parameters were compared, such as oil recovery as a percent of the original sludge mass, and reduction in carbon residue, ash content, and asphaltene content. A 4:1 solvent-to-sludge ratio was found to be optimum for both solvents. The MEK extraction recovered 39% by mass of the sludge as recovered oil. The LPGC recovered 32%. The amount of asphaltenes in the fuel oil was related to the concentration of fuel oil in the solvent phase during the extraction, suggesting that asphaltenes are extracted mainly by the fuel oil components, not the solvent. The physical properties and metal content of the recovered oil were measured. The recovered oil was distilled to provide diesel fuel. This diesel fuel contained high levels of sulfur and carbon residue, as well as a high diesel index, indicating the fuel requires further treatment prior to use as a fuel.  相似文献   

11.
A comprehensive Net Present Value (NPV) model has been developed to demonstrate the economic advantages of process safety and risk reduction investments on Pd/Au-based membrane reactors. In particular, the economic viability of Pd/Au-based membrane reactor modules incorporated into Integrated Gasification Combined Cycle (IGCC) plants is evaluated within the aforementioned framework by pro-actively following sound process safety design principles. Sources of irreducible uncertainty (market, technological, operational) as well as safety risk are explicitly recognized, such as the Pd/Au prices, membrane life-time and loss in the power plant capacity factor due to possible accidents. The effect of the above uncertainty drivers on the membrane module cost along with production disruption and associated revenue losses is elucidated using Monte-Carlo simulation techniques that enable the propagation of the above uncertain inputs through the NPV-model, and therefore, generate a more realistic distribution of the process system's value rather than a single-point/estimate that overlooks these uncertainties. Pre-investment on risk reducing measures, such as spare safety relief systems (cautionary redundancy) for membrane reactor modules operating at high pressures (e.g. 50 atm), is shown to be economically more attractive than cases where analogous safety measures are not implemented. Since accidents and possibly catastrophic events do happen in an uncertain world, additional investment on safety measures could ensure a safer and more profitable operation of the process system under consideration giving credence to the thesis that process safety investments may result in enhanced techno-economic performance in the presence of irreducible uncertainties.  相似文献   

12.
13.
This study presents a framework of decision analysis on fire safety design alternatives based on evaluating building fire risk to life. A probabilistic risk assessment method for occupant life is presented with consideration of some uncertainties of evacuation process and fire development at first. For occupant evacuation time assessment, occupant pre-movement time is characterized by normal distribution. For onset time to untenable conditions assessment, its uncertainty is considered as probability distribution according to the range of design fires. Based on event tree technique, probable fire scenarios are analyzed with consideration of the effect of fire protection systems, employees extinguishing, etc. It is difficult to make a precise assessment on probability and consequence of every fire scenario, but their lower bound and upper bound can be achieved based on statistical data. Therefore, Supersoft Decision Theory [Malmnäs, P.E., 1995. Methods of Evaluation in Supersoft Decision Theory. Department of Philosophy, Stockholm University, 365 Stockholm; Johansson, H., Malmnäs, P.E., 2000. Application of supersoft decision theory in fire risk assessment. Journal of Fire Protection Engineering 14, 55–84] that allows decision maker to utilize vague statement is utilized to integrate with risk assessment to make decision on different fire safety design alternatives. To express how to make decision on different fire safety design alternatives based on evaluating building fire risk to life, two hypothetical fire safety design alternatives for a commercial building are presented.  相似文献   

14.
为研究安全情报服务能力影响因素,根据安全情报与情报服务理论,提出安全情报服务定义及内涵,以4个基本原则为指导,面向安全管理全过程,构建并解析面向安全管理的安全情报服务能力影响因素模型,并提出安全情报服务能力建设的工作建议。研究结果表明:面向安全管理的安全情报服务能力影响因素包括安全情报服务顶层设计、安全情报服务机制和安全情报服务保障3个一级影响因素,且一级影响因素可进一步细分为10个二级影响因素。研究结果可为提升面向安全管理的安全情报服务能力提供重要支撑。  相似文献   

15.
Integration of a human-machine interface (HMI) with hazard and operability (HAZOP) analysis is proposed in this work. This concept can potentially lead to the identification of some unexpected deviations, and radically decreases the time necessary for hazard identification. A continuous biodiesel production was simulated. This can be divided into two cases, covering both conventional and reactive distillation. Soybean oil (trioleic, trilinoleic and tripalmitic) at 1000 kg/h as raw material is converted to 99 wt% pure biodiesel. The HMI was designed to improve these processes by combining automatic HAZOP analysis. With this approach, users can receive sufficient information from the simulation to analyze the optimum operation and safety. Severity levels are also provided to classify the actions in the process. Severity levels 1 and 2 are concerned with operating conditions, which are 58-64 °C, and 50-150 kPa. If the analysis shows severity level 3, the safety instrumented system (SIS) will automatically manage the operation in order to reduce/restrain the amount of damage at this level. This proposed system could minimize the damage and also improve the overall quality of the process.  相似文献   

16.
Global warming, high-energy demand and availability of new technologies are among the factors catalyzing the search for alternative sources of energy. Currently, there is renewed interest in obtaining energy from wastes hitherto meant for disposal. Increased costs of disposal and their attendant problems of heavy environmental loading are some aspects making the disposal option unattractive. These wastes are sources of energy and among the several sources of generating this energy are the waste-to-energy (WTE) categories with potentials for useable fuel production. The WTE materials are mainly used domestic waste oils (UDWOs), municipal solid waste (MSW), agricultural and industrial wastes. However, the latter wastes are not attractive as they consist of innumerable hazardous contaminants. The UDWOs are arguably a safe and cost effective source of useable fuel. Their conversion offers the merits of a reduction in greenhouse gas emission (GHG), enhancing fuel diversification and a qualitatively comparable energy output to fossil diesel fuels. Thus, UDWOs could significantly contribute towards achieving the 2020 and 2030 goals of substituting approximately 20% and 30% of petro-diesel with biofuels in US and EU, respectively. Moreover, attaining the forecasted annual production rate of 227 billion liters of biofuel by most active stakeholders in the biodiesel industry could be easily achieved.This review aims to analyze the performance of biodiesel fuels obtained from UDWO and to demonstrate the suitability of applying these fuels as substitutes to mineral diesel in various industries. Benefits of UDWO as a biodiesel feedstock were as well highlighted.  相似文献   

17.
加氢装置属甲类火灾、爆炸危险生产装置。为了在设计阶段尽可能消除或控制潜在风险,本文总结了多套加氢装置HAZOP分析报告中的设备类别及其分析内容,提出了基于危险与可操作性(HAZOP)分析的加氢装置工程设计方法。在传统工程设计方法的基础上增加了参数敏感性工程设计方法,依据分析报告中的设计建议,利用ASPEN软件计算过程参数变化对目标参数的影响程度,确定参数稳定操作区域;建立了数据库管理界面实现了加氢装置工程安全设计经验知识的有序管理。应用基于HAZOP分析的加氢装置工程设计方法,有助于将安全隐患问题在设计阶段消除或加以控制,可为降低石化装置改造成本和提高装置的安全水平提供方法依据。  相似文献   

18.
Clearzones are a feature of modern highways that have a dramatic impact on roadside safety. The purpose of these unobstructed spaces is to provide an area where an errant vehicle can safely stop or the driver can regain control of the vehicle without striking a hazardous object like a tree or utility pole. Many clearzone alternatives (e.g., removing trees, installing traversable culvert openings, and installing guardrails in front of untraversable hazards) are relatively inexpensive in comparison to other roadway construction costs. Roadways passing through rockcuts present an unusual case where the construction cost of providing the clearzone is very high. This article examines different clearzone alternatives in rockcuts and compares the likely effect on safety and construction costs. A method is described for determining the rockcut width that best balances the cost of construction with the improvements in safety that would result from a wider clearzone in the rockcut.  相似文献   

19.
提出了一种新的污泥板框调理剂综合评价方法。传统的CST(毛细吸水时间)、污泥比阻、泥饼含水率等指标只能单一地评价泥饼脱水效果,为了实现对调理效果的综合评价,需要考虑药剂调理费用、运输处置成本、设备处理产能、滤液处理难度等多种因素。通过长期采集中试运行数据,考察了3种污泥板框调理剂对设备、泥饼、滤液和运行4个方面17个指标的影响。引入层次分析法和模糊数学综合评价法相结合的模糊层次分析法(FAHP)对3种污泥板框调理剂进行了综合评价,采用层次分析法确定指标权重;采用隶属函数对指标进行无量纲化处理,确定其隶属度,解决了指标间的可综合性问题;最后用加权平均法得出评价综合值,综合评价值表明,在这3种调理剂中,调理剂1的综合效果最优,更适合作为该厂的污泥板框脱水调理剂。  相似文献   

20.
Maintenance policy selection is a multiple criteria decision making. The criteria often considered are cost and reliability of maintenance. There has been a growing interest in using risk of accidents as a criterion for maintenance selection. This paper presents an approach of maintenance selection based on risk of equipment failure and cost of maintenance. Analytic hierarchy process (AHP) and goal programming (GP) are used for maintenance policy selection. A case study in a benzene extraction unit of a chemical plant was done. The AHP results show that considering risk as a criterion, condition based maintenance (CBM) is a preferred policy over time-based maintenance (TBM) as CBM has better risk reduction capability than TBM. Similarly, considering cost as a criterion, corrective maintenance (CM) is preferred. However, considering both risk and cost as multiple criteria, the AHP–GP results show that CBM is a preferred approach for high-risk equipment and CM for low risk equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号