首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
朔州市市区PM2.5中元素碳、有机碳的分布特征   总被引:3,自引:2,他引:1  
采集朔州市市区4个点位采暖季和非采暖季环境空气PM2.5样品,利用Elementar Analysensysteme Gmb H vario EL cube型元素分析仪测定其中元素碳(elemental carbon,EC)和有机碳(organic carbon,OC)含量,并对碳组分的浓度水平、时空分布特征和主要来源进行分析.结果表明,朔州市市区非采暖季PM2.5中OC和EC的平均浓度为(14.3±2.7)μg·m-3和(10.3±3.1)μg·m-3,采暖季OC、EC平均浓度分别为(23.3±5.9)μg·m-3和(20.0±5.7)μg·m-3;4个点位OC和EC的浓度均表现为采暖季大于非采暖季,其中在采暖季,点位SW中OC和EC浓度分别为28.5μg·m-3和28.1μg·m-3,高于其它采样点,在非采暖季,点位PS中OC和EC的浓度分别为17.7μg·m-3和14.1μg·m-3高于其它采样点;采暖季和非采暖季PM2.5中OC/EC值均小于2,但OC和EC相关性不好(在采暖季和非采暖季的相关系数分别为0.66和0.52),说明PM2.5中碳气溶胶来源复杂.控制碳组分一次排放来源,如燃煤烟尘、生物质燃烧及机动车尾气排放,同时关注二次污染是控制朔州市PM2.5的关键.朔州市市区采暖季和非采暖季PM2.5中二次有机碳(secondary organic carbon,SOC)浓度分别为(6.44±2.77)μg·m-3和(4.11±1.92)μg·m-3.  相似文献   

2.
2012年9月1日至30日利用大气气溶胶OC/EC在线分析仪在线分析了西安PM2.5中的OC、EC,并结合O3和紫外辐射数据(UV)进行了分析。结果表明:PM2.5、OC、EC、及O3的日均值分别为85.22,19.50,7.18,56.69μg/m3。PM2.5及其中OC、EC的日变化规律呈现"双峰"分布,OC、EC的日波动范围较PM2.5小,且OC的波动范围较EC大,OC、EC的相关性较高(R2=0.73)。PM2.5中TCA的平均比重为47.85%,是PM2.5的主要成分之一,TCA以OM为主,OM中SOC的平均比重高达54.76%,PM2.5中SOC的平均比重为21.25%,SOC和O3的相关性较高,表明研究期间西安市有机物光化学反应较重。1 d中10:00至19:00是PM2.5中SOC比重最高的时段且呈上升趋势,而PM2.5中TCA的变化规律则呈"W"型双峰分布。  相似文献   

3.
为了探讨德州市大气颗粒物中二次粒子污染特征,于2012年2-9月在德州市城区及郊区布置采样点位6个,分为采暖季、风沙季、非采暖季3个季节进行了不同粒径(TSP、PM_(10)、PM_(2.5))颗粒物的样品采集;进行了颗粒物中阴离子(F~-、Cl~-、SO_4~(2-)、NO_3~-)、阳离子(NH_4~+、K~+、Na~+、Ca~(2+)、Mg~(2+))和碳组分(OC、EC)的测定。结果表明:德州市大气颗粒物中SNA/总水溶性离子为60.83%,SNA污染严重;SO_4~(2-)的平均浓度值变化趋势均为非采暖季风沙季采暖季,NH_4~+为采暖季风沙季非采暖季,NO_3~-没有呈现出明显的季节变化特征;SO_4~(2-)、NO_3~-、NH_4~+在PM_(2.5)中的浓度与其在PM_(10)中浓度的比值范围为0.60~0.90,二次无机离子更容易富集在细颗粒物中;NO_3~-/SO_4~(2-)的平均值为0.17,德州市大气颗粒物以燃煤污染占主导;OC、EC的平均浓度值变化趋势均为采暖季风沙季非采暖季,OC/EC的比值均2.0,说明德州市大气细粒子中SOC对OC有一定的贡献;SOC浓度值的季节变化趋势为采暖季风沙季非采暖季,SOC/OC的平均值在TSP、PM_(10)、PM_(2.5)中分别为16.91、22.15、19.27,说明SOC在OC中占有较大比例,是OC的重要组成部分。  相似文献   

4.
自2012年10月13日-2014年9月11日在邯郸市采集PM2.5样品,并对气态污染物以及颗粒污染物(PM10和PM2.5)进行在线监测,将其中100个样品进行8种碳组分分析,初步探讨含碳气溶胶的特征及来源。结果发现:采样期间PM10和PM2.5的平均浓度分别274.4μg/m3和154.7μg/m3,超标率大于80%,其中2013年1月份PM10和PM2.5的最大值更分别达到924.6μg/m3和658.2μg/m3。OC/PM2.5和EC/PM2.5的比例分别为16.7%和7.0%,采暖时间段的OC及EC的污染程度相较于非采暖时间段更为严重。OC和EC的平均增长率分别为2.67和1.33,污染累积和二次转化贡献率分别占49.8%和50.2%;SOC/OC在49.3%~57.7%之间,SOC/PM2.5在7.9%~11.6%之间,二次有机物污染较为严重。因子分析表明,冬季PM2.5碳组分主要来自于燃煤和柴油车尾气排放,生物质燃烧和汽油车尾气,分别解释了PM2.5中碳组分的39.3%、28.4%以及16.3%。  相似文献   

5.
忻州市环境空气PM10中有机碳和元素碳污染特征分析   总被引:4,自引:2,他引:2  
采集了忻州市4个监测点位采暖季和非采暖季环境空气PM10样品,利用Elementar Analysensysteme GmbH vario EL cube测定有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的质量浓度,通过OC和EC的时空分布、比值以及相关性分析揭示忻州市的碳组分污染特征.结果表明,忻州市PM10中OC和EC的平均质量浓度分别为(18.5±4.5)μg·m-3和(16.1±4.3)μg·m-3,采暖季和非采暖季TCA占PM10的比例分别为70.7%和43.8%;4个监测点位采暖季OC的质量浓度均高于非采暖季,XT、DC和KQ监测点采暖季EC的质量浓度高于非采暖季,SQ监测点则相反,采暖季燃煤是OC和EC的主要来源;监测点XT的OC质量浓度最高,为24.1μg·m-3,DC的EC质量浓度最高,为22.0μg·m-3,SQ的OC和EC质量浓度最低,分别为17.2μg·m-3和14.5μg·m-3,区域性污染特征存在差异;OC/EC均值小于2,一次污染严重;非采暖季OC与EC浓度相关性较好(R2=0.55),二者排放源单一,主要来源为机动车尾气排放,采暖季相关性不显著(R2=0.13),二者排放源复杂.忻州市主要通过控制燃煤、机动车尾气、生物质燃烧、工业源等的一次排放来减轻碳组分污染,进而提高环境空气质量.  相似文献   

6.
贵阳市秋、冬季PM_(2.5)中碳组分污染特征及来源分析   总被引:2,自引:0,他引:2  
王珍  郭军  陈卓 《地球与环境》2015,43(3):285-289
为研究贵阳市大气细粒子PM2.5中有机碳(OC)和元素碳(EC)的污染特征,于2013年10月14日至2013年12月25日,采集2个监测点位秋季和冬季的PM2.5样品,检测分析PM2.5中有机碳(OC)、元素碳(EC)的质量浓度。结果表明,秋季PM2.5中OC的平均浓度为14.9μg/m3,EC的平均浓度为2.31μg/m3;冬季PM2.5中OC的平均浓度为26.2μg/m3,EC的平均浓度为7.53μg/m3,呈冬季高、秋季低的季节变化特征。秋、冬季PM2.5中OC/EC的值均大于2,表明存在二次有机碳(SOC)的贡献;秋季SOC的值为6.89μg/m3,冬季SOC的值为8.29μg/m3。通过计算PM2.5中8个碳组分丰度,初步判断PM2.5中秋季碳的主要来源是汽车尾气、道路扬尘和生物质燃烧,冬季碳的主要来源是汽车尾气、燃煤尘和道路扬尘。  相似文献   

7.
天津市大气中PM10、PM2.5及其碳组分污染特征分析   总被引:14,自引:4,他引:10       下载免费PDF全文
吴琳  冯银厂  戴莉  韩素琴  朱坦 《中国环境科学》2009,29(11):1134-1139
2007年12月~2008年10月期间,分3个时段,设置2个点位,采集了天津市大气环境中PM10和PM2.5样品.用热光反射分析仪测定样品中的碳组分含量,并用OC/EC最小比值法估算二次有机碳(SOC)的浓度.结果表明,市区采样点颗粒物浓度高于郊区,2个采样点的颗粒物浓度变化趋势一致.5月份 PM2.5/PM10比值最小,主要由于土壤风沙尘对PM10的贡献较大.PM10和PM2.5中的有机碳(OC)、元素碳(EC)浓度12月份最高,且变化趋势相同.OC占总碳(TC)比例较高,PM10中OC/TC为0.60~0.83,PM2.5中OC/TC为0.55~0.81.碳组分主要集中在PM2.5中,PM10中约有76%的OC存在于PM2.5中.12月份的SOC浓度最高,与12月份的气象条件和污染源排放等因素有关.  相似文献   

8.
为研究盘锦市秋冬季节大气PM_(2.5)中碳组分的污染特征和来源,于2016年10月和2017年1月采集盘锦市3个点位PM_(2.5)样品,通过OC/EC比值法,EC示踪法以及主成分分析法对PM_(2.5)中碳组分进行污染特征分析及来源解析.结果表明,盘锦市秋冬季节PM_(2.5)浓度均超过环境空气质量标准(GB 3095-2012)二级标准,秋季OC和EC的平均浓度为10.02μg·m~(-3)和3.91μg·m~(-3),冬季为16.04μg·m~(-3)和5.62μg·m~(-3);采样期间秋冬季节OC/EC均大于2.0,说明各采样点位在秋冬季均可能存在二次污染,Spearman相关分析及线性拟合可知开发区OC与EC来源复杂,第二中学及文化公园OC和EC可能具有同源性;通过EC示踪法对SOC进行定量估算,得出秋季SOC浓度为7.21μg·m~(-3),冬季为23.07μg·m~(-3),对结果进行不确定性分析,可知秋冬季节SOC不确定性的绝对误差和相对误差均在可接受范围内;通过主成分分析得出盘锦市秋冬季节PM_(2.5)中碳组分主要来源于煤烟尘,生物质燃烧以及机动车尾气.  相似文献   

9.
太原市PM2.5中有机碳和元素碳的污染特征   总被引:4,自引:3,他引:1  
采集了太原市4个点位冬季和夏季PM2.5样品,利用元素分析仪测定了PM2.5中有机碳(OC)和元素碳(EC)的质量浓度,并对碳气溶胶污染水平、时空分布、二次有机碳(SOC)以及OC和EC相关性等特征进行了分析.结果表明,太原市冬季有机碳(OC)、元素碳(EC)平均质量浓度为22.3μg·m-3和18.3μg·m-3,夏季OC、EC平均质量浓度为13.1μg·m-3和9.8μg·m-3,冬季和夏季总碳气溶胶(TCA)占PM2.5的比例分别为56.6%和36.5%;各点位OC和EC质量浓度均呈现冬季夏季的季节特征,冬季OC、EC浓度呈现出较好的均一性,夏季OC、EC质量浓度存在较明显的空间分布差异;太原市SOC污染较轻;冬季OC、EC相关性较强,夏季OC、EC相关性差.  相似文献   

10.
上海城区PM2.5中有机碳和元素碳变化特征及来源分析   总被引:7,自引:6,他引:1  
2010年6月~2011年5月间在上海城区点位采集了181组PM2.5样品,采用热光反射法(thermal optical reflectance,TOR)测定了样品中的有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)含量.结果表明,上海城区环境空气PM2.5中OC和EC年平均浓度分别为8.6μg·m-3±6.2μg·m-3和2.4μg·m-3±1.3μg·m-3,两者之和占PM2.5质量浓度的20%.OC和EC的季节平均浓度值冬季最高,夏季最低,秋季OC和EC在PM2.5中的比例最高.全年OC/EC比值为3.54±1.14.采用最小OC/EC比值法估算二次有机碳(secondary organic carbon,SOC)含量得到SOC年均浓度为3.9μg·m-3±4.2μg·m-3,占OC含量的38.9%.夏季SOC浓度低且与O3最大小时浓度值相关性好,表明光化学反应是夏季SOC的重要生成途径,主导西风向的秋冬季SOC浓度高于静风条件下的浓度水平,存在输送作用.进一步对OC1、OC2、OC3、OC4、EC1、EC2、EC3和OPC进行主成分分析,结果显示上海城区PM2.5中OC和EC主要来自机动车尾气、燃煤排放、生物质燃烧和道路尘,这4个来源对含碳组分的贡献率达69.8%~81.4%,其中机动车尾气在4个季节中的贡献率均较高,生物质燃烧贡献约15%~20%,春季和秋季道路尘影响明显,冬季燃煤的贡献高于其他季节.  相似文献   

11.
中国典型城市机动车排放演变趋势   总被引:15,自引:0,他引:15       下载免费PDF全文
选择中国12个典型城市建立1990~2009年机动车排放清单,分析各城市机动车排放历史演变趋势.结果显示,1990~2009年,研究各城市CO、VOCs、NOx和PM排放因子分别降低57%~81%、53%~78%、22%~74%和31%~76%.20年间,各城市CO和VOCs排放量总体在2000年后陆续达到增长峰值后开始下降,总量分别增长1.0倍和1.4倍;NOx和PM排放量总体保持持续增长,分别增长3.2倍和3.3倍.各城市汽油车是CO和VOCs排放主要贡献源,LDA-G、MDTB-G和HDTB-G对各城市机动车CO和VOCs排放的贡献和分别为约70%~90%和约50%~85%,其中LDA-G的排放贡献明显提高.LDA-G、MDTB-G、MDTB-D和HDTB-D贡献了80%~90%的NOx排放,其中MDTB-D和HDTB-D的排放贡献率从平均57.8%上升为72.7%.对于PM,MDTB-D和HDTB-D占排放的70%~90%.此外,部分城市摩托车排放的贡献不容忽视.  相似文献   

12.
国外保护矿业环境的矿业立法择优   总被引:2,自引:0,他引:2  
勘探尤其是开采对环境的污染和破坏是比较典型的,为此,世界绝大多数国家制订了独立于矿产资源法的《矿业法》,从立法资源上保证保护矿业环境的法律构建.国外《矿业法》以源头控制、全过程控制、无过错和合力等立法原则,贯通于行政特许权授予为主并综合运用矿业主体激励、市场力量、公众参与等其他管理方式之中,构建成立体性保护矿业环境的法律制度.国外矿业法择优显得我国取代《矿业法》的《矿产资源法》关于矿业环境保护的规定过分“吝啬“.  相似文献   

13.
小兴安岭泥炭藓沼泽生态系统中的汞   总被引:13,自引:2,他引:11  
研究了小兴安岭汤旺河流域中的泥炭、土壤和植物样品的汞,泥炭地总汞的平均含量为65.8~186.6ng/g;高于黑龙江土壤A层汞平均含量,也高于美国佛罗里达大沼泽国家公园和瑞典Birkeness湿地的含量.甲基汞平均含量为0.16~1.86ng/g;约占总汞的0.2%~1.4%,泥炭地总汞最高浓度出现在5~10cm深处,为186.6ng/g,甲基汞最高浓度出现在10~15cm处,为1.86ng/g,均随深度增加而减少.甲基汞含量与总汞没有很强的相关性(P=0.05,r=0.28)  相似文献   

14.
我国海水养殖业的抗生素污染现状   总被引:1,自引:0,他引:1  
我国海水养殖业存在抗生素使用不当的现象,由此引发的人体健康风险和环境污染问题受到社会各界的广泛关注。一方面,养殖水体与海洋具有连通性,因此养殖区的抗生素残留可能会在海洋生态系统中扩散迁移,导致自然环境中抗生素及抗生素抗性水平的提高;另一方面,海产品中抗生素残留带来了食品安全和进出口贸易纠纷问题。本文从我国海水养殖业抗生素的使用情况、海水养殖区水体及沉积物中抗生素浓度、主要海产品的抗生素残留等3个方面,系统介绍了我国海水养殖业抗生素的污染现状,为我国海水养殖业抗生素的合理使用和有效监管提供参考。  相似文献   

15.
排污交易在中国   总被引:1,自引:0,他引:1  
2001年江苏发生了我国首例二氧化硫排污交易,2002年底同样在江苏完成了首倒异地二氧化硫排污权。同时二氧化硫排污权交易试点在我国七省市全面展开。随着试点工作的广泛开展。  相似文献   

16.
Food and Environmental Virology - Hepatitis A virus (HAV) was detected in frozen strawberries which had been implicated in a large outbreak of hepatitis A in 1997. The sample was analysed after...  相似文献   

17.
金丹 《环境科学》2022,43(1):132-139
为研究上海市夏季臭氧高发季节大气VOCs在臭氧生成中作用,选取2018年5~8月大气臭氧较高的时段,在淀山湖科学观测研究站对103种挥发性有机物、臭氧和氮氧化物等环境污染物进行观测.结果表明,上海臭氧高发季节大气平均φ(VOCs)为32.7×10-9,羰基化合物是VOCs的主要组分,所占质量分数达35.0%.羰基化合物中甲醛体积分数最高,其次是丙酮,占12种测量羰基化合物总量的82.8%. 5月环境空气的化学反应活性最强,总的臭氧生成潜势(OFP)为337.2μg·m-3,甲醛贡献率最大.烷烃、烯烃和芳香烃的日变化呈现夜高昼低规律,在早晨出现小峰值,与交通排放影响有关;而醛酮类日变化呈现昼高夜低规律,与光化学反应的二次生成过程有关.OBM模拟结果显示,5~6月属于臭氧生成的VOCs控制区,7~8月属于过渡区.  相似文献   

18.
鸭绿江口潮滩沉积物间隙水中的营养盐   总被引:13,自引:0,他引:13  
通过对鸭绿江口潮滩区2个采样点采集的柱状样分析、培养实验,测定了沉积物间隙水中的营养盐和沉积物中的S2-结果表明,鸭绿江口潮滩区沉积物间隙水中的NO3-含量平均值为3.0μmol/L,垂直分布变化不大.PO43-和SiO32-的含量范围分别为0.8~70.4μmol/L,111.6~1054.3μmol/L,且两者垂直变化类似,随沉积物深度的增加先增加后下降.沉积物中硫化物的分布是随深度增加,含量升高.鸭绿江口潮滩区沉积物Eh、pH的测定结果显示,在13cm以下,Eh降为负值,沉积物还原性逐渐增强.而pH自上而下变化不大.由分子扩散公式计算结果表明,鸭绿江口潮滩区营养盐均由沉积物向上覆水扩散.  相似文献   

19.
文中叙述了1988 ̄1990年间,我国4个港湾-大连湾、天津港、深圳湾及珠江河段各疏浚区疏浚物中油类污染调查及分布状况。文中介绍了站位布设原则,样品采集、样品处理、分析测试方法。进行了沾污疏浚物油类出溶出实验,认为油类溶出实验是估价疏浚物油类污染的程度的重要手段。讨论了4港湾疏浚物油类污染水平。大连湾海域疏浚物石油污染明显,珠江河段,深圳湾及天津港疏浚物稍受影响,基本上是清洁的。  相似文献   

20.
测定水中总氮时若干问题的探讨   总被引:1,自引:0,他引:1  
本文提出了测定水中总氮时所遇到的几个问题及一些改进措施,从而可将空白值控制在较为理想的范围内,达到了环境监测的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号