首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
中国商品能源消耗导致的氮氧化物排放量   总被引:16,自引:4,他引:12  
能源消耗导致的NOx排放是影响环境空气质量及区域酸沉降的重要因素.根据全国及各省区商品能源消耗与不同经济部门、不同燃料类型NOx排放因子,估算了90年代中国NOx排放量,详细给出了1997年分省、分地区、分行业及分燃料排放清单,并绘出了NOx平均排放强度分布图.结果表明,中国NOx排放量由1990年8.4Mt快速增长到1996年的12.0Mt.但与1996年NOx排放峰值相比,1997和1998年中国NOx排放量分别下降了约0.34Mt和0.82Mt.中国NOx排放的燃料、行业及地区分布极不平衡:大约3/4的NOx排放源自煤的燃烧;行业分布上,NOx则主要来自于工业(39.56%)、电力(36.74%)和交通运输(11.22%);各省区NOx排放差别很大,河北、江苏、辽宁、山东、广东、山西、黑龙江、湖北和河南9省超过0.5Mt,而青海、宁夏和海南3省区小于0.1Mt.NOx平均排放强度最大的地区(>10t·(km2·a)-1)包括上海、天津和北京市.总体来说,中国NOx排和污染主要集中在人口密集、经济相对发达的东中部和东南部地区,尤其是北京、上海、天津等大城市.  相似文献   

2.
中国东北区域本底大气中酸性气体的研究   总被引:10,自引:2,他引:8       下载免费PDF全文
龙凤山是我国区域本底站之一,NOX和SO2浓度远低于我国空气质量Ⅰ级标准。从1994年8月15日到1995年7月31日首次在龙凤山(127°36′E,44°44′N,330.5m)测得空气中NOX和SO2。观测到很强的季节变化,其夏季值最低,冬季值最高。NOS和SO2浓度和气象要素密切相关,例如风速、温度和相对湿度。基于排放源以及风频的不均一,不同扇区来的空气质量能有很大变化。在SSE-SW扇区出现高浓度SO2、较高浓度NOX和高〔SO2〕/〔NOX〕,表明该扇区有城市污染物的输送。SW-NNE扇区有高NOX、低SO2及低的〔SO2/〔NOX〕,表明该方向城市烟羽难以直接影响测点,在这个扇区高NOX来源于当地农民做饭、取暖时秸杆焚烧。低NOX、SO2观测在NNE-SSE扇区,这意味着这是最清洁扇区。  相似文献   

3.
我国水泥工业大气污染物排放量估算   总被引:10,自引:2,他引:8  
水泥工业是粉尘,SO2和NOx等多种大气污染物的重要排放源.根据各地水泥工业的工艺现状、活动水平、除尘器的除尘效率和污染物排放因子,估算了1995—2005年我国水泥工业生产过程中排放的粉尘,PM10,PM2.5,SO2,NOx,氟化物和CO等的排放量,并给出了2005年分省区、分工艺的排放清单.结果表明,污染物排放量与水泥活动水平呈正相关.1995年以来,随着水泥产量增加,污染物排放量增长迅速,2005年我国水泥工业排放排放粉尘520.69×104 t,PM10437.24×104 t,PM2.5301.06×104 t,SO2 86.09×104 t,NOx286.67×104 t,氟化物57.72×104t,CO1 987.97×104 t;山东、浙江、江苏、河北和广东等水泥生产大省污染物排放量较大,污染物排放总量占全国总排放量的46.6%,新型干法的推广应用有助于大气污染物的减排.   相似文献   

4.
中国大气NH3和NOx排放的时空分布特征   总被引:2,自引:0,他引:2       下载免费PDF全文
根据我国不同氨源的数量、燃料消费量和相应的氨与氮氧化物排放因子,计算了我国大陆地区1995~2004年历年的氨(NH3)排放量与1985~2005年历年的氮氧化物(NOx)排放量,在此基础上模拟了2006~2010年的NOx排放量,并分析了NH3和NOx排放强度的空间分布.结果表明:2004年,我国NH3排放量为12.0Tg,比1995年的10.6Tg增加了大约13.2%;2004年的NOx排放量为20.6Tg,比1995年的12.2Tg增加了大约68.9%,比1985年的6.2Tg增加了大约2.3倍.在1996年以前,我国NH3和NOx的排放量基本相当,但是此后NH3的年排放量在经历了1997~1999年的下降之后,变化比较平稳,而NOx的排放量自2000年之后呈逐年迅速增加的趋势.2004年全国NH3的排放总量中,畜禽排泄、氮肥施用、人类粪便、氮肥与合成氨生产的贡献率分别为69.2%、15.2%、13.9%和1.9%;2004年全国NOx的排放总量中,由于受到我国能源消费结构的制约,煤炭来源的NOx占到了排放总量的77.4%.NH3和NOx的排放强度都具有明显的空间差异,表现在中东部地区的排放强度明显高于西部地区,这与中东部地区人口多、能源消费量大以及畜禽养殖数量大有关.  相似文献   

5.
2005年中国燃煤大气砷排放清单   总被引:15,自引:3,他引:12  
田贺忠  曲益萍 《环境科学》2009,30(4):956-962
燃煤排放的砷是引起大气环境污染和经济损失的重要痕量元素之一.对燃煤大气砷排放进行估算可以为砷排放法规政策的制定和选择适宜的燃煤砷污染控制技术提供依据.采用基于燃料消耗的排放因子法,按照经济部门、燃烧方式和除尘设施将燃煤排放源进行分类,根据各省区不同排放类型的煤炭消耗量和燃煤平均砷含量,建立了2005年中国燃煤大气砷排放清单. 2005年中国燃煤生产和消耗量分别为2 119.8和2 099.8 Mt.燃煤导致的大气砷排放总量估算约为1 564.4 t,其中排放量最大的省区是山东(144.4 t),其次是湖南(141.1 t)、河北(108.5 t)、河南(77.7 t)、江苏(77.0 t)等,燃煤大气砷排放主要集中在中东部省区;绝大部分燃煤大气砷排放来自工业(818.8 t)和电力部门(303.4 t),分别占燃煤大气砷排放总量的52.3%和19.4%;2005年中国燃煤排放的砷大约有375.5 t是以气态形式排放到大气中,占排放总量的24%.总体上,在全国范围内燃煤大气砷污染排放控制的重点是电力和工业部门;而对于新疆、甘肃、青海、贵州等地区,还应关注生活消费燃煤引起的砷中毒事件.  相似文献   

6.
武汉市城区大气环境质量现状及趋势研究   总被引:8,自引:0,他引:8       下载免费PDF全文
对武汉市7城区1991~1995年间的大气环境质量进行分析评价,并通过模式计算污染物的多年平均地面浓度分布。在此基础上,运用等维灰数递补技术预测大气质量的变化趋势并进行预评价。结果表明,武汉市城区大气SO2浓度逐年下降,TSP浓度基本持平,煤烟型污染将有所改善。但石油燃料燃烧排放的NOX将有显著增加,整个大气环境质量仍呈下降趋势。  相似文献   

7.
江苏省人为源挥发性有机物排放清单   总被引:3,自引:0,他引:3  
掌握VOCs排放特征是研究区域大气复合污染特征和控制策略的前提.对江苏省VOCs人为源进行系统分类,收集活动水平数据,应用国内外排放因子研究成果及江苏省行业调研结果,采用排放因子法建立了江苏省2010年分行业、分城市的人为源VOCs排放清单.结果表明:江苏省人为源VOCs排放总量约为179.20×104t,其中化石燃料燃烧源、生物质燃烧源、工业过程源、溶剂使用源、移动源、油品储运源的排放量分别占排放总量的24.1%、3.3%、22.3%、25.3%、18.4%和6.6%,工业过程源中石油炼制、有机化工、医药制造是重点行业,溶剂使用源中机械装备制造、电子设备制造是重点行业.南京、苏州、无锡、常州、南通5个苏南城市VOCs排放量明显高于苏北和苏中地区,占全省总排放量的60.0%,苏州、南京、无锡排放量居前3位.各城市化石燃料燃烧源和移动源排放所占比例均超过10.0%,其他重点行业差异显著,其中南京市为石油炼制、有机化工,苏州市为有机化工、机械涂装,无锡市为有机化工、电子设备制造.  相似文献   

8.
江苏省人为源挥发性有机物排放清单   总被引:1,自引:0,他引:1  
掌握VOCs排放特征是研究区域大气复合污染特征和控制策略的前提. 对江苏省VOCs人为源进行系统分类,收集活动水平数据,应用国内外排放因子研究成果及江苏省行业调研结果,采用排放因子法建立了江苏省2010年分行业、分城市的人为源VOCs排放清单. 结果表明:江苏省人为源VOCs排放总量约为179.20×104t,其中化石燃料燃烧源、生物质燃烧源、工业过程源、溶剂使用源、移动源、油品储运源的排放量分别占排放总量的24.1%、3.3%、22.3%、25.3%、18.4%和6.6%,工业过程源中石油炼制、有机化工、医药制造是重点行业,溶剂使用源中机械装备制造、电子设备制造是重点行业. 南京、苏州、无锡、常州、南通5个苏南城市VOCs排放量明显高于苏北和苏中地区,占全省总排放量的60.0%,苏州、南京、无锡排放量居前3位. 各城市化石燃料燃烧源和移动源排放所占比例均超过10.0%,其他重点行业差异显著,其中南京市为石油炼制、有机化工,苏州市为有机化工、机械涂装,无锡市为有机化工、电子设备制造.   相似文献   

9.
1994~2006年中国人为源大气氨排放时空分布   总被引:25,自引:5,他引:20  
董文煊  邢佳  王书肖 《环境科学》2010,31(7):1457-1463
大气中的氨对酸沉降、区域细粒子、水体富营养化等重要环节问题都有直接或间接的影响.对我国人为源大气氨排放进行估算可以为酸沉降和区域细粒子污染控制对策的制定提供依据.利用排放因子法,基于牲畜养殖、化肥施用、化工生产、人体呼吸排汗和排泄等部门的排放因子和分省活动水平,建立了1994~2006年我国分省分部门的大气氨排放清单,分析了其历史变化趋势和地理分布特征.2006年,全国大气氨排放量从1994年的11.06Mt增长到16.07Mt.其中,牲畜养殖、化肥施用、化工生产、人呼吸排汗和排泄的氨排放分别从1994年的4.47、5.94、0.09、0.59Mt增长到2006年的6.61、8.68、0.14、0.65Mt.牲畜养殖和化肥施用是最主要的氨排放源,分别贡献了2006年氨排放总量的40.79%和53.53%.2006年,全国平均的氨排放强度为1.67t·km-2,但是全国大气氨排放量的地理分布很不均衡,河南、山东、四川、河北、江苏等省的排放量分别为11.0%、9.7%、6.9%、6.7%、6.6%,共占全国总排放量的40.82%.  相似文献   

10.
搜集10类氨(NH3)的人为源活动水平数据,采用排放因子法,计算了1996~2016年湖北省NH3排放量,利用GIS进行1km×1km的空间分配.分析了不同地理单元(西部山区城市、中部平原城市、东部特大城市和东部中小城市)的NH3排放源结构和单位排放量的差异.结果表明,湖北省NH3排放量由1996年的375.0kt增长至2016年的475.4kt,年均增长率为1.2%.西部山区城市NH3排放增加最快,年均增长率为3.5%,高于全省平均水平.农业源是最主要贡献源,畜禽养殖和氮肥施用排放的NH3分别占总排放量的71.6%和15.8%.除畜禽养殖和氮肥施用外,废弃物处理和生物质燃烧分别是东部特大城市和中部平原城市NH3的重要排放源,分别占全省该类源NH3排放总量的76.1%和41.5%.值得注意的是,东部特大城市的工业生产、人体排泄、机动车尾气排放和化石燃料燃烧等排放的NH3占比均高于其它3种地理单元,需引起关注.  相似文献   

11.
中国人为源颗粒物排放现状与趋势分析   总被引:15,自引:3,他引:12  
张楚莹  王书肖  赵瑜  郝吉明 《环境科学》2009,30(7):1881-1887
利用排放因子法,基于电力、工业、民用、交通等部门的活动水平和排放因子,建立了2000年和2005年中国分省、分部门、分粒径的颗粒物(PM)排放清单.利用情景分析法,基于能源预测,分析了在不同颗粒物控制方案下2010~2030年中国颗粒物的排放趋势.结果表明,我国2005年的总悬浮颗粒物(TSP)、可吸入颗粒物(PM10)和细颗粒物(PM2.5)的排放量分别是29.98、15.30和9.79 Mt, 2000~2005年间的排放增长率分别是3.4%、4.7%和5.4%.在现有政策情景下,我国2030年TSP和PM2.5的排放量分别是23.06和10.59 Mt,工业锅炉成为最大的颗粒物排放源.通过提高能源利用效率,2030年可在基准情景基础上TSP和PM2.5分别减排15%和16%;通过增大执法力度,2015年可再减排25%的TSP和10%的PM2.5排放,之后通过加严排放标准,推广高效除尘装置的应用,2030年TSP和PM2.5可再减排21%和19%,其排放量分别达到13.81和6.88 Mt.颗粒物的综合控制措施应覆盖电厂、工业、民用等各个领域,从提高能效、保证执法、强化政策3个方面着手.  相似文献   

12.
中国非燃煤大气汞排放量估算   总被引:16,自引:6,他引:10  
本研究根据各种非燃煤大气汞排放源的活动水平和排放因子,估算了1995~2003年中国分省非燃煤大气汞的排放量。2003年中国非燃煤大气汞排放量为393t,比燃煤汞排放多137t。在非燃煤大气汞排放中,84%来自有色金属冶炼,其中锌冶炼、铅冶炼、铜冶炼和黄金冶炼分别占总排放的51%、18%、4%和11%。Hg0、Hg2+和HgP在中国非燃煤大气汞排放中所占比例分别为77%、18%和5%。中国非燃煤汞排放在各地区间有较大差异,排放量超过30t?a-1的省区包括湖南、河南和云南,排放强度超过1t?km-2的省区包括上海、湖南、河南、辽宁和广东,这些地区的主要汞排放源为有色金属冶炼和生活垃圾焚烧。1995~2003年中国非燃煤大气汞排放的年均增长率为9%,其中生活垃圾焚烧排放的年均增长率最高,达到42%。  相似文献   

13.
上海市能源消费CO2排放清单与碳流通图   总被引:6,自引:2,他引:6  
谢士晨  陈长虹  李莉  黄成  程真  戴璞  鲁君 《中国环境科学》2009,29(11):1215-1220
基于上海市能源统计数据,参照IPCC(2006)方法,测算了上海市能源CO2排放清单,并绘制了2007年上海市碳流通图.结果表明,上海市能源相关的CO2排放总量从1995年的1.10亿t增长到2007年的2.01亿t,期间年均增长率为5.0%.其中“交通”对应的CO2排放量增长最为迅速,年均增长率达15.1%;而“热电厂”的CO2排放量增幅逐渐变缓,其原因为近年上海市外来电力比重增大.2007年“热电厂”、“工业与建筑业”、“交通”、“商业”、“居民生活”与“农业”各部分CO2排放分担率分别为35.4%、34.4%、23.8%、4.0%、2.0%、0.4%.由2007年上海市碳流通图可见,15.6%的煤炭直接由终端使用,这不利于能源效率的提高与污染物的减排;成品油存在较多的交叉流通,若能够减少不必要的流通,不但能够缓解成品油的运输,还能够减少其在转运过程中的输配损失.  相似文献   

14.
生活垃圾处置单元是重要的温室气体(GHG)排放源,明确其排放变化趋势及特征,是制定生活垃圾单元GHG减排的前提.采用IPCC清单模型,对中国2010~2020年城市生活垃圾(MSW)处置单元的GHG排放进行了估算.结果表明,GHG排放量(以CO2-eq计,下同)从2010年的42.5 Mt增长至2019年的75.3 Mt,2020年降低到72.1 Mt;生活垃圾填埋场是GHG排放的主要来源,随着生活垃圾焚烧比例的增加,焚烧GHG排放占比从2010年的16.5%快速增加到2020年的60.1%;在区域分布上,华东和华南地区是排放量最高的区域,广东、山东、江苏和浙江是最主要的排放省.实行生活垃圾分类,转变生活垃圾处置方式(垃圾填埋向焚烧的转变),提高填埋场填埋气体(LFG)收集效率,利用生物覆盖功能材料强化覆盖层甲烷(CH4)氧化效率,是实现固废处置单元GHG减排的主要措施.  相似文献   

15.
基于投入产出法的北京能源消耗温室气体排放清单分析   总被引:2,自引:0,他引:2  
城市是一个巨大能源物资消耗体和温室气体排放体,相关研究受到广泛关注.本文以2007年为例基于投入产出法研究北京市能源消耗的温室气体排放量,计算得出CH4和N2O这两种常规温室气体排放量.结果表明,北京市2007年能源消耗温室气体排放量为3531.72万tCO2当量,其中CO2排放量为3514.40万t,CH4排放量为1734.32t,N2O排放量为435.83t.北京市工业部门仍然是主要的温室气体排放部门,其排放的温室气体占CO2总量的98.96%,CH4总量的88.48%和N2O总量的98.99%.不同最终使用部门中,政府部门消费产生的温室气体排放量超过总量的15%,高于城镇消费和农村消费之和;调出和出口部门的碳排放量超过总量的40%,所占比例最大.贸易中,隐含在调出和出口部门中温室气体排放量是隐含在调入和进口部门的十几倍.北京市不同行业的温室气体排放强度略优于全国水平.降低北京市温室气体排放量可从进一步优化产业结构,发挥科技减排的作用,提高不同产业的能源利用率等方面采取措施.  相似文献   

16.
基于生产和消费视角的辽宁省行业能源消费碳排放   总被引:2,自引:1,他引:1  
行业能源消费碳排放核算是碳减排政策制订的基础,从消费视角进行行业碳排放研究日趋重要. 基于经济投入产出生命周期评价模型,从生产和消费视角解析了辽宁省2007年行业能源消费碳排放分布规律. 结果表明:生产视角碳排放量行业集中度高,该视角碳排放总量的78.73%集中在电力、热力的生产和供应业,金属冶炼及压延加工业,非金属矿物制品业以及交通运输、仓储及邮政业;为其他行业提供产品和服务是造成行业生产端碳排放的主要原因;消费视角下行业碳排放总量的53.79%集中在金属冶炼及压延加工业,建筑业,电力、热力的生产和供应业以及其他行业;上游供应行业的间接碳排放是造成消费端排放的主体.从碳排放强度来看,生产视角下各行业碳排放强度差异性较大,电力、热力的生产和供应业的碳排放强度最大,为9.17 t/万元;消费视角下行业之间的碳排放强度差异性较小,均低于3 t/万元. 最后针对不同视角下分析结果的差异性提出了相应对策的侧重点.   相似文献   

17.
中国生物质燃烧大气污染物排放清单   总被引:49,自引:12,他引:37  
根据2000-2007年各省市生物质燃烧消耗量和排放因子,估算了中国大陆生物质燃烧所导致的NOx、SO2、CO、CO2、CH4、NMHC、PM、BC排放量,并给出了分省区、分生物质类型的排放清单.研究表明,2007年中国生物质燃烧排放的NOx、SO2、CO、CO2、CH4、NMHC、PM和BC排放量分别为109万t,1...  相似文献   

18.
通过文献调研收集广东电力生产最新的能源消费数据和排放因子,采用“自上而下”方法估算1995—2011年广东电力行业的直接和间接GHG(温室气体)排放量,量化直接排放量的不确定性,绘制GHG排放流向图,并且根据GHG排放特征提出减排建议. 结果表明:①虽然受经济、环境和能源政策的影响,与1995年相比,2011年广东电力生产的GHG总排放量仍增长438%,达3.44×108 t,其中直接排放量达2.78×108 t,不确定性为±11%. ②从发电能源结构角度考虑,燃煤发电是电力生产的最大GHG排放源,2011年其排放量占总排放量的76%;而从用电终端考虑,工业用电是最大的GHG排放源,2011年其排放量占电力生产GHG总排放量的66%. ③1995—2011年,用电终端总体电力GHG排放强度下降了16%,居民用电人均GHG排放量上升了260%,单位综合发电量的GHG排放系数微升了1%. ④发电能源结构和终端产业结构的低碳化以及控制居民用电的GHG排放量等措施可减排2011年广东电力生产GHG总排放量的44%.   相似文献   

19.
京津冀地区主要排放源减排对PM2.5污染改善贡献评估   总被引:3,自引:2,他引:1  
研究选取2012年1月和7月作为冬夏两季代表时段,利用CMAQ/2D-VBS模型分析了冬夏两季京津冀地区主要排放源减排30%对改善区域PM_(2.5)污染的效果.结果表明,工业源对PM_(2.5)污染的贡献最大,其次是民用源,但工业源单位减排量贡献低于民用源,交通源和电厂源的整体贡献和单位减排量贡献均较小.工业部门内贡献最大的为钢铁冶金行业,其次是水泥、工业锅炉、炼焦、石灰砖瓦和化工行业.与各部门各物种排放量的比较反映出各排放源贡献大小与其一次PM_(2.5)排放水平高度相关.因京津冀地区冬季NO_x减排对PM_(2.5)形成的促进作用,以及冬季较弱的大气垂直扩散作用,各排放源夏季减排比冬季普遍更有效,交通源、电厂源以及工业源中的水泥、工业锅炉和石灰砖瓦行业夏季减排效果相比冬季优势明显.民用源由于采暖季排放较高而冬季贡献更明显,农业源因秸秆开放燃烧量大,冬季单位减排量贡献十分显著.从同等幅度减排考虑,应将工业源作为控制重点,优先控制其一次PM_(2.5)排放,在部门内进一步重点控制钢铁冶金行业的NO_x和SO_2排放、水泥行业的夏季NO_x排放以及炼焦行业的SO_2和NMVOC排放.民用源排放应着重在冬季采暖期控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号