首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超声破解污泥影响因素分析   总被引:2,自引:1,他引:2  
超声破解是促进污泥快速厌氧消化的一项新技术,不仅超声波参数直接影响污泥破解效果,而且污泥性质和辅助条件也影响污泥破解效果.以污泥溶解性化学需氧量增加值(SCOD )和污泥破解度(DDSCOD)为评价参数,通过超声破解不同性质污泥试验,得出污泥的初始温度、pH值和污泥浓度等参数对污泥破解效果起重要作用.增加搅拌和曝气辅助条件破解污泥的试验,得出间歇搅拌和曝气能增强污泥超声破解效果.  相似文献   

2.
光-Fenton氧化破解剩余污泥和改善污泥脱水性能   总被引:5,自引:1,他引:4  
利用紫外光-Fenton(光-Fenton)氧化处理城市剩余污泥,通过上清液的SCOD、多聚糖以及蛋白质浓度表征污泥胞外聚合物(EPS)的破解情况,通过污泥过滤比阻(SRF)和滤饼含水率表征污泥脱水性能的变化。结果表明,光.Fenton氧化破解污泥EPS和改善污泥脱水性能的效能明显优于单独Fenton反应和单独紫外光照射处理。pH为3、反应时间为2h,H2O2投加量为4g/L和Fe^2+投加量为0.6mg/L是光-Fenton氧化处理供试污泥的适宜条件。在适宜处理条件下,污泥上清液中的SCOD、多聚糖和蛋白质浓度分别由67.46mg/L、12.53mg/L和8.62mg/L增加到568.12mg/L、448.62mg/L和292.94mg/L;SRF和滤饼含水率分别由2.4×10^S2/g和88.52%下降至5.26×10^8S^2/g和76.36%。光-Fenton反应在有效破懈污泥的同时,提高了污泥的脱水性能.有利于污泥的减量化。  相似文献   

3.
Fenton’s reagent and sawdust were used on the dewaterability of the raw oily sludge in this study. The result shows that the combination of the two treatment processes is favorable, although the application of Fenton’s reagent only is not so good. The capillary suction time (CST) and specific resistance to filtration (SRF) were used to evaluate the effect of dewaterability of the raw oily sludge, and the CST and SRF values are reduced from 1,760 s and 13.8?×?1012 m/kg to 185 s and 1.5?×?1012 m/kg, respectively. The dry matter contents of sludge cakes and properties of the supernatant all gained when using only the Fenton’s reagent and when using the combined treatment with Fenton’s reagent and sawdust respectively were investigated. The results indicate that the oily sludge is more suitable for further treatment after combined process with Fenton’s reagent and sawdust.  相似文献   

4.
Potassium carbonate sulfation plates, monitored monthly for 11 years from 48 sites in 11 cities in Gansu Province, China, provide a crude estimate of cumulative SO2 dry depositions. Measured SO2 dry deposition rates were 1.6–472 mg m−2 day−1 and had seasonal variations with maxima in winter and minima mainly during summer as a result of higher winter and lower summer SO2 concentrations. The 11-year monthly average SO2 dry deposition rates are 23.2–248.97 and 11.7–175.6 mg m−2 day−1 in the eleven cities in winter and summer, respectively. A monthly average SO2 deposition velocity was also estimated from 0.06 to 9.72 cm s−2 in the 11 cities studied with a 11-year average maximum value of about 1.1–2.7 cm s−2 in April and July and a 11-year average minimum value of about 0.2–1.0 cm s−1 in January. The SO2 dry deposition velocity also exhibits an increasing with wind speed in basins of less than 500 mm annual precipitation. In contrast, due to influences of the relative humidity in valleys of more than 500 mm annual precipitation, it shows a decreasing trend with wind speed increasing.  相似文献   

5.
《Chemosphere》2009,74(11):1799-1804
Decabromodiphenyl ethane (deBDethane) is an additive flame retardant marketed as a replacement for decabromodiphenyl ether (decaBDE). The structures of the two chemicals are similar, and hence deBDethane may also become an environmental contaminant of concern. Environmental data on deBDethane are scarce. Since sewage sludge is an early indicator of leakage of these chemicals into the environment, an international survey of deBDethane and decaBDE levels in sludge was conducted. Samples were collected from 42 WWTPs in 12 different countries and analyzed with GC/LRMS. DeBDethane was present in sludge from all countries and may therefore be a worldwide concern. The levels of deBDethane in sludge samples from the Ruhr area of Germany were the highest so far reported in the literature (216 ng g−1 d.wt.). The [deBDethane]/[decaBDE] quotient for the whole data set ranged from 0.0018 to 0.83. High ratios were found in and around Germany where deBDethane imports are known to have been high and substitution of decaBDE with deBDethane is likely to have occurred. Low ratios were found in the USA and the UK, countries that have traditionally been large users of decaBDE. An estimate of the flux of deBDEthane from the technosphere via WWTPs to the environment within the European Union gave 1.7 ± 0.34 mg annually per person. The corresponding value for decaBDE was 41 ± 22 mg annually per person.  相似文献   

6.
Anaerobic sludge digester supernatant characterized by 569 mg TKN L?1, high color and a COD/N ratio of 1.4 was treated in granular sequencing batch reactors (GSBRs) followed by post-denitrification (P-D) and ultrafiltration (UF) steps. The use of granular sludge allowed for the oxidation of ammonium in anaerobic digester supernatant at all investigated GSBR cycle lengths of 6, 8 and 12 h. The highest ammonium removal rate (15 mg N g?1 VSS h?1) with removal efficiency of 99% was noted at 8 h.Since the GSBR effluent was characterized by a high concentration of nitrites, slowly-degradable substances and biomass, additional purification steps were applied. In P-D stage, the microbial activity of granular biomass in the GSBR effluent was implemented. The P-D was supported by external carbon source addition and the most advantageous variant comprised dosing of half of the theoretical acetate dose for nitrite reduction in the 3-h intervals. The use of the system consisting of the GSBR with 8 h, an optimal P-D variant and a UF for the treatment of anaerobic digester supernatant allowed for the 99%, 71% and 97% reductions of TKN, COD and color, respectively.  相似文献   

7.
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) along with methoxylated polybrominated diphenyl ethers (MeO-PBDEs) have been frequently identified as natural compounds in marine environment and also assumed as metabolites of PBDEs. In the present study, nine OH-PBDE, nine MeO-PBDE and 10 PBDE congeners were studied in the sewage sludge collected from 36 municipal wastewater treatment plants (WWTPs) in 27 cities of China. The results suggest that OH-PBDEs and PBDEs are ubiquitous in sewage sludge in China, however, methoxylated PBDEs were not detectable. Composition profiles of detected OH-PBDE congeners were different depending on the sampling location. ΣOH-PBDEs in WWTPs sludge ranged from 0.04 to 2.24 ng g?1 dry weight (mean: 0.35 ng g?1 dry weight). The total amount of the two most prominent congeners (6-OH-BDE-47 + 2′-OH-BDE-68) accounted for about 53.3–100% of the sum of all six identified congeners. A significant linear relationship was found between 6-OH-BDE-47 and 2′-OH-BDE-68. A distinct geographical distribution of ΣOH-PBDEs was observed with greater concentrations of OH-PBDEs at coastal areas than inland regions in China.  相似文献   

8.
《Chemosphere》2008,70(11):1722-1727
The impact of different quinoid redox mediators on the simultaneous conversion of sulphide and nitrate in a denitrifying culture was evaluated. All quinones evaluated, including anthraquinone-2,6-disulphonate (AQDS), 2-hydroxy-1,4-naphthoquinone and 1,2-naphthoquinone-4-sulphonate (NQS) were reduced by sulphide under abiotic conditions. NQS showed the highest reduction rate by sulphide (132 μmol h−1) and promoted the maximum rate of sulphide oxidation (87 μmol h−1) by denitrifying sludge, which represents an increase of 44% compared to the control lacking quinones. The reduced form of AQDS (AH2QDS) served as an electron donor for the microbial reduction of nitrite and N2O, which represents the first demonstration of hydroquinones supporting the microbial reduction of denitrifying intermediates. The results taken as a whole suggest that some quinones may significantly increase the rate of removal of S and N under denitrifying conditions.  相似文献   

9.
Ecotoxicological laboratory tests (lower-tier tests) are fundamental tools for assessing the toxicity of pesticides to soil organisms. In this study, using these tests under tropical conditions, we quantified the impact of the insecticides imidacloprid, fipronil, and thiametoxam, and the fungicides captan and carboxin + thiram, all of which are used in the chemical treatment of crop seeds, on the survival, reproduction, and behavior of Eisenia andrei (Oligochaeta). With the exception of imidacloprid, none of the pesticides tested caused mortality in E. andrei in artificial soils. The LC50 of imidacloprid was estimated as 25.53 mg active ingredient kg?1 of dry soil. Earthworm reproduction rates were reduced by imidacloprid (EC50 = 4.07 mg kg?1), fipronil (EC20 = 23.16 mg kg?1), carboxin + thiram (EC50 = 56.38 mg kg?1), captan (EC50 = 334.84 mg kg?1), and thiametoxam (EC50 = 791.99 mg kg?1). Avoidance behavior was observed in the presence of imidacloprid (AC50 = 0.11 mg kg?1), captan (AC50 = 33.54 mg kg?1), carboxin + thiram (AC50 = 60.32 mg kg?1), and thiametoxam (AC50 = >20 mg kg?1). Earthworms showed a preference for soils with the insecticide fipronil. Imidacloprid was the most toxic of the substances tested for E. andrei. The avoidance test was the most sensitive test for most pesticides studied, but results varied between pesticides. These results offer new insights on the toxicity of pesticides used to treat seeds in tropical regions. However, they should be complemented with higher-tier tests in order to reduce the uncertainties in risk assessment.  相似文献   

10.
The relative rate method has been used to determine the rate constants for the gas-phase reactions of NO3 radicals with a series of acrylate esters: ethyl acrylate (k1), n-butyl acrylate (k2), methyl methacrylate (k3) and ethyl methacrylate (k4) at 298 ± 1 K and 760 Torr. The obtained rate constants are k1 = (1.8 ± 0.25) × 10?16 cm3 molecule?1 s?1, k2 = (2.1 ± 0.33) × 10?16 cm3 molecule?1 s?1, k3 = (3.6 ± 1.2) × 10?15 cm3 molecule?1 s?1, k4 = (4.9 ± 1.7) × 10?15 cm3 molecule?1 s?1. The experimental rate constants are in good agreement with theoretical rate constants calculated by an algorithm of the correlation between the rate constants and the orbital energies for the reactions of unsaturated VOCs with NO3 radicals. In addition, the atmospheric lifetimes of the compound against NO3 attack are estimated and the results show that NO3 reactions contribute little to the atmospheric losses of acrylate esters except in polluted regions.  相似文献   

11.
The present paper presents results from the analysis of 29 individual C2–C9 hydrocarbons (HCs) specified in the European Commission Ozone Directive. The 29 HCs are measured in exhaust from common, contemporary vehicle/engine/fuel technologies for which very little or no data is available in the literature. The obtained HC emission fingerprints are compared with fingerprints deriving from technologies that are being phased out in Europe. Based on the total of 138 emission tests, thirteen type-specific fingerprints are extracted (Mean ± SD percentage contributions from individual HCs to the total mass of the 29 HCs), essential for receptor modelling source apportionment. The different types represent exhaust from Euro3 and Euro4 light-duty (LD) diesel and petrol-vehicles, Euro3 heavy-duty (HD) diesel exhaust, and exhaust from 2-stroke preEuro, Euro1 and Euro2 mopeds. The fuels comprise liquefied petroleum gas, petrol/ethanol blends (0–85% ethanol), and mineral diesel in various blends (0–100%) with fatty acid methyl esters, rapeseed methyl esters palm oil methyl esters, soybean oil methyl or sunflower oil methyl esters. Type-specific tracer compounds (markers) are identified for the various vehicle/engine/fuel technologies.An important finding is an insignificant effect on the HC fingerprints of varying the test driving cycle, indicating that combining HC fingerprints from different emission studies for receptor modelling purposes would be a robust approach.The obtained results are discussed in the context of atmospheric ozone formation and health implications from emissions (mg km?1 for LD and mopeds and mg kW h?1 for HD, all normalised to fuel consumption: mg dm?3 fuel) of the harmful HCs, benzene and 1,3-butadiene.Another important finding is a strong linear correlation of the regulated “total” hydrocarbon emissions (tot-HC) with the ozone formation potential of the 29 HCs (ΣPO3 = (1.66 ± 0.04) × tot-RH; r2 = 0.93). Tot-HC is routinely monitored in emission control laboratories, whereas C2–C9 are not. The revealed strong correlations broadens the usability of data from vehicle emission control laboratories and facilitates the comparison of the ozone formation potential of HCs in exhaust from of old and new vehicle/engine/fuel technologies.  相似文献   

12.
Atmospheric water-soluble organic nitrogen (WSON) was determined on size-segregated aerosol particles collected during a two years period (2005–2006) in a remote marine location in the Eastern Mediterranean (Finokalia, Crete island). Average concentration of WSON was 5.5 ± 3.9 nmol m?3 and 11.6 ± 14.0 nmol m?3 for coarse (PM1.3-10) and fine (PM1.3) mode respectively, corresponding to 13% of Total Dissolved Nitrogen (TDN) in both modes. Air masses origin and correlation with tracers of natural and anthropogenic sources indicate that combustion process (biomass burning and fossil fuel) and African dust play an important role in regulating levels of WSON in both coarse and fine aerosol fractions. Chemical speciation of organic nitrogen pool was attempted by analyzing 47 fine aerosol samples (PM1) for 17 free amino acids (N-FAA), dimethylamine (DMA) and trimethylamine (TMA). The average concentration of N-FAA was 0.5 ± 0.5 nmol m?3, while the average concentration of DMA was 0.2 ± 0.8 nmol m?3, TMA was below detection limit. The percentage contribution of N-FAA and DMA to WSON was 2.1 ± 2.3% and 0.9 ± 3.4%, respectively.  相似文献   

13.
A high volume electrostatic field-sampler was developed for collection of fine particles, which easily can be recovered for subsequent sample characterisation and bioassays. The sampler was based on a commercial office air cleaner and consisted of a prefilter followed by electrostatic collection plates operating at 2.7 kV. The sampler performance was characterised for 26 nm to 5.4 μm-size particles in urban street air. The collection efficiency reached a maximum (60–70%) between 0.2 and 0.8 μm and dropped to ∼25% at 30 nm and 2.5 μm, respectively. After extraction in water, the particle loss was<2%. The extraction efficiency for dry lyophilised particulate matter was above 80%, allowing retrievement of ∼12 mg day−1 in urban street air at PM10 levels of ∼24 μg m−3. The ozone generating capacity of the corona discharge during operation was on the order of 10 ppb. A polycyclic aromatic hydrocarbons (PAH) degradation test using benzo[a]pyrene as a model showed that ∼85% was degraded after 24 h. However, similar results were observed when the corona discharge was switched off. Hence, the ozone and other corona discharge reactants do not appear to contribute considerably to PAH-degradation. The overall results show that the sampler type is a promising alternative to traditional sampling of fine particles for bulk analysis and bioassays. The main advantages are simple operation, high stability, high quantifiable particle recovery rates and low cost.  相似文献   

14.
We reconstructed the historical trends in atmospheric deposition of nitrogen to Cape Cod, Massachusetts, from 1910 to 1995 by compiling data from literature sources, and adjusting the data for geographical and methodological differences. The reconstructed data suggest that NO3-N wet deposition to this region increased from a low of 0.9 kg N ha−1 yr−1 in 1925 to a high of approximately 4 kg N ha−1 yr−1 around 1980. The trend in NO3-N deposition has remained since the early 1980s at around 3.6 kg N ha−1 yr−1. In contrast, NH4-N wet deposition decreased from more than 4 kg N ha−1 yr−1 in the mid 1920s to about 1.5 kg N ha−1 yr−1 from the late-1940s until today. Emissions of NOx-N in the Cape Cod airshed increased at a rate of 2.1 kg N ha−1 per decade since 1910, a rate that is an order of magnitude higher than NO3-N deposition. Estimates of NH3 emissions to the northeast United States and Canada have decreased slightly throughout the century, but the decrease in reconstructed N-NH4+ deposition rates does not parallel emissions estimates. The trend in reconstructed total nitrogen deposition suggests an overall increase through the century at a rate of 0.26 kg N ha−1 per decade. This overall increase in deposition may expose coastal forests to rates of nitrogen addition that, if exceeded, could induce nitrogen saturation and increase nitrogen loads to adjoining estuaries.  相似文献   

15.
Currently, in operational modelling of NH3 deposition a fixed value of canopy resistance (Rc) is generally applied, irrespective of the plant species and NH3 concentration. This study determined the effect of NH3 concentration on deposition processes to individual moorland species. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to Deschampsia cespitosa (L.) Beauv., Calluna vulgaris (L.) Hull, Eriophorum vaginatum L., Cladonia spp., Sphagnum spp., and Pleurozium schreberi (Brid.) Mitt. Measurements were conducted across a wide range of NH3 concentrations (1–140 μg m−3).NH3 concentration directly affects the deposition processes to the vegetation canopy, with Rc, and cuticular resistance (Rw) increasing with increasing NH3 concentration, for all the species and vegetation communities tested. For example, the Rc for C. vulgaris increased from 14 s m−1 at 2 μg m−3 to 112 s m−1 at 80 μg m−3. Diurnal variations in NH3 uptake were observed for higher plants, due to stomatal uptake; however, no diurnal variations were shown for non-stomatal plants. Rc for C. vulgaris at 80 μg m−3 was 66 and 112 s m−1 during day and night, respectively. Differences were found in NH3 deposition between plant species and vegetation communities: Sphagnum had the lowest Rc (3 s m−1 at 2 μg m−3 to 23 at 80 μg m−3), and D. cespitosa had the highest nighttime value (18 s m−1 at 2 μg m−3 to 197 s m−1 at 80 μg m−3).  相似文献   

16.
We present two years (January 2007–December 2008) of atmospheric SO2, NO2 and NH3 measurements from ten background or rural sites in nine provinces in China. The measurements were made on a monthly basis using passive samplers under careful quality control. The results show large geographical and seasonal variations in the concentrations of these gases. The mean SO2 concentration varied from 0.7 ± 0.4 ppb at Waliguan on Qinghai Plateau to 67.3 ± 31.1 ppb at Kaili in Guizhou province. The mean NO2 concentration ranged from 0.6 ± 0.4 ppb at Waliguan to 23.9 ± 6.9 ppb at Houma in southern Shanxi. The mean NH3 concentration ranged from 2.8 ± 3.0 ppb at Shangdianzi in northeastern Beijing to 13.7 ± 8.4 ppb at Houma. At most sites, SO2 and NO2 peaked in winter and reached minima in summer, while NH3 showed maximum values in summer and lower values in cold seasons. On the whole, the geographical distributions of the observed gas concentrations are consistent with those of emissions. The ground measurements of SO2 and NO2 are contrasted to the SCIAMACHY SO2 and OMI NO2 tropospheric columns, respectively. Although the satellite data can capture the main features of emissions and concentrations of SO2, they do not reflect the variations of SO2 in the surface layer. The situation is better for the case of NO2. The OMI NO2 columns capture the geographical differences in the ground NO2 and correlate fairly well with the ground levels of NO2 at six of the ten sites.  相似文献   

17.
Dry deposition modelling typically assumes that canopy resistance (Rc) is independent of ammonia (NH3) concentration. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to a moorland composed of a mixture of Calluna vulgaris (L.) Hull, Eriophorum vaginatum L. and Sphagnum spp. Ammonia was applied at a wide range of concentrations (1–100 μg m−3). The physical and environmental properties and the testing of the chamber are described, as well as results for the moorland vegetation using the ‘canopy resistance’ and ‘canopy compensation point’ interpretations of the data.Results for moorland plant species demonstrate that NH3 concentration directly affects the rate of NH3 deposition to the vegetation canopy, with Rc and cuticular resistance (Rw) increasing with increasing NH3 concentrations. Differences in Rc were found between night and day: during the night Rc increases from 17 s m−1 at 10 μg m−3 to 95 s m−1 at 80 μg m−3, whereas during the day Rc increases from 17 s m−1 at 10 μg m−3 to 48 s m−1 at 80 μg m−3. The lower resistance during the day is caused by the stomata being open and available as a deposition route to the plant. Rw increased with increasing NH3 concentrations and was not significantly different between day and night (at 80 μg m−3 NH3 day Rw=88 s m−1 and night Rw=95 s m−1). The results demonstrate that assessments using fixed Rc will over-estimate NH3 deposition at high concentrations (over ∼15 μg m−3).  相似文献   

18.
Several types of fuels, including coal, fuel wood, and biogas, are commonly used for cooking and heating in Chinese rural households, resulting in indoor air pollution and causing severe health impacts. In this paper, we report a study monitoring multiple pollutants including PM10, PM2.5, CO, CO2, and volatile organic compounds (VOCs) from fuel combustion at households in Guizhou province of China. The results showed that most pollutants exhibited large variability for different type of fuels except for CO2. Among these fuels, wood combustion caused the most serious indoor air pollution, with the highest concentrations of particulate matters (218~417 μg m?3 for PM10 and 201~304 μg m?3 for PM2.5), and higher concentrations of CO (10.8 ± 0.8 mg m?3) and TVOC (about 466.7 ± 337.9 μg m?3). Coal combustion also resulted in higher concentrations of particulate matters (220~250 μg m?3 for PM10 and 170~200 μg m?3 for PM2.5), but different levels for CO (respectively 14.5 ± 3.7 mg m?3 for combustion in brick stove and 5.5 ± 0.7 mg m?3 for combustion in metal stove) and TVOC (170 mg m?3 for combustion in brick stove and 700 mg m?3 for combustion in metal stove). Biogas was the cleanest fuel, which brought about the similar levels of various pollutants with the indoor case of non-combustion, and worth being promoted in more areas. Analysis of the chemical profiles of PM2.5 indicated that OC and EC were dominant components for all fuels, with the proportions of 30~48%. A high fraction of SO42? (31~34%) was detected for coal combustion. The cumulative percentages of these chemical species were within the range of 0.7~1.3, which was acceptable for the assessment of mass balance.  相似文献   

19.
To evaluate the tropical wetlands contribution to the methane (CH4) burden better, field campaigns were performed during 2004 and 2005 near the Miranda River, in five sites inside the Brazilian Pantanal region. The CH4 fluxes were determined using the static chamber technique. Environmental variables that may affect CH4 emissions, as the water depth, the water and air temperatures were also measured. The overall average of the 320 individual CH4 flux measurements made between March/2004 and March/2005 was 142±314 mg CH4 m−2 d−1, which is a value near the ones observed in other tropical flooded regions. About 47% of the fluxes measurements presented nonlinear increases in the chamber concentrations, which were assumed to be linked to CH4 losses through bubbles. The bubble flux represented about 90% of the total CH4 losses in the measurements and ranged from 1 to 2187 mg CH4 m−2 d−1 with an average of 292±410 mg CH4 m−2 d−1 (median: 153 mg CH4 m−2 d−1). The diffusive flux ranged from 1 to 124 mg CH4 m−2 d−1, with an average of 10±17 mg CH4 m−2 d−1 (median: 5 mg CH4 m−2 d−1). The fluxes from lakes were smaller than those observed in the floodplains, where the flooding was more dependent on the seasonal cycle. The diffusive flux showed a slight, but not statistically significant seasonal variation, following the seasonal variation of the flooding of the Pantanal region. A rough estimative of the total annual CH4 emission shows that the contribution of the Pantanal is about 3.3 Tg CH4 yr−1, which represents about 3.3% of the total CH4 emissions estimated to be originated in wetlands ecosystems. It may be a conservative estimate, which may present a large interannual variation, since it was obtained during one of the lowest flood of the Pantanal in recent years.  相似文献   

20.
Understanding the spatial–temporal variations of source apportionment of PM2.5 is critical to the effective control of particulate pollution. In this study, two one-year studies of PM2.5 composition were conducted at three contrasting sites in Hong Kong from November 2000 to October 2001, and from November 2004 to October 2005, respectively. A receptor model, principal component analysis (PCA) with absolute principal component scores (APCS) technique, was applied to the PM2.5 data for the identification and quantification of pollution sources at the rural, urban and roadside sites. The receptor modeling results identified that the major sources of PM2.5 in Hong Kong were vehicular emissions/road erosion, secondary sulfate, residual oil combustion, soil suspension and sea salt regardless of sampling sites and sampling periods. The secondary sulfate aerosols made the most significant contribution to the PM2.5 composition at the rural (HT) (44 ± 3%, mean ± 1σ standard error) and urban (TW) (28 ± 2%) sites, followed by vehicular emission (20 ± 3% for HT and 23 ± 4% for TW) and residual oil combustion (17 ± 2% for HT and 19 ± 1% for TW). However, at the roadside site (MK), vehicular emissions especially diesel vehicle emissions were the major source of PM2.5 composition (33 ± 1% for diesel vehicle plus 18 ± 2% for other vehicles), followed by secondary sulfate aerosols (24 ± 1%). We found that the contribution of residual oil combustion at both urban and rural sites was much higher than that at the roadside site (2 ± 0.4%), perhaps due to the marine vessel activities of the container terminal near the urban site and close distance of pathway for the marine vessels to the rural site. The large contribution of secondary sulfate aerosols at all the three sites reflected the wide influence of regional pollution. With regard to the temporal trend, the contributions of vehicular emission and secondary sulfate to PM2.5 showed higher autumn and winter values and lower summer levels at all the sites, particularly for the background site, suggesting that the seasonal variation of source apportionment in Hong Kong was mainly affected by the synoptic meteorological conditions and the long-range transport. Analysis of annual patterns indicated that the contribution of vehicular emission at the roadside was significantly reduced from 2000/01 to 2004/05 (p < 0.05, two-tail), especially the diesel vehicular emission (p < 0.001, two-tail). This is likely attributed to the implementation of the vehicular emission control programs with the tightening of diesel fuel contents and vehicular emission standards over these years by the Hong Kong government. In contrast, the contribution of secondary sulfate was remarkably increased from 2001 to 2005 (p < 0.001, two-tail), indicating a significant growth in regional sulfate pollution over the years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号