首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以抚仙湖为研究对象,基于三维水动力-水质模型EFDC平台,开发了EFDC-神经网络(NN)耦合模型;并选用30d移动平均值为解译方式核算抚仙湖在不同风险下的流域负荷削减(TMDL).结果表明,对于100%的达标频度,为了达到I类水质,TP允许增加14%~18%,COD允许增加9%~11%,但TN需要削减13%~14%.如果放松对达标频度的要求,污染负荷将允许相应地增加.研究结果可为流域管理依据不同的风险与管理费用偏好实施流域削减提供基础.  相似文献   

2.
报道了程海冬季水环境现状,评价了水质和富营养化状态,2009年冬季,程海水质为Ⅳ类水质,为中营养状态。  相似文献   

3.
报道了程海冬季水环境现状,评价了水质和富营养化状态,2009年冬季,程海水质为Ⅳ类水质,为中营养状态。  相似文献   

4.
水质模型在东莞污染源负荷估算中的应用   总被引:1,自引:1,他引:0  
为解决水环境规划中经常碰到的污染源数据缺失问题,以水质数学模型为基础,通过污染源-水质响应关系,建立了从水质监测数据推算污染源负荷的计算方法.主要步骤包括:通过水质模型建立污染源负荷和水质数据之间的响应关系;提出估算污染源负荷的优化目标和约束方程;优化问题求解,评估污染源负荷估算效果,确定污染源负荷. 同时,以东莞市为例,对该市用水量和污染源特征进行了分析,并采用圣维南方程,建立了一维河流水质模型. 最后以东莞市2005年水质调查数据为基础,对比实测水质数据和模型模拟结果,对东莞市2005年的污染源负荷进行了评估. 结果表明,东莞2005年生活和工业污染源CODCr排放量为25.2×104 t,其中,生活源占60.4%,工业污染源占39.6%. 东莞污染源负荷估算结果能够较好地反映当时条件下的水质变化过程.  相似文献   

5.
模糊多目标水质管理模型求解及实例验证   总被引:1,自引:0,他引:1       下载免费PDF全文
综合考虑排污方利益与环境管理部门对水质的要求,运用模糊集理论,建立了基于模糊多目标优化的污染负荷分配模型.通过引入污染物削减率和对目标的模糊量化,有效避开了污水处理费用及多目标化为单目标时各目标之间的权重难以确定等问题,以方便水质管理.在求解技术上,采用基于概率的全局搜索方法求解,求得的解为河道沿线各排污口污染物最优削减率.模型应用于汉江襄樊-仙桃河段的水质管理,取得了较满意的结果.  相似文献   

6.
毒性污染物质水质模型的研究,是当前水质模型研究领域的难点与热点.该文在查询了世界范围内开发的水质模型基础上,对当今得到广泛应用的毒性污染物质水质模型的主要特征进行了分析,以方便使用者根据研究需要而选择合适的模型,同时促进相关研究的进展.  相似文献   

7.
青岛海洋倾倒区海水水质模糊综合评价   总被引:7,自引:1,他引:7  
基于1985~2003年青岛海洋倾倒区水质监测资料,应用环境质量分级与评价的模糊综合-加权平均复合模型对青岛倾倒区海水水质现状及1985~2003年各年度海水水质进行了综合评价,并在此基础上分析了18 a间的海水水质变化趋势.结果表明:20世纪90年代由于受倾倒的疏浚物中污染物影响,海水水质较差,均为Ⅱ级水质,2000年后海水水质一直维持良好,均为Ⅰ级水质.历年水质优劣顺序为:2000>2002>2003>1997>1985>1991年.  相似文献   

8.
2006年夏季广西合浦海草示范区海水水质模糊综合评价   总被引:4,自引:0,他引:4  
基于2006年夏季广西合浦海草示范区生态调查监测资料,应用环境质量分级与评价的模糊综合-加权平均复合模型对合浦海草示范区海水水质现状进行了综合评价.结果表明,5号在沙田码头附近,6号在石头埠排污口附近,海水水质较差,分别为Ⅲ级水质和Ⅱ级水质.其它站位水质为Ⅰ级.  相似文献   

9.
在污染源调查和污染负荷估算的基础上,利用Delft 3D数学模型对大鹏湾现状和未来条件下的水质进行了数值模拟,并采用模型试算法估算出了大鹏湾的水环境容量.针对有关影响大鹏湾水质的主要因素,对大鹏湾水质区域控制策略提出建议,并制定控制策略实施方案.  相似文献   

10.
湟水河流域水质时空变化特征及其污染源解析   总被引:4,自引:0,他引:4  
邱瑀  卢诚  徐泽  王玉秋 《环境科学学报》2017,37(8):2829-2837
基于2012—2014年水质数据,综合应用多元统计分析与一维水质模型(Qual2Kw),系统分析了湟水河水质时空变化及其污染物来源.结果表明:湟水河河流水质主要受化学需氧量、生化需氧量、铜、六价铬、水温、溶解氧、总氮、氨氮等8项水质指标影响,且氨氮和总氮污染严重;湟水河水质时间上可划分为3个时段:时段1(6—10月)、时段2(5月和11月)和时段3(12月—4月),时段1水质明显优于时段2和时段3,湟水河水体受工业生活排放污水的影响显著,面源污染对河流水质的影响低于点源污染;空间上可分为3大区段:湟水河上游、中游和下游,中游西宁市段污染较重;基于Qual2Kw模型的污染物贡献比例计算结果揭示了湟水河民和桥断面的氨氮负荷主要来源于扎马隆(S2)-西钢桥(S3),总氮主要来源于报社桥(S5)-小峡桥(S6),其中支流点源是氨氮的主要污染源,普通点源即城镇生活污水和工业废水排放是总氮的主要污染来源,上游干流农田地表径流、畜禽养殖废水、农村生活污水等污染源氨氮、总氮排放也不容忽视.研究结果可以为湟水河流域水环境管理提供科学依据.  相似文献   

11.
北湖流域水质改善系统动力学研究   总被引:1,自引:1,他引:0  
利用系统动力学擅长研究动态、非线性复杂系统的特点,将其应用于北湖水质改善分析,构建了系统动力学-水质耦合模型,可实现长时间序列的连续模拟和水环境管理的情景分析。文章定量分析了三产比例调整、城镇化率提高与污水集中处理等因素对流域纳污控制及水质改善的影响,推演出可协调经济发展-水环境保护-污水治理资金三方矛盾的合理方案,为类似小城镇的发展提供可借鉴的思路和方法。  相似文献   

12.
引江济巢对巢湖的水环境影响分析   总被引:4,自引:0,他引:4  
建立了巢湖一维水质模型DYRESM-CAEDYM,并利用2005年的实测水质、水文、气象等数据对模型进行了参数率定,确立了适用于巢湖水环境特征的水质模型参数. 应用该模型模拟了调水对巢湖TN,TP和Chl-a指标的影响,结果表明,年调水量为9.57×108 m3时可使巢湖的ρ(TN)和ρ(TP)下降约16%和19%,ρ(Chl-a)峰值从51.42 μg/L降至38.96 μg/L,ρ(Chl-a)超过30 μg/L的天数从26 d减少到16 d,对巢湖夏季蓝藻暴发具有一定的缓解作用. 对比分析了流域污染综合治理对巢湖水环境的改善效果,结果显示,如果各支流的入湖污染负荷能够削减5%,同时开展底泥清淤工作,可使巢湖的ρ(TN)和ρ(TP)得到较大程度的改善,与没有治理的情况相比分别降低约24.9%和33.3%,使巢湖夏季的ρ(Chl-a)峰值从51.42 μg/L降至32.72 μg/L,ρ(Chl-a)超过30 μg/L的天数从26 d减少到7 d.   相似文献   

13.
南四湖是保障南水北调东线工程调水水质安全的重要输水通道,对其水质保障综合控制方案阶段实施的输水干线水质改善进行效果评估具有重要的现实意义。基于SMS软件建立了南四湖二维水流水质数学模型,进行了计算边界简化、网格划分、参数选取与设置、模型调试与检验等研究工作,确定了各计算方案的水力学和水质边界条件,模拟计算了南四湖上、下级湖调水期的二维流场和浓度场。结果表明:南四湖流域全面实施"治、用、保"流域综合治污体系,并发挥综合效益的控制方案4的水质最好,同一控制方案输水主航道的水质最好;上级湖控制方案4的调水出湖口CODCr为19.81mg/L,达到地表水Ⅲ类标准,TP为0.053 4mg/L,达到地表水Ⅲ类(河流)标准,但未达到地表水Ⅲ类(湖泊)标准;下级湖各控制方案的调水出湖口CODCr和TP均达到地表水Ⅲ类(湖泊)标准,且在相同工况下,下级湖水质优于上级湖;南四湖上、下级湖输水水质模拟计算结果与各水质保障综合控制方案的总排放量相一致,即总排放量大的控制方案其调水出湖口的污染物浓度也高。  相似文献   

14.
针对河湖氮磷控制标准不衔接问题,以大型浅水湖泊太湖为例,基于2013—2018年环太湖主要入湖河流和湖体总氮浓度〔ρ(TN)〕、总磷浓度〔ρ(TP)〕、叶绿素a浓度〔ρ(Chla)〕、水量等监测数据资料,采用湖盆模型(Bathtub模型),构建太湖主要入湖河流与湖体ρ(TN)、ρ(TP)和ρ(Chla)的响应关系,分析了主要入湖河流ρ(TN)、ρ(TP)和水量对湖体富营养化的影响,探讨了太湖主要入湖河流水量及其与湖体氮磷协同控制限值. 结果表明:①太湖主要入湖河流氮磷的输入仍显著影响湖体ρ(TN)、ρ(TP),尤其是对西北部湖区的富营养化水平产生了显著影响;②在入湖水量方面,湖西区入湖水量增加可导致太湖富营养化程度增加,而“引江济太”水量输入在一定程度上改善了太湖水质. 建议分区域控制直接入湖河流水量,其中,湖西区直接入湖水量控制在60×108~70×108 m3之间,望虞河“引江济太”水量控制在15×108~20×108 m3之间;③针对太湖流域而言,现行《地表水质量标准》(GB 3838—2002)在协同控制河、湖氮磷方面存在一定的不足,仅通过控制入湖河流ρ(TN)、ρ(TP),太湖ρ(TN)、ρ(TP)难以达到Ⅲ类水质标准;④与全湖平均值相比,湖西区要达到同一标准限值,入湖河流协同控制限值要更为严格. 在河湖氮磷衔接目标制定上,建议湖西区单独设定协同控制目标浓度值. 另外,建议结合《地表水质量标准》(GB 3838—2002),开展太湖流域水质、水量协同控制,有效约束入湖通量,达到河湖氮磷协同控制目的.   相似文献   

15.
大冶湖2000-2009年地表水质评价及污染趋势预测   总被引:1,自引:0,他引:1  
对大冶湖三部分水体2000-2009年的地表水水质监测数据进行分析,采用水质标识指数法对大冶湖水质进行评价;并依据灰色系统理论,建立灰色预测数学模型,通过已有的监测数据对模型进行精度检验,验证了该模型的准确性及有效性,运用该模型对大冶湖未来5年水质变化趋势进行预测。结果表明:(1)2000-2009年三里七湖,内湖COD、BOD5、NH3-N和TP浓度均超出水质保护标准限值,外湖4项污染指标部分年份超标,其中,三里七湖水质最差,在2004、2005和2008 3个年份实际水质类别为劣Ⅴ类;(2)灰色模型预测结果表明,3个主要水体主要污染物:COD、BOD5、NH3-N和TP浓度基本呈上升趋势,仅三里七湖的TP、BOD5和外湖的NH3-N存在小幅下降。此预测结果对大冶湖水污染控制规划、污染物总量削减及湖泊保护等工作提供依据。  相似文献   

16.
鄱阳湖入湖河流氮磷水质控制限值研究   总被引:2,自引:1,他引:1       下载免费PDF全文
鄱阳湖近年氮磷营养物浓度逐步升高,入湖河流是鄱阳湖氮磷输入的重要途径.采用BATHTUB模型建立了鄱阳湖入湖河流与湖区ρ(TP)、ρ(TN)的响应关系,模拟了入湖河流执行GB 3838—2002《地表水环境质量标准》中不同氮磷标准限值对湖区水质的影响,发现当入湖河流ρ(TP)执行河流Ⅲ类标准限值或超过Ⅲ类标准限值时,对应湖区ρ(TP)超标;入湖河流执行Ⅲ类及以上湖泊水质标准限值时,湖区水质可以达到Ⅲ类保护目标,但对入湖河流存在一定的过保护现象.因此,以满足现行湖泊水质达标为情景,以湖泊ρ(TP)、ρ(TN)各类别标准限值为目标,试算了入湖河流氮磷控制限值,提出了鄱阳湖入湖河流的氮磷控制限值建议方案,其中鄱阳湖湖体水质目标为Ⅲ类时,入湖河流ρ(TP)、ρ(TN)控制限值分别为0.075和1.20 mg/L,此时入湖河流氮磷控制限值方案既能保证湖泊水质达标,又不会造成对河流的水质控制过于严格.研究显示,基于湖泊水环境质量达标情况试算的入湖河流氮磷所需控制限值,建议可作为解决入湖氮磷污染控制问题的参考.   相似文献   

17.
由于淀山湖上游污染负荷以及周边污水的排放,淀山湖已经严重富营养化。通过建立淀山湖生态系统模型,基于大量现场实测数据,对生态系统模型进行率定和验证,并利用生态系统模型对淀山湖N,P营养盐时间变化规律和藻类生长演替进行了系统研究,对各污染负荷削减的富营养化控制方案的效果进行模拟。模拟结果显示:该生态模型较好地模拟了常规水质和藻类的动态变化;淀山湖污染负荷主要来自于上游负荷,削减上游负荷对水质改善效果明显好于其他污染源削减方案;削减上游负荷95%以上,才能有效抑制蓝藻水华;P对蓝藻生长的控制效果好于控制氮。  相似文献   

18.
程海流域非点源污染负荷估算及其控制对策   总被引:8,自引:5,他引:3  
计算流域非点源氮磷污染负荷并以此开展源解析对于寻求水体污染控制最佳管理措施具有重要意义.通过对经典的Johnes输出系数模型进行改进,考虑了降水、坡度以及污染源与水体之间距离等因素,建立了一套在资料缺乏情况下,适用于受地形、降水影响较大的高原湖泊地区的非点源污染负荷评估方法.选取云南省九大高原湖泊之一的程海作为研究对象,验证了改进输出系数模型的合理性,并对流域溶解态氮磷入湖污染负荷进行了全面的分析.结果表明:(1)2014年,程海流域溶解态氮磷入湖负荷分别是158.48 t·a~(-1)和24.70 t·a~(-1),且二者空间分布相似;(2)在土地利用方面,农业用地对溶解态氮磷入湖污染负荷贡献最大,分别是46.19%和48.16%;(3)畜禽养殖和农村生活是溶解态氮磷入湖污染负荷治理的优先控制污染源,南岸是溶解态氮磷入湖污染负荷重点治理区域;(4)若实行农村生活和畜禽养殖、化肥流失及土地利用治理,可使溶解态氮磷入湖污染负荷分别减少38.47%和40.76%.研究成果可为缺乏资料的高原湖泊地区非点源污染治理提供科学的理论依据.  相似文献   

19.
李旻  陆平 《环境保护科学》2013,39(2):99-102
利用长荡湖4个监测断面数据进行分析,根据主成分分析结果,利用聚类分析对断面水质状况进行综合评价,总体看水质较好。并结合有机污染型的实际情况对控制湖体污染提出合理建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号