首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
柳超  关小敏 《环境与发展》2020,(2):136-136,138
荆门市静脉产业园餐厨垃圾、市政污泥采用联合发酵工艺,结合厌氧发酵机理。本文分析了餐厨垃圾、市政污泥联合发酵系统运行过程中温度、pH值、有机负荷、C/N、Na^+、VFA、VFA/碱度等关键影响因子,并提出了相应控制措施来确保联合发酵系统安全、稳定、高效的运行。  相似文献   

2.
餐厨垃圾固渣厌氧发酵产甲烷潜力及Logistic动力学研究   总被引:1,自引:0,他引:1  
为考察餐厨垃圾经提炼生物柴油处理后的固渣厌氧生物处理的可行性,在中温条件下,研究固渣批式厌氧发酵的产气特性和物质转化过程,并结合Logistic方程分析该固渣厌氧消化产甲烷的动力学过程.结果表明,该固渣具有较高的厌氧发酵产甲烷潜力,在2:1的物料比条件下,单位质量固渣产气效率最高,甲烷产量达633 NmL/gVS.稳定状态下,Logistic方程可以较好地分析餐厨垃圾固渣厌氧发酵产甲烷过程(决定系数R2> 0.99),经过拟合,产甲烷潜力为661.33NmL/g VS,最大产甲烷速率为106.78 NmL/(g VS-d),无滞后期,与试验结果基本一致.随底物负荷提高,总挥发性脂肪酸和氨氨的质量浓度分别达到14 800 mg/L、2 500 mg/L,pH值降至5.0左右,产甲烷菌活性受到总挥发性脂肪酸(VFAs)、高浓度氨氮(NH4+-N)及低pH值的严重抑制.  相似文献   

3.
微量金属强化餐厨垃圾厌氧消化优化条件研究   总被引:1,自引:0,他引:1  
采用L9(34)正交试验,研究了CoCl2·6H2O、FeCl2 ·4H2O及NiCl2·6H2O投加量对餐厨垃圾厌氧消化总固体(TS)、挥发性固体(VS)和COD减量及累积产气量的影响,确定了三因素的主次顺序及最优工艺条件.结果表明,当CoCl2·6H2O、FeCl2·4H2O及NiCl2·6H2O的投加量分别为0.1 mg/(L·d)、1 mg/(L·d)和0.4 mg/(L·d)时,餐厨垃圾厌氧消化减量及产气效果均最优.在此条件下,经过25 d单相厌氧消化,餐厨垃圾厌氧消化TS、VS、COD的去除率及累积产气量分别达到46.04%、61.02%、58.24%和27 433 mL/L,比不投加微量金属的处理分别高16.98%、28.12%、27.84%和48.63%.Co、Fe和Ni的投加量对餐厨垃圾厌氧消化TS、VS和COD去除率及累积产气量均有显著影响,其中Co的影响达到极显著水平;Co、Fe和Ni对餐厨垃圾厌氧消化减量及产气效率影响的主次顺序及显著性从大到小均为Co、Ni、Fe.  相似文献   

4.
针对餐厨垃圾厌氧消化酸抑制而造成的消化效率低和产气量低等问题,采用中温(35℃)厌氧消化研究了微量Co对餐厨垃圾厌氧消化过程中的pH值、挥发性脂肪酸(VFA)、COD、产气速率及产气量的影响。结果表明:投加0.25~2.00 mg/(L·d)的微量Co均可以改善餐厨垃圾单相厌氧消化酸抑制的现象。至第25 d反应结束,C1~C4组(Co投加量分别为0.25 mg/(d·L)、0.50 mg/(d·L)、1.00mg/(d·L)和2.00 mg/(d·L))的COD的去除率分别比CK(对照)组的高5.75%、10.91%、7.97%和4.74%。CK的产气速率峰值和累积产气量分别为867 mL/(d·L)和13 798 mL/L,C1~C4处理的产气速率峰值分别为2 143 mL/(d·L)、3 193 mL/(d·L)、2 204 mL/(d·L)和2 510mL/(d·L),其累积产气量分别达到19 244 mL/L、24 433 mL/L、20 264mL/L和16 989 mL/L。C1~C4的产气速率峰值及累积产气量分别比CK的高147.17%~268.28%和23.13%~77.08%。其中,投加0.50mg/(d·L)的微量Co对餐厨垃圾厌氧消化酸抑制的缓冲作用最好且其COD去除率、产气速率峰值和累积产气量最高。因此,投加0.25~2.00 mg/(d·L)的微量Co均有利于缓解餐厨垃圾单相厌氧消化酸抑制的发生并提高厌氧消化效率和产气效率。  相似文献   

5.
以典型农村生活垃圾餐厨垃圾(Food Waste,FW)与纸类垃圾(Paper Waste,PW)为基质,通过中温(35℃)批次厌氧共发酵试验,探明不同配比的基质在厌氧共发酵4阶段(水解阶段、酸化阶段、乙酸化阶段、产甲烷阶段)的动力学特性,再结合挥发性脂肪酸(Volatile fatty acids,VFAs)在系统运行过程中的变化,确定FW与PW的最佳配比。结果表明,水解阶段是纸类垃圾的主要限速步骤,而VFAs积累限制了餐厨垃圾甲烷化进程的提高,且VFAs积累主要以丙酸与丁酸为主。当w(FW)≥35%时,产甲烷速率随VFAs质量浓度增大而线性减小,过高的VFAs质量浓度抑制了产甲烷菌的活性。FW与PW最佳基质配比为35∶65(质量比),在此条件下反应速率最为突出,系统运行高效,VFAs能及时被产甲烷菌利用,无有机酸积累,系统运行平稳。  相似文献   

6.
在单因素试验的基础上采用Box-Behnken响应曲面法考察热碱预处理温度、p H值和时间的单独及交互作用对餐厨垃圾厌氧发酵产乙酸的影响,并建立了乙酸产量的数学模型。结果表明,在不同的热碱预处理操作条件下,餐厨垃圾厌氧发酵均表现为典型的丁酸型发酵。3个影响因子对乙酸质量浓度影响的显著性从大到小表现为p H值、时间、温度,其中p H值的影响达到极显著水平;各因子两两交互作用的影响均不显著。回归模型决定系数R2=0.9383,p=0.00180.05,模型拟合程度好且模型显著。热碱预处理强化餐厨垃圾厌氧发酵产乙酸的最佳工艺参数为:温度78.2℃,p H=12,时间25.5 min。回归模型的预测值(48.83 g/L)与多次实测值的平均值(46.78 g/L)的相对误差为4.38%,表明模型对试验结果具有良好的预测效果。  相似文献   

7.
利用农业生产中产生的牲畜粪便牛粪和秸秆进行厌氧发酵试验,以产气量为参考指标,研究牛粪和秸秆厌氧发酵的产气量预测模型。试验过程中测量发酵物的氧化还原电位(ORP)、p H值、挥发性脂肪酸(VFA)、氨氮含量、化学需氧量(COD)、电导率及产气量,并用灰色关联分析法筛选出与产气量关联较强的参数,将筛选出的参数作为多项式核函数和高斯径向基核函数构建的混合核函数LS-SVM模型的输入量,训练出预测能力较强的混合核函数LS-SVM模型,然后在混合核函数LS-SVM模型中融入微生物动力学构建产气量预测模型,并用验证集验证模型性能。仿真结果表明,筛选得到关联较强的参数为ORP、p H值、VFA、氨氮含量;融入动力学的混合核函数LS-SVM模型与混合核函数LS-SVM模型相比,产气量的预测更准确,误差更小,最小误差减少了近一个数量级,试验证明该模型有效。  相似文献   

8.
针对污泥厌氧消化碳氮比不均衡导致挥发性脂肪酸(VFA)产量低的问题,在中温(35℃)条件下,通过向污泥发酵体系投加不同量的废弃生物碳源甘油,考察污泥和甘油混合比对p H、VFA、溶解有机物、生物气的影响。结果表明C/N为25/1对污泥厌氧发酵促进效果最好,p H最低值为7.1,VFA的最大含量为584 mg/g。进一步研究发现适宜C/N能够提高溶解性蛋白质和多糖的含量,从而为VFA的积累提供充足的物质基质。此外,C/N为25/1时,生物气的最大产量为2 141 m L。  相似文献   

9.
以餐厨垃圾为研究对象,在高温(55±1)℃条件下,采用连续湿式厌氧发酵技术研究发酵过程中进料有机负荷、日产气量、pH值、挥发性有机酸(VFA)质量浓度等参数的变化情况及相互作用关系.结果表明:厌氧消化过程中出现了4个阶段,即适应阶段、提高阶段、稳定阶段和超负荷阶段;反应达到稳定阶段时,反应器运行有机负荷为3.9 kg/(m3·d),系统pH值稳定在7.8左右,平均产气速率达到5.26L/d;负荷达到4.2 kg/(m3·d)时,对系统产生明显抑制作用.  相似文献   

10.
为了研究餐厨垃圾两相厌氧发酵工艺的恶臭排放特征,以餐厨垃圾为发酵底物进行了中试规模的两相连续式厌氧发酵试验,对主要工艺单元,如餐厨垃圾堆放点和破碎点、酸化出料、产甲烷出料及产甲烷反应器排气口的臭气进行采集,采用三点比较式臭袋法分析臭气浓度,采用冷阱富集-GC/MS技术分析恶臭物质组成和质量浓度。结果表明:5个单元的恶臭污染都较严重,其中酸化出料、产甲烷出料和产甲烷反应器排气口的臭气浓度都达到了104级;5个单元共检出含氧类、芳香烃、硫化物、萜烯类和卤代烃5类29种物质,各单元总检出质量浓度分别为0.751 mg/m3、1.274 mg/m3、5.540 mg/m3、22.011mg/m3和38.548 mg/m3,其中硫化氢、柠檬烯、乙醛、丙醛和二氯甲烷的检出质量浓度较高;结合各组分的阈稀释倍数筛选出该工艺的主要致臭物质为硫化氢、乙硫醇、乙硫醚、甲硫醇、乙醛和丁醛;通过对各组分的健康风险分析,初步识别出该工艺健康风险较大的物质为硫化氢和丁醛,释放风险最大的单元为产甲烷反应器排气口。  相似文献   

11.
通过在厨余垃圾暗发酵产氢过程中添加不同质量浓度的稀土元素La3+,考察稀土元素对产氢性能的影响。结果表明,添加一定质量浓度的La3+能促进厨余垃圾产氢效率,而高质量浓度则有抑制效应。添加La3+质量浓度为0.5 mg/L时效果最佳,产氢量和总有机酸量达到最大,分别为43.11 mL/gVS和11 871.7 mg/L,分别是对照组的1.45倍和1.24倍。添加一定量的稀土元素也能同时促进产氢污泥的胞外多聚物的生成。  相似文献   

12.
针对厨余垃圾收运后集中处理模式的收集难、成本高的问题,设计了分布式就地厌氧消化工艺,用研制的设备进行半连续试验。运行80 d左右趋于稳定,稳定后的VS去除率高于60%;VS进料产气率、VS进料甲烷产率分别为0.444 m3/kg VS、0.245 m3/kg VS,VS去除产气率、VS去除甲烷产率分别为0.737 m3/kg VS和0.413 m3/kg VS左右;pH值从5.5升至7.5,稳定阶段的碱度为4 750 mg/L左右;VFAs先增后降至570mg/L,VFAs/碱度先从0.64增至0.8,然后降至0.4以下;丁酸、丙酸和乙酸分别占出料VFAs的74.2%、9.2%、6.7%,丙酸/乙酸低于1.4;沼气净化后,甲烷含量为96%~97%。  相似文献   

13.
采用电絮凝技术处理洗车废水,以保证处理后出水能够循环利用。考察电流密度、初始pH值、NaCl浓度及电解时间等操作因素对COD与浊度去除效果的影响。结果表明,在最佳处理条件下,出水达到生活杂用水水质标准;另外,去除COD过程符合一级动力学模型,去除单位浓度COD产生4.02×10-3kg湿污泥、3.10×10-4kg干污泥。  相似文献   

14.
Fenton氧化絮凝预处理糖精钠生产废水   总被引:1,自引:0,他引:1  
应用Fenton氧化与絮凝结合预处理难生物降解的糖精钠生产废水,进行H2O2投加量、FeSO4投加量、氧化pH值、氧化时间、絮凝pH值等5个因数正交试验,结果表明,原水的BOD5/CODcr由0.15提高到0.49,同时去除CODcr40%左右,从而为后续的生物处理奠定了基础。  相似文献   

15.
3级生铁过滤-厌氧-生物接触氧化法处理糠醛废水研究   总被引:1,自引:0,他引:1  
糠醛是重要的有机化工溶剂和生产原料.目前糠醛生产企业的环保治理还没有跟上生产的发展,三废污染相当严重,废水的COD高,酸性强,直接排放对当地的地下水造成严重污染.糠醛行业的污染问题已经成为制约糠醛生产的瓶颈因素和亟待解决的重大课题.就糠醛生产工艺与生产废水水质特点,采用3级生铁过滤-厌氧-生物接触氧化法治理糠醛废水.运行结果表明,糠醛废水经处理后,COD的总去除率达到98%以上,出水pH6-9,符合国家《污水综合排放标准》(8979-1996)中2级排放标准的要求.  相似文献   

16.
Anaerobic bioreactor attracted more attention in recent years because of its environmental and financial benefits. Nutrients and moisture could exert profound influences on the degradation of the pollutants and stabilization of solid waste in anaerobic landfill. The objective of this work was to investigate the effects of the activated sludge and phosphorous addition on the stabilization of solid waste. The experimental results indicated that phosphorous is the limiting nutrients in the landfill leachate; phosphorous and activated sludge simultaneously could stimulate the growth of the bacteria, enhance the attenuation of pollutants in landfill leachate and accelerate the stabilization of solid waste; the final removal efficiency of COD and NH4+-N in R-C (phosphorous and activated sludge added simultaneously) was up to 95.13% and 73.4%, respectively. Therefore, phosphorous addition is an effective way to enhance the stabilization of solid waste in anaerobic landfill.  相似文献   

17.
Biohydrogen production by dark fermentation in a series of batch tests under different environmental control conditions was evaluated to determine the optimal initial cultivation pH and temperature for a continuous-flow kinetic test to validate the kinetic model system. The waste activated sludge (WAS) from fructose-processing manufacturing was used as the model substrate for biohydrogen production. The batch experiments for biohydrogen production were conducted in a 6 l bioreactor. Fifteen batch kinetic tests were investigated when pH was controlled at 6, 7, 8 and 9 as well as the temperature was controlled at 37 °C, 45 °C and 55 °C, respectively. The experimental results indicated that the optimal operational condition for hydrogen production occurred while pH was 7 and temperature was 55 °C with the highest hydrogen production of 7.8 mmol. The optimal recovery time for hydrogen was 25 h in the batch experiments. Furthermore, the kinetic test of biohydrogen production was performed by anaerobic mixed microbial culture in the continuous-flow experiment when pH and temperature was maintained at 7 and 55 °C. Approximately 60% and 7% of substrate solution was converted into acetate and hydrogen, respectively, at the steady state. Roughly only 0.77% and 2.7% of substrate solution was converted into propionate and butyrate, respectively, at a steady-state condition. The experimental and modeling approaches presented in this study could be employed for the design of pilot-scale and full-scale anaerobic biohydrogen fermentors using food-processing waste activated sludge (WAS) as a substrate solution.  相似文献   

18.
湿地植物根际微生物处理生活污水的模型规模研究   总被引:3,自引:0,他引:3  
在人工湿地模型中,研究了人为增加湿地植物根际微生物对生活污水中COD的降解效果:将2株从湿地分离的根际微生物扩增培养(分别用于模型1与模型2),与一定比例的生活污水混合后注入到湿地模型中,在停留12,24,36,48 h时分别测定污水中COD的去除率.结果表明,加菌模型对COD的去除率显著高于空白模型(P<0.05),且随着时间的延长,二者的差异性越大,至48 h时,空白模型和2个加菌模型(模型1和模型2)对自然污水COD的去除率分别为50.6%,73.0%,75.3%,对灭菌污水COD的去除率分别为52.2%,76.3%,80.1%.说明向人工湿地中添加植物根际微生物将大大提高湿地对生活污水中COD的去除率,具有进一步开发的价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号