首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
李沐  姚强 《环境工程学报》2006,7(4):107-110
综述了热解技术在废旧印刷电路板(printed circuit board,PCB)处理及资源化中应用的研究状况.热解技术可以改善和提高PCB中金属物质的回收效果,减少污染.同时,以热解为基础的PCB中非金属物质回收技术也有着很好的发展前景.PCB热解动力学的研究表明其在1000℃以下的热解过程可划分为分别服从不同反应机理的2个阶段.PCB热解产物中的油、气产物可以回收作为化工原料或燃料.PCB热解过程中含溴阻燃剂的转化和迁移规律以及热解产物中含溴污染物的控制和脱除、热解技术与其他PCB资源化技术的合理有效整合是今后研究的重点.  相似文献   

2.
镍基催化剂对污泥微波热解制生物气效能的影响   总被引:1,自引:0,他引:1  
为实现污水污泥减量化、无害化及资源化的目标,在微波热解污水污泥基础上,进行了镍基催化剂对制取生物气效能影响的研究。采用元素分析对污泥元素进行检测,气/质联用分析(GC-MS)和气相色谱(GC)对热解生物气的组成和含量进行测定。实验结果表明,镍基催化剂的添加对微波热解污水污泥制取生物气有较大促进作用。5%添加量与800℃热解终温条件下具有最佳催化效果:生物气中H2、CO产量最大,H2产量由29 g/kg增加到35.8 g/kg,提升23.4%,CO产量由302.7 g/kg增加到383.3 g/kg,提升26.6%;同时催化剂还能提高热能利用效率,降低热解终温,即5%添加量在700℃热解终温时可达到空白800℃时的产气效果;镍基催化剂主要在500~600℃时发挥催化作用,加快了H2和CO的释放。微波热解污泥制取的生物气具有产量大、富含H2与CO等优点,可推动污水污泥的资源化进程。  相似文献   

3.
分别应用管式炉反应器和热重分析手段对印刷线路板废弃物的热解行为和热解动力学进行了实验研究.在管式炉中,研究不同的热解温度:700~950℃,对产物分布和气体成分分布的影响.实验结果表明:PCB热解气体的主要成分是H2和CO2,气体的热值较低,仅为2.09~5.41 MJ/m3,PCB不适合以气体产物为目标的能源利用方式.应用Friedman方法对PCB的热解动力学进行了研究,求得PCB的热解动力学参数分别是:表观活化能190.92 kJ/mol,反应级数5.97,指前因子lnA47.14 min-1.  相似文献   

4.
在自行设计制备的真空热解炉中进行了废印制线路板的热解实验,得到固体、液体和气体产物。着重研究了热解固体渣中金属铜和非金属玻璃纤维的物理分选、热解固体渣分析及有氧煅烧对玻璃纤维纯度的影响。结果表明,物理分选效率很高,金属铜的回收率和纯度接近100%;热解固体渣含30.35%的铜、56.21%的玻璃纤维和13.45%的炭黑;有氧煅烧去除炭黑可得到高纯度的玻璃纤维。  相似文献   

5.
废弃中药渣催化热解制取生物油的研究   总被引:1,自引:0,他引:1  
利用热重分析仪(TGA)对植物类中药渣的热解特性进行了研究,用Coats-Redfern积分法计算了其热解动力学参数,得出中药渣热解反应符合一级反应动力学方程,其活化能较低,为36.0kJ/mol。考察了热解温度对气体、液体、固体产物的影响,在723K时,液体产物生物油产率最高,为39%。以介孔分子筛SBA-15以及分别负载Al、Sn、Ni、Cu和Mg的SBA-15作为催化剂,研究催化热解对气体、液体、固体产率及生物油组分的影响。研究表明,Al-SBA-15的催化效果较好,液体产率最高,为36%;采用元素分析仪和热值测定仪,得到用Al-SBA-15作为催化剂时生物油的氧质量分数最低,低位热值最高。用GC/MS对生物油组分的分析结果表明,添加Al-SBA-15后,热解产物中脂肪族和芳香族化合物增加,而含氧化合物减少。  相似文献   

6.
利用微波热解城市污水污泥是实现污泥无害化、减量化和资源化的有效出路之一,但热解过程中产生的恶臭气体(如H2S等)也会对大气环境造成严重的影响.以微波热解城市污水污泥10 min所收集的气体为研究对象,研究了热解终温、污泥含水率、升温速率及矿物催化剂种类4个因素对热解过程中H2S产量的影响.结果表明,随着热解终温的升高,城市污水污泥微波热解过程中的H2S产量逐渐上升,800℃时H2S产量为5.86 mg/g(以干污泥计,下同);含水率在50%~80%时,随着含水率的增加,城市污水污泥微波热解过程中的H2S产量逐渐上升,当含水率增至90%时,污泥出现了泥水分层现象,致使后续热解反应无法进行,故没有H2S产生;升温速率越快,热解反应的活化能越高,反应不易进行,H2S产量降低;添加矿物催化剂能有效固硫,且雷尼镍基催化剂的效果更好,热解终温为800℃时的H2S产量为4.15 mg/g,较不添加矿物催化剂时降低约30%;可通过铜铁吸收法和活性炭吸附两步工艺对热解产生的H2S加以吸收处理,处理后的H2S排放浓度满足《恶臭污染物排放标准》(GB 14554-93)中的厂界一级标准限值.  相似文献   

7.
印刷线路板废弃物的热解与动力学实验研究   总被引:2,自引:0,他引:2  
分别应用管式炉反应器和热重分析手段对印刷线路板废弃物的热解行为和热解动力学进行了实验研究。在管式炉中,研究不同的热解温度:700~950℃,对产物分布和气体成分分布的影响。实验结果表明:PCB热解气体的主要成分是H2和CO2,气体的热值较低,仅为2.09~5.41MJ/m^3,PCB不适合以气体产物为目标的能源利用方式。应用Friedman方法对PCB的热解动力学进行了研究,求得PCB的热解动力学参数分别是:表观活化能190.92kJ/mol,反应级数5.97,指前因子lnA47.14min^-1。  相似文献   

8.
微波辐射对生物质热解过程的影响   总被引:2,自引:0,他引:2  
自行设计加工了微波热重实验装置,研究了在微波辐射下菜籽粕热解过程特征及其产物产出规律.在此基础上,对比分析了菜籽粕微波热解与电热热解产物产出率之间的差异.结果发现,在菜籽粕微波热解过程中,半纤维素的反应区间为180 ~ 370℃,其转化率可以达到87.0%;纤维素的热解反应区间为370 ~ 550℃,其热解转化率32.8%.表明在微波作用下,纤维素的热稳定性远高于半纤维素.在菜籽粕的微波热解过程中,冷凝液的产生主要集中在100 ~400℃的温度范围内,热解得到的生物质油类主要是菜籽粕的半纤维素热解生成的.不凝气的产生主要集中在300 ~ 600℃的温度范围内,并且主要为纤维素与木质素的热解反应产生的.与电热方式相比,菜籽粕的微波热解升温速率较快,菜籽粕微波热解生物质炭的产出率较高,冷凝液产出率相对较低.  相似文献   

9.
通过对锯末、稻壳、纸屑、橱芥、塑料和橡胶6种具有代表性的有机固体废弃物原料的热解实验,测量了它们三相产物收率,并分析了它们固体、液体和气体三相产物的组成.特别对液体产物,针对它们的特殊性分别采用了层析、模拟蒸馏和全烃气相色谱分析,详细探讨了热解焦油的具体组分,得到了热解法处理有机固体废弃物的一些有意义的数据.  相似文献   

10.
废旧电路板制备的酚醛树脂的研究   总被引:1,自引:1,他引:0  
废旧电路板中的树脂与碳酸钙共同加热,获得气体、固体和热解油3种热解产物.以电路板的热解油为原料、以热解过程中产生的氨气为催化剂,可以合成醇溶性热解油酚醛树脂,经分析测试表明,其组成、结构和固化特征与常规工业生产的氨催化酚醛树脂的性能相近,主要性能指标:粘度、游离酚浓度和胶合强度等均可达到醇溶性酚醛树脂产品的质量要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号