首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biodiesel production from waste oil feedstocks by solid acid catalysis   总被引:4,自引:0,他引:4  
Biodiesel is a non-toxic and biodegradable substitute for petroleum-based diesel. However, it is impractical to use refined edible oils to produce biodiesel due to its high cost and priority for food products, especially in China, while waste oils with high free fatty acids (FFAs) can be considered as the raw materials. In the present work, a solid acid catalyst comprising SO42−/TiO2–SiO2 was prepared, characterized and studied for its activity for the production of biodiesel from several low cost feedstocks with high FFAs. The solid acid catalyst can be recycled, easily removed and can simultaneously catalyze esterification and transesterification. The influence of reaction parameters was studied, and the optimized reaction parameters are reaction temperature 200 °C, molar ratio of methanol to oil 9:1 and catalyst concentration 3 wt.%. The catalyst showed good stability. A continuous process for biodiesel production from cheap raw feedstocks was proposed, and a 10,000-tonnes/year biodiesel production demonstration plant has been built.  相似文献   

2.
Liquid-phase nitration of toluene was carried out using a silica supported Cs salt of phosphomolybdic acid (Cs2.5H0.5PMoO40) as catalyst with dilute nitric acid under mild conditions. The Cs2.5H0.5PMoO40 particles with Keggin-type structure were well dispersed on the surface of silica, and the catalysts exhibited strong acidity, which may be responsible for the high catalytic nitration activity. The effects of various parameters on nitration were tested, which included reaction temperature, reaction time, catalyst amount and reactants ratio. Under suitable conditions, the nitrations gave high toluene conversion (99.6%) and good mono-nitration selectivity. Compared to the conventional process, there was no other organic solvent or sulfuric acid used in the reaction system, which made it more environment-friendly. Moreover, the supported catalyst was proven to have excellent stability in the nitration process.  相似文献   

3.
Carbon coated monolith was prepared by sucrose solution 65 wt.% via dip-coating method. Sulfonation of incomplete carbonized carbon coated monolith was carried out in order to synthesize solid acid catalyst. The textural structure characteristics of the solid acid catalyst demonstrated a low surface area and pore volume. Palm fatty acid distillate (PFAD), a by-product of palm oil refineries, was utilized as oil source in biodiesel production. The esterification reaction subjected to different reaction conditions was performed by using the sulfonated carbon coated monolith as heterogeneous catalyst. The sulfonation process had been performed by using vapour of concentrated H2SO4 that was much easier and efficient than liquid phase sulfonation. Total acidity value of carbon coated monolith was measured for unsulfonated sample (0.5 mmol/g) and sulfonated sample (4.2 mmol/g). The effect of methanol/oil ratio, catalyst amount and reaction time were examined. The maximum methyl ester content was 89% at the optimum condition, i.e. methanol/oil molar ratio (15:1), catalyst amount (2.5 wt.% with respect to PFAD), reaction time (240 min) and temperature 80 °C. The sugar catalyst supported on the honeycomb monolith showed comparable reactivity compared with the sugar catalyst powder. However, the catalyst reusability studies showed decrease in FFA% conversion from 95.3% to 68.8% after four cycles as well as the total acidity of catalyst dropped from the value 4.2 to 3.1 mmol/g during these cycles. This might be likely due to the leaching out of SO3H group from the sulfonated carbon coated monolith surface. The leaching of active species reached a plateau state after fourth cycle.  相似文献   

4.
In the present study, 4 different functionalized pyrazoliums based on sulfoalkyl-pyrazolium hydrogensulfate and alkylsulfo-alakylpyrazolium hydrogensulfate were explored to catalyze biodiesel production from bitter apple oil (BAO). The results demonstrated that a longer chains catalyst of 2-(4-sulfobutyl) pyrazolium hydrogensulfate (SBPHSO4) exhibited the highest catalytic activity, which is attributed to its strong acidity. The highest yield of esters was up to 89.5% when the reaction was carried out under the conditions of 5.2 wt% of SBPHSO4, molar ratio of methanol to BAO of 15:1, 170 °C, and 800 rpm for 6 h. These results demonstrated that ionic liquids offer a promising new type of pyrazolium catalyst for biodiesel production. The use of clean ionic liquids in preparing clean biodiesel could solve the drawbacks associated with using the old conventional catalysts and might be employed as an efficient catalyst for such relevance.  相似文献   

5.
Biodiesel as an alternative fuel for fossil diesel has many benefits such as reducing regulated air pollutants emissions, reducing greenhouse gases emissions, being renewable, biodegradable and non-toxic. In this study, used frying oil was applied as a low cost feedstock for biodiesel production by alkali-catalyzed transesterification. The design of experiments was performed using a double 5-level-4-factor central composite design coupled with response surface methodology in order to study the effect of factors on the yield of biodiesel and optimizing the reaction conditions. The factors studied were: reaction temperature, molar ratio of methanol to oil, catalyst concentration, reaction time and catalyst type (NaOH and KOH). A quadratic model was suggested for the prediction of the ester yield. The p-value for the model fell below 0.01 (F-value of 27.55). Also, the R2 value of the model was 0.8831 which indicates the acceptable accuracy of the model. The optimum conditions were obtained as follows: reaction temperature of 65 °C, methanol to oil molar ratio of 9, NaOH concentration of 0.72% w/w, reaction time of 45 min and NaOH as the more effective catalyst. In these conditions the predicted and observed ester yields were 93.56% and 92.05%, respectively, which experimentally verified the accuracy of the model. The fuel properties of the biodiesel produced under optimum conditions, including density, kinetic viscosity, flash point, cloud and pour points were measured according to ASTM standard methods and found to be within specifications of EN 14214 and ASTM 6751 biodiesel standards.  相似文献   

6.
An efficient and eco-friendly oxidative bromination reaction of phenol has been achieved by treatment with KBr–H2O2 in the presence of a catalytic amount ammonium salt of molybdophosphoric acid or phosphotungstic acid that supported on silica, which were synthesized by sol–gel method. The physicochemical characterization indicated that supported catalysts still retained its Keggin type and the particles were well dispersed onto the surface of silica support. The evaluated results of liquid phase bromination of phenol showed that these catalysts exhibited high catalytic oxybromination activity and high para substituted selectivity, and good stability was also observed after recycling three times. Meanwhile, no highly toxic and corrosive materials were used and formed in the reaction process, which makes this process environmentally benign. The influences of the reaction time, catalyst amount and solvent on oxidative bromination reaction were also investigated.  相似文献   

7.
In this research, transesterification of the waste cooking oil has been studied. Response surface methodology (RSM) based on Box–Behnken design was used to investigate the effects of the main operating parameters, including the methanol to oil molar ratio, catalyst concentration, and reaction temperature, on the biodiesel yield. The results revealed that the catalyst concentration is the most important parameter. The maximum biodiesel yield under the optimized conditions was 99.38 wt.%. Thermogravimetric analysis (TGA) was used for the determination of biodiesel conversion and the results were compared with that of gas chromatography (GC) analysis, showing a very small difference. Furthermore, an empirical quadratic equation has been presented to show the relation between biodiesel conversion and product viscosity.  相似文献   

8.
Iron–cobalt mixed metal oxide nanoparticles (Co/Fe molar ratio: 1/5) have been prepared by a simple co-precipitation method and employed as catalyst in low-temperature CO oxidation. The prepared catalysts were characterized by thermal gravimetric and differential thermal gravimetric analyses (TGA/DTG), X-ray diffraction (XRD), temperature programmed reduction (TPR), N2 adsorption (BET) and transmission electron microscopy (TEM) techniques. The results revealed that inexpensive iron–cobalt mixed metal oxide nanoparticles have a high potential as catalyst in low temperature CO oxidation. The results showed that increasing in calcination temperature increased the crystallite and particle size and decreased the specific surface area, which caused a decrease in catalytic activity of prepared catalysts. In addition, the pretreatment conditions affect the catalytic activity and catalyst pretreated under oxidative atmosphere showed the higher activity than those pretreated under reductive and inert atmospheres.  相似文献   

9.
The corrosion rates of API X65 mild steel alloy in CO2 – containing produced water have been studied by weight loss technique, potentiodynamic polarization technique and characterization of the corroded surface techniques. The effect of temperature, speed of rotation, pH and acetic acid concentration were studied. The optimum condition in presence and absence of protective film were also addressed. The kinetic parameters and reaction behavior were discussed in details. Corrosion rates increases with increasing temperature, acetic acid concentration, and speed of rotation, and decreased with increasing solution pH. The primary corrosion product of API X65 mild steel is ferrous carbonate (FeCO3) at high temperatures, high pH's (alkaline media) and absence of acetic acid, which could act as a protective film so that CO2 corrosion rate can be reduced.  相似文献   

10.
A series of Pd–Ce supported ZSM-5 zeolite catalysts for CO oxidation at low temperature were prepared by co-impregnation method. The effect of Pd–Ce synergistic function, Ce loadings, and properties of ZSM-5 zeolite on low temperature CO catalytic oxidation was investigated in detailed. The results showed that the Pd and Ce loading on ZSM-5 zeolite support at the same time enhanced catalytic activity compared with only Pd or Ce loading on ZSM-5 zeolite support. The properties of ZSM-5 zeolite had a strong influence for CO oxidation. Through the research, the ZSM-5 zeolite with high silicon aluminum ratio and small size also was helpful for CO oxidation. Among these catalysts, the catalyst with 19 wt% Ce loading displayed the highest catalytic activity. Chemical and physical properties of catalysts were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and TEM showed that Pd species were highly dispersed on the surface of ZSM-5 zeolite, which was strongly dependent on the amounts of Ce loading and the interaction among Pd species, Ce promoter and ZSM-5 support. The addition of CeO2 improved the dispersion of Pd species over ZSM-5, and synergistic function of Pd and CeO2 enhanced the catalytic activity. XPS characterization indicated that as the addition of Ce increased, Pd species was easy to enrich on the surface of the catalyst.  相似文献   

11.
The use of different lower and higher alcohols viz; methanol, ethanol, n-propanol and n-octanol, for the synthesis of methyl, ethyl, propyl and octyl fatty acid esters by transesterification of vegetable oil (triglycerides) with respective alcohols also known as ‘Bio-diesel’ and ‘Bio-lubricants’ was studied in detail. The reactions were carried out in a batch process. The activity with different supports like clay (K-10), activated carbon, ZSM-5, H-beta and TS-1 were compared. The superacids (heteropolyacids, HPA) viz; Dodeca-Tungstophosphoric acid [H3PO4·12 WO3·xH2O] (TPA) and Dodeca-Molybdo phosphoric acid ammonium salt hydrate [H12Mo12N3-O40P + aq] (DMAA) was used to increase the acidity and so the activity by loading on the most active support viz; clay (K-10). These HPA loaded on clay as a catalyst was used for the following study: effect of percent HPA loading on clay, effect of different vegetable oils, effect of different alcohols on the triglyceride conversion based on glycerol formation and selectivity based on alkyl esters formation. The data is compared at the best-optimized identical set of operating reaction conditions: 170 °C, 170 rpm, catalyst loading: 5% (w/w of reaction mixture), molar ratio (oil: alcohol): 1:15 and time on stream of 8 h. The generated data is also evaluated based on the reported one.  相似文献   

12.
In this research nanocatalysts containing 5, 10 and 15 wt.% of Ni, dispersed by sonication over CeO2–clinoptilolite composite support were compared toward total oxidation of toluene. Their catalytic performance at different temperatures between 150 and 350 °C was studied based on the oxidative destruction of toluene. The results indicated that the activity of Ni/CeO2–clinoptilolite nanocatalyst for toluene oxidation increased from 33 to 44% at 250 °C by employing sonochemical method in synthesis of catalyst. Meanwhile, the catalytic activity was also improved when Ni content was increased from 5 to 10 and 15 wt.%. With the aid of several characterization techniques like XRD, FESEM, PSD, EDX, BET and FTIR, the correlation between nanocatalyst structure and its activity was addressed. It is indicated that sonochemical method can lift the catalytic activity due to the better dispersion of catalyst active components and also higher surface area. Among sonicated samples, 15 wt.% Ni nanocatalyst showed the highest toluene oxidation due to the better dispersion of catalyst active components and hence to more effective catalytic sites.  相似文献   

13.
The production of biodiesel is gaining momentum with the ever increasing demand of the fuel. Presently, limited literature is available with respect to well designed solid heterogeneous catalyst for biodiesel production considering all the characteristics, process and operation parameters. Hence, a study was conducted to design effective heterogeneous catalyst for biodiesel production. Further, the significant impact of different catalysts, different feed stock, various reaction conditions such as temperature, methanol oil molar ratio, catalyst concentrations and stability/inactivation of the catalysts, are detailed out for transesterification process of biodiesel production. Based on the studies it can be concluded that well designed heterogeneous catalyst can yield high throughput of biodiesel.  相似文献   

14.
Innovative simple method for the preparation of simonkolleite-TiO2 photocatalyst with different Zn contents was achieved. The prepared photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, Raman and diffuse reflectance spectroscopy techniques. The photocatalytic activities of the materials were evaluated for the simultaneous detoxification of hexavalent chromium (Cr(VI)) and oxidation of organic compounds commonly present in wastewater under simulated solar light. The best photoreduction efficiency of Cr(VI) has been achieved at 1000 ppm simonkolleite-TiO2 photocatalyst of 5% Zn/TiO2 weight ratio, and pH value of 2.5 to enhance the adsorption onto catalyst surface. Photoreduction was significantly improved by using formic acid as holes scavenger owing to its chemical adsorption on the catalyst surface. Finally, 100% photoreduction of Cr(VI) could be achieved using formic/simonkolleite-TiO2 systems under sunlight.  相似文献   

15.
This work focuses on modeling and optimization of a sono-assisted photocatalytic decolorization process of a model pollutant, azo dye C.I. direct red 16 (DR16). In the process, a high temperature thermal decomposition nano synthesized titanium dioxide (TD-TiO2) was applied as photocatalyst. Central composite design (CCD) methodology was used for designing the experiments, modeling and optimization of the process. A quadratic model was established to describe dependency of the decolorization efficiency (DE), as the model response, to some effective operational parameters, i.e. the catalyst dosage, pH and the dye initial concentration. The ANOVA analysis confirmed that all of the variables have significant influence on the model response. Under the established optimum conditions, 92.4% DE was achieved after 45 min; however, to access desirable mineralization efficiency, the process should be continued up to 120 min. All withdrawn samples from the reaction media during the process showed no antibacterial activity, which indicates safety of the treated effluent for disposal into the environment. Also studies showed that the process proceeds via two parallel branches of photolysis and photocatalysis, where propagation of the ultrasonic waves into the reaction media plays a vital promoting role on the latter branch.  相似文献   

16.
The reaction between ethanol and water was studied in the temperature range of 400–600°C at atmospheric pressure over supported catalysts in a microchannel reactor. The supported catalysts prepared by washcoating and impregnation were active in the ethanol steam reforming but differ in their performance. The metal nature, metal loading and type of the carriers markedly influence the catalytic activity and selectivity of the catalysts. Among them Rh-based catalysts exhibited the highest catalytic activity, as compared to Co and Ni-based catalysts. Bimetallic Rh-Ni catalysts exhibit significant improvement in terms of ethanol conversion and hydrogen selectivity and the promoting role of the Ni and CeO2 addition is discussed. The bimetallic Rh-Ni catalyst promoted by CeO2 was stable for at least 100 h without any detectable degradation in performance.  相似文献   

17.
The base catalyst LZ-2, which was the mixture of CaO and Na–NaOH/Al2O3·3H2O, was chosen for the decomposition of phenol tar to generate valuable chemicals. The selectivity of LZ-2 for dimethyl phenyl carbinol, α-methyl styrene dimer and cumenyl phenol was 100%, 100% and 98%, respectively. Under the optimum operating conditions of catalyst 2.5 wt%, operating temperature 603.15 K and decomposition time 3.5 h, decomposition ratios of cumenyl phenol and dimethyl phenyl carbinol were 98.7% and 99.97%, respectively. In addition, the experimental repeatability demonstrated that the total yield of valuable chemicals still reached 90.1% after the catalyst being used five times. Mass and energy balance indicated that the catalytic decomposition was a high potential for the recycling of chemicals from phenol tar.  相似文献   

18.
Emission of NOx is of primary environmental concern in the oil sands industry. Selective catalytic reduction (SCR) is one of the best NOx reduction technologies. The present study discusses the testing of a mechanistic kinetic model for the SCR of NOx to describe the kinetics of V2O5/TiO2 catalysis at atmospheric pressure and a temperature of 623 K in a monolith honeycomb reactor. The modeling results impart insight into the significance of the diffusion with reaction steps and guidance for optimal monolith design for SCR. The validated expression would predict the conversion performance of the catalysts for different values of temperature inlet and ammonia concentration. A good agreement between experimental and model results has been obtained. A heterogeneous numerical model consisting of coupled mass and momentum balance equations was solved using the finite elements method without neglecting the axial dispersion term. The operating range for the catalyst relies on the NO conversion and emission. The optimum operating range for the best performance of the reactor is discussed.  相似文献   

19.
The effect of pyrolysis and oxidation characteristics on the explosion sensitivity and severity parameters, including the minimum ignition energy MIE, minimum ignition temperature MIT, minimum explosion concentration MEC, maximum explosion pressure Pmax, maximum rate of pressure rise (dP/dt)max and deflagration index Kst, of lauric acid and stearic acid dust clouds was experimentally investigated. A synchronous thermal analyser was used to test the particle thermal characteristics. The functional test apparatuses including the 1.2 L Hartmann-tube apparatus, modified Godbert-Greenwald furnace, and 20 L explosion apparatus were used to test the explosion parameters. The results indicated that the rapid and slow weight loss processes of lauric acid dust followed a one-dimensional diffusion model (D1 model) and a 1.5 order chemical reaction model (F1.5 model), respectively. In addition, the rapid and slow weight loss processes of stearic acid followed a 1.5 order chemical reaction model (F1.5 model) and a three-dimensional diffusion model (D3 model), respectively, and the corresponding average apparent activation energy E and pre-exponential factor A were larger than those of lauric acid. The stearic acid dust explosion had higher values of MIE and MIT, which were mainly dependent on the higher pyrolysis and oxidation temperatures and the larger apparent activation energy E determining the slower rate of chemical bond breakage during pyrolysis and oxidation. In contrast, the lauric acid dust explosion had a higher MEC related to a smaller pre-exponential factor A with a lower amount of released reaction heat and a lower heat release rate during pyrolysis and oxidation. Additionally, due to the competition regime of the higher oxidation reaction heat release and greater consumption of oxygen during explosion, the explosion pressure Pm of the stearic acid dust was larger in low concentration ranges and decayed to an even smaller pressure than with lauric acid when the concentration exceeded 500 g/m3. The rate of explosion pressure rise (dP/dt)m of the stearic acid dust was always larger in the experimental concentration range. The stearic acid dust explosion possessed a higher Pmax, (dP/dt)max and Kst mainly because of a larger pre-exponential factor A related to more active sites participating in the pyrolysis and oxidation reaction. Consequently, the active chemical reaction occurred more violently, and the temperature and overpressure rose faster, indicating a higher explosion hazard class for stearic acid dust.  相似文献   

20.
Synthesis of tributyl citrate (TBC) has been studied by using acid functionalized ionic liquid as catalyst. The results indicated that acidic ionic liquids show good catalytic and reusable performance. Under the optimum conditions, using 1-methyl-3-(3-sulfopropyl)-imidazolium hydrogen sulfate as catalyst, the conversion of citric acid was 97%. After easily separated from the products the ionic liquid could be reused 13 times without any disposal, and the conversion of citric acid was not less than 93%. Therefore, an environmental friendly approach for the synthesis of tributyl citrate is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号